IBANGERINE

COMPUTER SYSTEMS LIMITED

st

—m EERITE

FOREWORD
CHAPTER 1 Microprocessors and Binary Numbers.
CHAPTER 2 Constructional Notes.
CHAPTER 3 The Microtan 65.
CHAPTER 4 The Microtan System.
CHAPTER 5 The 6502 Microprocessor.

Tables of Machine Instructions.

CHAPTER 6 TANBUG V2

Copyright TANGERINE Computer Systems Ltd.
All Rights Reserved.

—

———————————— TG ~

FOREWORD

Unlike most other microcomputers, microtan 65 has been designed
from the start with a small system in mind, therefore expansion of
microtan 65 is a concept, not an after thought. We hope that this
manual will be the first of many, as each Tangerine product is
supplied with thorough and useful documentation, an absolute
necessity with anything related to computers. The first chapter of
this manual provides an introduction to microprocessors and the
binary number system, it is by no means complete as this subject
requires a complete book to be dedicated to it. Chapter two gives
constructional notes for the kit version but purchasers of ready
built microtan 65's are still advised to read it as it contains
relevant information. Chapters three and four describe the microtan
65 and the microtan system respectively. The 6502 microprocessor is
described in sufficient detail in chapter five which also contains
complete tables of all of the 6502 machine code instructions.

’I‘A.NBUG, the most important item, is fully described in chapter six
with a step by step guide and an example program to demonstrate
the power of TANBUG's debugging aids. Also given in chapter six
is a table of hex ASCII codes and the complete TANBUG listing.

—_———— e NGERINERN

Microprocessors and Binary Numbers

——————— v ——— DA ~

Microprocessors have been with us for a few years now. Their
concept is not exactly new. The idea of a general purpose
electronic processor controlled by a stored program is at least
thirty years old. Only in the last few years has it been the size
of a thumbnail, rather than a garden shed; and it costs a few
pounds rather than a few hundred thousand. It has been
integrated circuit manufacturing technology that has advanced and
given the world the computer on a chip - the microprocessor. The
revolution we hear about is the result of microprocessor applications.
It may be the '"sledge hammer t crack a walnut" tactic to use a
computer to control a washing machine but if it is the cheapest,
most reliable and the best way to do it, so what!

Programming a microprocessor to perform a certain task is not un-
like using a programmable calculator. The microprocessor program
is at a much more fundamental level though. In a programmable
calculator there are usually a number of data registers and a
separate program memory. Data flow is under control of the pro-
grammer when he/she writes the pmgrafn. In a microprocessor
system the program and data memories are not usually separate. It
is possible to store an instruction or data at any particular
address. The main difference is that a programmable calculator is
dedicated t solving arithmetic problems and the user interfaces are
specialised to that task. Results are displayed as decimal numbers
and the machine responds at the press of a button to a particular,
defined operation. The microprocessor is a general purpose device

and must be designed into a system and programmed to perform the
task required of it.

A simple computer system is shown diagramatically below.

-—

Memory I/0 CPU

Data =

Control

The block marked as memory can be RAM or ROM and the block
rarked I/0 is a special circuit for interfacing a peripheral device
t the microprocessor address, data and control bus. Address and
data Luses are dedicated, as would be expected to memory and I/0
address and data. The control bus controls and synchronises all
other circuitry to that of the cpu. In its simplest form the cpu
would contain only two registers; an accumulator and a program
counter. The accumulator is the working register where all data is
fetched and manipulated according to the instruction being executed.
The program counter normally increments to the next instruction in
memory but on occasions the program counter jumps t a new
location, depending on the result of the previous operation, or to a

subroutine.

Of course most computing systems, including microprocessors, are
much more complicated than this, having several internal registers
with specialised tasks inside the cpu. Some memory locations
external to the cpu may also be assigned special tasks, such as
interrupt vectoring. However complicated a computer is it, like all
others, uses binary notation for all its data and instructions.

This means that the programmer is working with data and machine

operations at a very fundamental level.

The data used in a microprocessor consists of a group of binary

bits; 8 in an 8 bit microprocessor. A binary bit can only take one

N G T —

————— = ——— TR

of two values, either @ or 1. The numbering system that uses
binary digits has a base of 2. To explain this first consider the
all familiar decimal system. We start counting from ¢ up to 9, at
which point the digit returns to @ and the next digit to the left
increases by one. Each digit to the left is worth ten times as
much as the digit to the right of it. In binary, the same thing
happens except that a digit returns t @ after only reaching 1, and
each digit of increasing significance.is worth twice as much as the
digit to the right of it. Even when using binary numbers it is
hard for a human being to leave decimal entirely behind. The left
most column is worth only 1 unit in decimal, the next digit is
worth 2, then 4, 8, 16, 32, 64, 128 and so on. Each of these
numbers are in fact 2®, 21, 22, 23, 24, 25, 26, 27 and so on, (in
decimal the digit positions represent 1¢¢, 1(251, 1@2, 1¢3 and so on)
and denote the respective bits (digits) bit @, bit 1, bit 2, bit 3
etc. Consequently, in an 8 bit microprocessor, these take the
labels D@-D7.

To represent a decimal number in binary, divide continuously by 2.
The first time the division takes place the remainder becomes the
first bit of the binary representation, i.e. bit @§. The remainder
from the next division becomes bit 1, and so on until division by 2
is not possible. For example, find the binary representation of the
decimal number 57.

57 + 2 = 28 remainder 1 - Bit @ = 1
28 + 2 = 14 remainder § - Bit 1l =@
14 ¢ 2 = remainder § - Bit 2 = @
7 & 2= 8 remainder 1 - Bit 3 =1
3 2= 1 remainder 1 - Bit 4 =1
1 + 2 not possible, remainder 1 - Bit 5 =1

Therefore decimal 57 = binary 111¢@1

As another example, find the binary representation of the decimal
number 26.

26 + 2 = 13 remainder § - Bit @ = ¢
13 : 2= 6 remainder 1 - Bit 1 =1
B D= remainder § - Bit 2 = ¢
2= 1 remainder 1 - Bit 3 =1
1 + 2 not possible, remainder 1 - Bit 4 = 1

and so decimal 26 = binary 11¢1¢

Adding together two binary numbers involves the same process as

adding two decimal numbers. The digits (in decimal) or bit (in
binary) of equal weighting are added together, and if larger than
9 in decimal, or 1 in binary, a carry is made into the next column.

For example adding 57 and 26 in decimal would be familiar in
decimal as

) b &

8 3

1

in binary it is just the same.

111(25(?)1+ 57
119019 26

1910011

1 |

Subtraction of binary numbers obeys the same rules as subtraction
of decimal numbers. The problem for computers lies in the fact
that its internal circuits can only recognise 1's and 's. There is
no minus sign (=) to a computer. To overcome this we use an
arithmetic technique called "two's complement'. This involves
treating the most significant bit of a binary number as a sign bit,
@ representing positive and a 1 representing negative. In an 8 bit
microprocessor this will be D7. The two's complement of a binary
number is formed by changing all ¢'s to 1's and all 1's o @'s,
(this is known as inverting each bit) and then adding 1. Thus -1
becomes 11111111, -2 is 1111111¢ and so on. To understand this
concept the equivalent in the decimal system can be considered.
Imagine a car speedometer milage counter. Originally the counter
is at @¢d@P. By driving forwards 4 miles the reading will become
PdPa. Reverse 4 miles and the reading is back to @@@). Reverse a
further mile i.e. 1 mile backwards or -1 mile from the original
position and the milage counter reads 9999. Reversing a further
mile results in 9998 and so on. In two's complement binary with
an 8 bit data word the largest positive number that can be
represented is 1111111, or +127, and the largest negative number is

1000 0p, or -128.

So how does this work in arithmetic, as an example take 26 from 57.
The microprocessor would first find the two's complement of 26, as
this is the number to be negated, even though the instruction would
be a subtraction instruction. The two's complement of 26 is

\- PN EERIE ———————— e

——————— s —— DANEERE~

1110¢011¢. Now add 57 and -26.

pP1L11P@G1 57

111909119 -26
1 ¢p@11111 31
3 14

The extra bit on the end is the carry bit and is a 1. This
indicates that the result is positive. Now turn things over and
subtract 57 from 26. The two's complement of 57 is 11¢@p111.

PPGLLGLE 26
o 11¢@p111 7 -57
@ 11103@91 -31

L% X

No carry was generated and Bit 7 is a 1 indicating a negative
number. This combination means that the number is negative and

in two's complement form.

Obviously a user would nct be too happy to have the result of
calculations presented to him/her as binary numbers. A computer
can of course use a program to convert between binary and decimal
numbers. It is, however, quite simple and efficient to operate the
computer in a decimal mode using binary coded decimal. Binary
coded decimal is the grcuping of four binary bits representing a
decimal digit. As four binary bits enables the decimal numbers
$-15 to be represented, the binary codes representing 1¢-15 are not
allowed. With an 8 bit data size computer each data word can
represent two binary coded decimal blocks as shown

D7 D6 D5 D4 D3 D2 D1 D@

1 1 ¢ ¢ ¢ @ 1

l 1
6]
Larger numbers can be represented by cascading data words. For

instance if it was required to represent 2925 in binary coded
decimal, four blocks of four bits would be required, i.e. one block
for each decimal digit.
@@ 1991 eP1p Pigl
l l I l
2 9 2 5

By using the same idea as binary coded decimal, binary numbers

can be represented by hexadecimal characters instead of long rows

of @'s and 1's. As in BCD each hexadecimal character is formed J

by a group of four binary bits. This time however, the four bit
codes representing decimal 1¢-15 are allowed and are labelled A-F
respectively. For example

1199 @111

I I
C 7

Obviously representing 1100¢111 as C7 is far more convenient. Hexa-
decimal is exceptionally useful when programs are written for
microtan 65. Each program instruction consists of 1, 2 or 3, 8 bit
words, or bytes as they are more commonly known. Therefore, if it
were not for hexadecimal each program instruction would entail the
entry, on a keyboard, of 8, 12 or 24 btinary bits as opposed to 2,

4 or 6 hex characters,

N G RN R ———

R NGERINERN

Constructional Notes

————— ——— TGRS

Although this chapter is intended mainly for those who have
purchased the microtan 65 in kit form, it is still recommended
reading for those who have purchased a ready built microtan 65,
as there is some relevant information given. Before you begin
assembly please read the instructions carefully so that you have a
good idea as t the sequence of operations you must perform. For
assembly you will require a miniature soldering iron, thin multi-
cored solder, pliers and wirecutters (both of the small variety).
Provided you can solder reasonably well, you will have no problems
in assembling the kit and should be up and running with TANBUG
in a few hours. First, however, a few precautions:

1) The printed circuit board is of the plated through
hole type. This means that every hole in the
board has a layer of metallisation as a lining w
the hole, electrically connecting the track on both
sides of the board. This makes the board very
expensive and also makes it very difficult to
remove a component once it has been soldered in
unless expensive equipment is used. Therefore
make sure the correct component is inserted before
soldering it in place. It is for this reason that
sockets have been provided for the integrated
circuits.

2) When soldering do not apply pressure to the
printed circuit board, otherwise tracks may lift
and break.

3) Although modern components are not so easily
damaged by heat, a joint made quickly is less
likely to go "dry".

4) MOS devices are used in the microtan 65 and these
can be destroyed by static electricity. These
devices also happen to be the most expensive!
When it is time to handle these circuits take
precautions against static such as; do not wear

nylon clothes, ensure the soldering iron is properly

earthed, use a sheet of aluminium foil to work on ‘

r—— 2-2 _-ﬁ
and earth it to a radiator or a water pipe with a
piece of wire.

5) Wash your hands. Dirt and grease on the printed
circuit board makes soldering difficult and un-
reliable.

6) Solder only component leads on the track side.

7) DO NOT HURRY.

As a rough guide the fo]lowing procedure for assembly is suggested:

a) Unpack the kit and check and identify all of the
components as listed at the end of this chapter.

b) Fit and solder the I.C. sockets ensuring that they
are the correct way round, the pin 1 identifier
being at the end' as marked on the printed circuit
board. Note that the side of the board that the
components are on is the side with the printed
legend.

c) Fit and solder the keyboard socket in position A4.

d) Fit and solder the resistors in their correct
positions.

e) 1Insert the four wire links LKNMI, LKRAM, LKROM
and LKIO using the excess wire cut off of the
resistors.

f) Fit and solder the capacitors. No electrolytics are
used so there are no problems about polarity.

g) Fit and solder all of the diodes. Check polarity.

h) Fit and solder the two transistors. The leads are
preformed and they will only fit into the board the
correct way round.

i) Fit and solder the inductor, the UHF modulator and
finally the crystal.

j) If you have purchased and edge connector, now is
the time to fit and solder it onto the board.

k) Insert the integrated circuits, ensuring that they
are the correct way round, into their respective
sockets leaving the MOS devices to last. These are
the 6502, the 2114's and if you have the graphics
option, the 2102.

Assembly is now complete, but carefully double check and make sure

that there are no solder blobs or bridges anywhere. The microtan

SN GERINE

———— s —— T

65 is now ready for connecting up to the t.v. receiver, keyboard

and power supply.

Keyboard Connection:

If you are using the keypad or a Tangerine alphanumeric keyboard,
just plug them into the keyboard socket. If you are using some
other alphanumeric keyboard, it will be necessary to wire it into a
16 pin DIL plug as follows. Pins 1 to 7 are the ASCII data inputs
bits 1 to 7 respectively, bit 7 being the most significant bit. This
data should be active high. Pin 15 is the keyboard strobe input.
Microtan 65 recognises that a character has been typed by a
positive edge at this input. The ASCII data should be stable when
this edge occurs and remain stable for several milliseconds. It
may be necessary to add inverters and/or latches to make your
alphanumeric keyboard comply with microtan 65's requirements. Pin
8 is a GND connection and pin 16 provides +5 volts t power the
keyboard. A reset button, or key, may be connected between pin
14 and GND. Microtan 65 must have a reset key fitted either on
the keyboard socket or on the TANBUS connector.

Power Supply Connections

Microtan 65 requires only a single +5 volts power supply, 1 amp
being ample for microtan 65 and a keyboard. If the user is
contemplating expanding his system, then a power supply of higher
rating would be desirable. If the microtan 65 is being used on its
own then the power supply may be connected into the two positions
marked on the printed circuit board.

WARNING: ALWAYS TURN OFF THE POWER SUPPLY WHEN REMOVING OR
INSERTING INTEGRATED CIRCUITS, THE KEYBOCARD, OR THE BOARD
FROM A RACK. NEVER SOLDER TO A POWERED UP BOARD.

T.V. CONNECTION

The simplest procedure of all. Use a UHF lead with the correct
connectors either end. Plug the lead into the t.v. aerial sccket
and into the UHF modulator output socket.

TURN ON THE POWER - DEPRESS THE RESET KEY.
TANBUG should be printed on the display together with a prompt to

type in commands. J

F_—— 2-4——ﬁ

Graphics Option

The graphics option consists of five integrated circuits. These
should be inserted into their respective positions.

Lower Case Option

The lower case option consists of two integrated circuits. These
should also be inserted into their respective positions. This option
provides lower case alphanumerics and symbols having hex ASCII
codes of PP-1F and 6@-7F. If these codes are used without the
lower case option the upper case equivalents will not be displayed
in their place. What is more TANBUG's prompt character "l will
be replaced by a "?". Error indication is still a question mark.

Address Buffers

There is space on the microtan 65 for three integrated circuits
which perform address buffering. These are only required when
expanding the system but are provided nevertheless.

Component List and Identification

Integrated Circuits:

D1 741.504 Fl 741586

F1 741,508 Gl 741574

H1 741521 J1l 741374

K1 6502 L1 7415367

c2 741873 D2 7413393

E2 741874 (lower case) F2 7415157

G2 7415157 H2 7415157

Je2 741.574 L2 7415367

B3 741374 C3 741511

D3 7415393 E3 741500

F3 2114 G3 2114

H3 2102 (graphics) 33 741500

K3 TANBUG L3 74135367

B4 74185244 C4 7415374

D4 86564BWF E4 8678CAE or 86564CAE
(lower case)

F4 7415251 (graphics) G4 7415374 (graphics)

H4 7415374 (graphics) Ja 7415138

L4 741874 (graphics)

N NG R 1 U —

R6
R7

(brown, black,red)
(brown, black,red)
(brown, black,orange)
(brown, black,red)

Resistors:
Rl 1K

R2 1K

R3 10K
R4 1K

R5

470R (yellow,mauve,brown)
220R (red,red,brown)

75R

(mauve, green, black)

R8 1K (brown, black,red)
R9 1K (brown, black,red)
Capacitors:

Cl 10n C10 47n
C2 nlO or 100p Cll1 47n
C3 nl0 or 100p Cl2 47n
C4 10n Ci3 47n
C5 47n Cl4 47n
C6 47n Cil5 47n
C7 47n Cl16 47n
C8 47n Cl7 1n
C9 47n C18 47uF
Miscellaneous:

6MHz Crystal

D1, D2, D3 - 1N4148

CK1l Green Inductor

PCB - MTO16

16 off 14 pin sockets

2 off 18 pin sockets

1 off 24 pin socket

—— e ——— WEERITE

R10 1K (brown, black,red)
R11 1K (brown, black,red)
R12 1K (brown, black,red)
R13 1K (brown, black,red)
R14 1K (brown, black,red)
R15 1K (brown, black,red)
R16 1K (brown, black,red)
R17 10K (brown,black,orange)
+ve to "Cig"

Q1, Q2, Q3 - BC184

ZD1 - BZY88C6V8
UM1111E36 Modulator
Edge Connector

12 off 16 pin sockets
4 off 20 pin sockets
1 off 40 pin socket
1 off 16 pin R-N socket for keyboard connection.

— TEERIE

The Microtan 65

— s —— DAEERITE

The microtan 65 is an exceptional microcomputer kit and the purpose
of this section is to describe its design. It was considered that
the majority of microkit users would initially benefit from a
machine that was very easy to use rather than one that has
parallel I/0, but was very awkward to use. Therefore microtan 65
is supplied with a VDU on-board, and because of this the ability to
use an alphanumeric keyboard is an immediate asset. The 65@2
microprocessor was chosen mainly for its very simple yet elegant
hardware structure. Of course, as most readers will know, the 65@2
also has a very powerful instruction set and addressing modes.

A fully expanded microtan 65 contains the 65@2 microprocessor, 1K
ROM containing TANBUG, 1K RAM which is used for display memory
and user program, Keyboard interface, VDU logic and tri-state
address buffers. The basic block diagram of the microtan 65 is

shown below.

I Single

Instruction
6502 c

Timing
@2
Logic
R ADD —
——| Mux M
J\/L —) RoM

Video RAM 1 |
T -

- /‘
kogle Keyboard
Interface
UHF
Buffers
I Iy
Address Bus Data

F_— 3-2 ﬁ
The most important aspect of the design is that the address multi-
plexer is switching at the processor clock rate. This can be done
with the 65¢2 as memory accesses will only occur on one phase of
the clock i.e. when @2 is high. When @2 is low the memory is not
selected. During this time the VDU logic reads the display memory,
one location at a time and decodes memory contents as alphanumeric
or graphics characters. You will also notice when using microtan
65 that the display is free from annoying speckles, spots and
flashes. This is because there is no conflict of access to display
memory between processor and display refresh logic. In fact you
can run a program that actually resides in display memory and it
will run at fuil speed without upsetting the display! The address
and data bus timing is shown below to illustrate this.

@2

X Display Add. x CPU Add. X Display Add. X
Disp CPU
Data Data

Memory mapped display: Pages 2 and 3 of the address space (see

chapter on the 65@2) are used as the display memory, that is from
hex location 2¢¢ to hex 3FF. Location 2¢9 is the top left hand
corner character position. Location 2¢1 is the second character
position in the top row and so on. The diagram below illustrates

this more clearly.

Top Row| 200 | 201 | 2@2 21lE | 21F

22¢ | 221 23F

| |
|

, 1
| |
' |

\~ AN EERIE e oo/

e i N GERINERN

3CP | 3C1 3EF

3EQP | 3E1 | 3E2 3FE | 3FF

To write a particular character into a character cell in the display
the user must write the ASCII code, or whatever, for that character
in the correct memory location. For example, if it was required to
write the character "W'" in the bottom row third column then the
ASCII code 57 (for W) should be placed in memory location 3E2. If
you use TANBUG's memory modify command M to load characters
into the display remember that the display scrolls automatically and
the character may be output onto a different row than intended.

Memory mapping of the microtan 65 is controlled on-board by three
wire links, when used without the TANEX expansion board. As
there is only 1K RAM, 1K ROM and 6 I/0 locations on the microtan
65 each of the three are allowed to repeat through defined areas of
the 64K address space to simplify design. The address map is
represented diagramatically below.

RAM /0 ROM

PK 32K 48K B4AK

As can be seen the address space is divided into only three blocks
and therefore only two bits of the address bus are necessary to
control this map. The two bits used for memory mapping are the
most significant address bits Al1S5 and Al4. Three links are used to

wire in this address map on the microtan 65. When TANEX is used

ﬁ -4 ﬁ
however, all memory mapping is controlled on the TANEX board and

not on the microtan 65. To modify the microtan 65 it is only
necessary to cut these three links.

RAM and ROM hardware is of really no consequence to the user but
a knowledge of the on-board I/0 ports is useful. There are six
peripheral ports used on the microtan 65 cpu board and these
control graphics on and off, keyboard read and write, keyboard
interrupt flag ~lear and delayed non-maskable interrupt (used for
single instruction and breakpoints). Each one of these will be
taken in turn:
a) Graphics on and off: The display refresh
controller reads the display memory a byte at a
time and interprets the bottom seven bits of each
byte to be an ASCII coded character. There is
however a ninth bit which can only be written to
by the cpu. This ninth bit comes from the 21¢2
1K x ! bit RAM chip in the graphics option. If at
a certain display location the ninth bit, or
graphics bit, is a logic cne the data byte read is
not decoded as an ASCII character but is instead
used to build up a graphics block of 2 x 4 pixels,
in the character cell position.

Data Byte Graphics Bit
D7 D6 D5 D4 D3 D2 D1 D¢|)
Decoded as ASCII @ denotes
ASCII
%5 |95 1 denotes
D4 Ds graphics
D6 D7

Graphics pixels are
illuminated if corresponding
bit is a logic one.

\- PANEERE —————— e

e N GE RINER

The graphics on and graphics off I/0 ports control
an R-S flip-flop, the output of which is the data
input to the 212 RAM chip. Therefore if the
graphics flip-flop is in the on position each
character written to the display memory will be
decoded as a graphics character. Because the cpu
cannot read the graphics bit directly it is not
possible to scroll displays containing graphics.

As displays containing graphics are rarely scrolled
anyway this should not prove to be too much of a
handicap.

The operations required to write graphics
characters to the display is to firstly turn the
graphics on by executing the assembly code
instruction LDA BFF@. Each character then written
to display will be a graphics character until
graphics are turned off by executing the assembly
code instruction STA BFF3.

b) Keyboard read, write and interrupt clear: There
is both an input and output port on the keyboard
socket. The output port is used only for strobing
the 20 key keypad. This output port is used by
executing the assembly code instruction STA BFF2.
The input port is used for both types of keyboard.
When using the alphanumeric keyboard the strobe
from the keyboard is used to clock a flip—flop (the
keyboard interrupt flip-flop). The output of this
flip-flop is the keyboard interrupt flag and forms
the eigth input bit w0 the keyboard input port. If
interrupts are enabled in the cpu then an
interrupt will be generated by the keyboard strobe.
Reading the keyboard input port will then allow
the cpu to test whether or not the interrupt was
generated by the keyboard or some other device.

If interrupts are not enabled then the keyboard
interrupt flag will still be set but will not
generate an interrupt. It is possible to read the
flag by reading the keyboard input port, thus a

strobe from an alphanumeric keyboard can be ‘

F_— 3-6 ﬁ
detected either by an interrupt or by software
polling. Which ever technique is used though it
will be necessary to reset the keyboard interrupt
flag after it has been set and detected in order
that it is ready o register a further keyboard
strobe. To reset the keyboard interrupt flag the
assembly instructior STA BFFY should be executed.
The keyboard port is read by the instruction LDA
BEE3:

¢) Delayed non-maskable interrupt: This facility is
used by the monitor program TANBUG when
executing single instructions and breakpoints. It
should not be used in a user program. Users who
will contemplate using the non-maskable interrupt
in special applicaticns will probably not be using
TANBUG. 1In these cases the link LKNMI should be
broken and the non-maskable interrupt may be

driven via the hoard connector.

\- AN EERINE ———————————

— TEERIE

The Microtan System

— o —— RIS B

Microtan 65 expands into a full microcomputer system. All the
printed circuit cards connect into a motherboard and use TANBUS as
means t communicate to each other. TANBUS is a collective name
for all of the signals that use the edge connector on each of the
cards. The cpu card and expansion board have dedicated positions
in the motherboard as there are slight differences between their
requirements and that of other boards in the system. Because of
this, these two positions are offset and only the correct boards will
fit when used in the racking system. All the other positions are
identical and boards designed to fit in these positions can be fitted
in any one of them.

Expansion into a system is by way of the expansion board - hence
its name. Its principle task is to completely control the memory
mapping of the system. On its own the microtan 65 has a simple
and hardware efficient memory map which is incompatible with a
system. The expansion board separates the three blocks of memory
space (RAM, ROM and I/0) of the microtan 65 into much smaller and
efficiently used regions. This control is by way of the TANBUS
signals RAME, ROME and IOE and produces the following memory

map.

z
(2.4 = ~

o
To) = &
o é é @) Bg = 5
gl 2 > 2 |
] T < o <
4 = m8 B
O < o -
j = 4
9
£
K 64K

r—— 4-2 ;
ﬁ
Details of the memory map pertaining to TANEX and TANRAM (49K
bytes of static and dynamic memory) is in the manuals that are
supplied with them. The 1K of I/0 space includes any I/0 on the
microtan 65 and on TANEX. There is however plenty of space
available for the users own I/0 devices, addresses of which should
start at the bottom of the I/0 space (i.e. location BC@P).
Addresses for I/0 devices specified by Tangerine start at the top of
the I/0 space and work downwards. It is very unlikely that the
two will meet in the middle as 1K of I/0 is quite large. (Micro-
computers based on 8@8¢ and 78 are limited to 256 I/0 devices -

microtan offers four times as many!).

The main signals on TANBUG are the address bus and data bus and
as both of these need to be used with all the printed circuit cards
likely to be used in the complete system they must be buffered in
order to have a high driving capability. The address bus is
buffered on the microtan 65 (along with the R/W line) using tri-
state buffers so that the address bus may be tri-stated for DMA's
(direct memory access). These buffers do not operate with the on-
board RAM, ROM and I/0 of the microtan 65 and so may not be
accessed during DMA's. As there is no point in having a DMA to
TANBUG or the small amount of RAM on the microtan 65 this is
hardly a problem. Similarly with on-board I1/0, there is no port
on microtan 65 that can effectively be used in a DMA operation.
Data bus buffering is performed on the expansion board and is bi-
directional and tri-statable. Two control lines on the expansion
board control these buffers. One turns them on and the other
defines their direction i.e. is the cpu reading or writing. These
buffers are turned on when the microtan 65 is performing a memory
access in some other part of the system than itself. If it is
performing an on-board access, such as to TANBUG or the RAM, then
these buffers are turned off to prevent on-board circuits and off-
board circuits both trying to drive the data bus. A block diagram

of this scheme of buffering is shown below.

NG E RN P

i, 8 e T B

microtan 65 TANEX Additional
Boards
DATA
Address Data
Buf’fers_‘ Buffers
Data Bus
Address Bus {

There are two other very important boards in the microtan system,

TANRAM and TANDISC. TANRAM, as mentioned earlier is a 40K byte
static and dynamic RAM board. 7K bytes of RAM are static devices
using the popular 4K bit static memory device. The remaining 32K
bytes of RAM are dynamic and use the 16K industry standard 4116.

Refresh of the dynamic RAM is on-board and totally transparent to

other parts of the system. It is also unaffected by DMA's.

TANDISC is the all important disc controller which can handle up t

four disc drives.

For those users who do not wish to expand to a full system there is
the mini-motherboard and case which may be used to connect and
house the microtan 65 and TANEX. Also included in the housing is
a small power supply capable of meeting the needs of fully
expanded boards. Although just two boards in a small housing this
combination is very powerful. Fully expanded this mini system
offers 8K RAM, 6K ROM, 8K BASIC interpreter, 32 I/O lines, 3 serial
I/0 (one with 16 baud rates and RS232/2PmA) 4 counter timers and
cassette interface.

TANBUS specification

A description of all signals on the backplane is now given with ‘

F_— 4-4 _-ﬂ
indications as to their use, where applicable. The reader should
refer to the chart of TANBUS connections at the end of this
specification. Note that some connections are left blank. These
have yet to be defined and most of them will almost certainly be
used by future products for the microtan system, therefore the user
is advised not to commit a custom design to specific connections on

unused lines of TANBUS, it may produce incompatibility in the

future.
Pin mnemonic Description
+5 +5 volts power supply input.
+12 +12 volts power supply input.
-12 -12 volts power supply input.
GND Earth return or ¢ volts.
CLK 6MHz clock.
DMAREQ Used by peripheral devices to request control
of TANBUS for direct memory access.
71 Microprocessor clock phase 1.
@2 Microprocessor clock phase 2.
RST Used to reset the complete microtan system.

When TANRAM, or any peripheral device with
dynamic memories, is being used the reset
line must only be active for about 1@uS.

An output from TANEX to indicate that the
address bus is addressing an I,C device,
i.e. the address is between BC@p and BFFF.
Al1-A15 Address Bus. Most of the time driven by the

microtan 65 but handed over % a peripheral

\

-
S
o

device when it performs a direct memory
access.

ABE Address bus enable. An output from TANEX
to the microtan 65. Used to disable the
address buffers so that DMA's may be
performed. Also disables the R/W buffer.
Not a bussed signal.

DMAGNT An output from TANEX to indicate that the
cpu has halted and the microtan 65 address
buffers have been disabled so that the
requesting peripheral may proceed with a

NG ER N

—————— +* ——— DANGHE ~

Pin mnemonic Description
- IRQ Interrupt request. An open collector line

used by devices requesting an interrupt.

NMI Non-maskable interrupt. Used and driven by
the delayed non-maskable interrupt circuitry
on the microtan 65. If the user wishes to
use non-maskable interrupts in specialist
applications, then the link LKNMI on the
microtan 65 should be broken and this line
driven by a peripheral device with an open
collector.

FB Field blanking of the television display.
Driven from microtan 65. For future use.

DMAPOT Direct memory access priority output. A
peripheral board drives this signal, which is
read by a board lower in the chain, to
indicate that it is producing a DMAREQ and
that peripherals lower in priority must wait
if they require to perform a DMA. Not a
bussed signal.

DMAPIN Direct memory access priority input. Driven
from a peripheral of higher priority and
inhibits lower priority DMA's. Not a bussed
signal. Note that DMAPOT and DMAPIN forms
a daisy chain. Boards not using these
signals should connect them together. The
position nearest the microtan 65 has highest
priority.

I0E TANEX output. Indicates that the address bus
is addressing I1/0 on the microtan 65,
locations BFF@-BFFF.

RAME TANEX output. Indicates that the address
bus is addressing RAM on the microtan 65,
i.e. locations (¢-3FF.

ROME TANEX output. Indicates that the address
bus is addressing ROM on the microtan 65,
i.e. locations F@P-FFFF, or if the memory
link on TANEX has been cut, locations F8@@-
FFFF. ROM only exits on the microtan 65

from locations FC@P-FFFF, i.e. TANBUG. ‘

r——-4-6'—_ﬁ

Pin mnemonic Description
R/W Read not write. Driven by the microtan 65

to indicate whether the 6502 is reading or
writing o the data bus. Handed over to a
peripheral device when DMA's are performed.

SYNC The 65@2 sync signal, which indicates an
instruction fetch cycle.
HB Horizontal blanking of the television display.
Driven from microtan 65. For future use.
D@-D7 Microtan 65 data bus which connects only to
TANEX. Not a bussed signal.
DB@-DB7 System data bus buffered from the microtan
65 on TANEX.
DP Disc Present. This is a system control line that

indicates that the disc controller card is present
in the system.
65/@ TANDOS incorporates a Z80 microprocessor.
This line defines which processor is active.
NMI8® This is a Z8@ control signal for non-maskable
interrupt and is independant from the 6502

non-maskable interrupt.

M1 This is a Z80 control signal that indicates the
start of a new machine cycle and is equiv-
alent to the 6502 sync signal.

BE Block Enable. This is a memory block control
line to allow multiple banks of memory on the
system motherboard. On the EXP slot this
signal is active high. Slots @ to 7 it is
active low.

TNHRAM Inhibit RAM. This signal allows, with the
relevant decoding, any section of section of
RAM between 2¢0¢9 and BBFF to be inhibited.

TNHROM Similar to inhibit RAM but disables sections of
ROM on the 32K ROMBOARD.

N NG R 1 U —

—— e ——— TEERITE~

Notes for custom designers

If you are contemplating designing and building your own peri-
pherals to connect to TANBUS then you should have a good know-
ledge of electronics and microprocessors. This being the case, the
signals on TANBUS are all perfectly obvious as to their function.
There are a few points that should be borne in mind however.

1) Buffer all signals before they are used by on-
board circuitry especially @1, @2 and SYNC as these
are direct from the 65¢2.

2) I/0 has been provided so that it is only necessary
to decode I/0 addresses in the 1K I/0 space rather
than the full 65K address space.

3) On boards that are connected into the DMA priority
chain there must be a small amount of logic to
implement the daisy chain. If a particulaf board
is not requesting a DMA it must pass higher
priority signals through the chain unmodified; it
must also not affect lower priority requests if there
are none at a higher priority. If the board does
require a DMA it must inhibit lower priority
requests and wait until all higher priority requests
have ceased.

r—_zﬁ-s.-__.ﬂ

TANBUS CONNECTIONS

ADDITIONA. TANEX microtan 65
b a b a b a
+5 +5 1 +5 +5 1 +5 +5
CLK DMAREQ 2 2 CLK DWAREQ
o1 @2 3 3 91 @2
RST 1/0 4 DMAREQ 4 RST DP
Al AP 5 @1 @2 5 Al AQ
A3 A2 6 RST I/0 6 A3 A2
A5 A4 7 Al AP 7 AS A4
A7 A6 8 A3 A2 8 A7 A6
A9 A8 9 A5 A4 9 A9 A8
A1l A1Q 10 A7 A6 10 All A1Q
A13 Al12 11 A9 A8 11 A13 Al2
Al15 Al4 12 A1l A1 12 A15 Al4
DMAGNT TRQ 13 A13 A12 13 S0 ABE
65/80 NMI 14 A15 Al4 14 FB TRQ
DMAPOT DMAPIN 15 DMAGNT ABE 15 NMI8@ NMI
o) 16 SO TRQ 16 I0E RAME
FB R/W 17 FB 17 ROME R/W
SYNC HB 18 TI0E RAME 18 SYNC HB
DEY 19 ROME R/W 19 DY
DB1 2 N) D1
DB2 21 DB@ 1) 21 D2
DB3 22 DB1 D1 22 D3
DB4 23 DB2 D2 23 D4
DBS 24 DB3 D3 24 D5
DB6 25 DB4 D4 25 D6
INHROM DR7 26 DB5 D5 26 D7
M1 NMIBG 27 DB6 D6 27 |
BE INHRAM 28 DB7 D7 28 M1 65 /80
-5 -5 29 INHRAM 29
+12 +12 3¢ +12 +12 3¢ +12 +12
~12 -1 31 =) =1 31 12 -12
GND GND 32 GND GND 32 GND GND

NN G E R /N

— TEERIE

The 6502 Microprocessor

—— o ——— TETRIE ~

The 6502 is an 8 bit microprocessor, which means that the data
operated upon in each instruction is 8 bits wide and the data path
between cpu, memory and peripheral is also 8 bits wide. It has a
reportoire of 56 basic instructions, can perform binary and BCD
arithmetic and has thirteen addressing modes. Maskable and non-
maskable interrupts are supported. The microprocessor is also,
what is termed, stack orientated.

The first essential piece of information required is the programmers
model. This indicates what register are to be found inside the cpu
and their function.

ACCUMULATOR A

INDEX Y IY

INDEX X IX

PROGRAM COUNTER HIGH PROGRAM COUNTER LOW PC
STACK POINTER SP

STATUS WORD PSW

Accumulator

The accumulator is the main working register of the cpu. All
arithmetic and logical operations are performed between the
accumulator and memory. Arithmetic operations may be binary or
binary coded decimal. The mode used is controlled by the decimal
flag in the processor status word (PSW).

N

ﬁ 52 *
Index Y

This is a special purpose register that is used in indexed
addressing. It may also be used as a special register in a users
program.

Index X
As index Y register.

Program Counter High - Program Counter Low

These two registers form a 16 bit program counter which enables
the cpu t have an addressing range of 65K bytes. The high byte
of the address indicates which page of memory is being accessed
and the low byte indicates which location in that page. Therefore
the memory space is divided into 256 pages each of 256 locations.

Stack Pointer

The stack pointer contains the address of the location in page 1 of
the top of the stack. Data is pushed onto the stack by executing
an appropriate instruction; the cpu automatically decrementing the
stack pointer (the stack is of the push down variety). When data
iz required from the stack an appropriate instruction is executed
which pulls the data from the stack; the cpu automatically
incrementing the stack pointer. The stack is also used, auto-
matically, when subroutines are called or interrupts serviced.

Processor Status Word

The processor status word provides an indication of the result of
executing an instruction. Each bit of the status word is used for
a particular function.

Bit @ - Carry (C). This is effectively a ninth bit to the
accumulator and is set or reset depending on the result
of an arithmetic operation. For instance, if the addition
of two binary numbers resulted in a number greater
than 255, the carry bit would be set to a logic one.

The carry bit can also be set and reset by the

programmer.

\- PRI —— e

———————— = —— DA~

Bit 1 - Zero Flag (Z). This flag indicates whether any data
movement or calculation result involves the data being
equal to zero. For example, if two equal numbers were
subtracted from each other, or a zero was shifted into
IX say, the zero flag would be set o a logic one,
otherwise it would be set to a logic zero.

Bit 2 - Interrupt Disable (I). The interrupt disable flag is
the output of a flip-flop, which is manipulated by both
the programmer and the cpu. When set to a logic one,
maskable interrupts are disabled. Non-maskable
interrupts are unaffected.

Bit 3 - Decimal Mode (D). The state of this flag determines
whether the cpu performs binary (D = @) or binary
coded decimal (D = 1) arithmetic operations. Is
manipulated by the programmer.

Bit 4 — Break Command (B). This flag is set only by the cpu
and indicates the execution of a BRK instruction, which
causes an interrupt to occur.

Bit 5 - Unused.

Bit 6 — Overflow (V). This flag is similar to the carry flag C.
It operates in parallel with the carry flag but indicates
the results of calculation if the numbers are considered
as signed binary numbers. For example, if the result
of adding twc signed numbers results in a carry into
the sign bit, this flag warns the programmer that sign
correction must be carried out. Set to a logic one if a
carry occurs, zero otherwise.

Bit 7 — Negative Flag (N). The N flag is set equal to the
value of D7 in all data movement and calculation.
Therefore, when using signed arithmetic, it is very
simple to detect whether the data concerned is positive

or negative.

Use of the Processor Status Word

The flags in the processor status word are used to indicate the
status of the cpu after each instruction. These flags are only of
any use if the programmer can test which state they are in. This
is possible, and particularly powerful, by the use of the branch
instructions. There are eight branch instructions each testing a

particular flag state. Execution of a branch instruction auto-

5-4 _ﬁ
matically tests the appropriate flag, there is no need for the
programmer to write some code to do this himself/herself. Branch
instructions are used to test processor status as program flow will
need to jump form one segment to another depending on the results
of an operation. As an example, the programmer may be in an
iterative routine, the number of iterations being counted by an
index register (IX say). By decrementing the register after each
iteration the register will eventually be zero, this could indicate
the end of the routine. By executing the branch on zero (BEQ)
after the instruction to decrement index X (DEX) the program will
branch when IX equals zero.

Addressing Modes

A powerful processor requires more than just a powerful instruction
set, it requires powerful addressing modes as well. Addressing
modes are the different number of ways that the cpu can access the
data it requires, or work out where to jump to in branching. The
6502 has thirteen addressing modes each one finding the effective
address (the actual address required) in a different manner and
having its own particular use.

1) Accumulator Addressing: This form of addressing
is represented with a one byte instruction which
implicitly indicates an operation on the
accumulator.

2) Immediate Addressing: In immediate addressing
the data is contained in the second byte of a two
byte instruction. No further addressing is
required.

3) Absolute Addressing: With absolute addressing the
instructions are three bytes long. The effective
address is formed by using the second byte as the
low order byte of the address and the third byte
as the high order byte. Thus a 16 bit address is
formed enabling access to the full 65K addressing
range.

4) Zero Page Addressing: This is exactly the same
as absolute addressing except that the high order
byte of the address is zero and therefore there is
no need to have a third byte to the instruction.
The effective address in page zero is obtained

L NG E N L

————— & —— TGRS

from the second byte of the instruction.

5 & 6) Indexed Zero Page Addressing: This form of
addressing is used in conjunction with the index
registers IX and IY and is referred t as '"Zero
Page, X" or "Zero Page, Y" depending on which
index register is used. The effective address is
obtained by adding the second byte of the two
byte instruction to the contents of the appropriate
index register. This forms the low order byte of
the address, the high order byte being held at
zero. Note that no carry from the addition of
these two numbers is transferred into the high
order byte of the address, therefore no page
boundary crossing can occur.

7 & 8) Indexed Absolute Addressing: Used in conjunction
with the IX and 1Y index registers and referred to
as "Absolute, X" and '"Absolute, Y'". The effective
address is formed by adding the contents of the
appropriate index register to the address (as in
absolute addressing) contained in the second and
third bytes of the three byte instructions. This
type of addressing is very useful in scanning
tables, that may reside anywhere in memory. The
index register is used as a count value to indicate
the position in the table or list being accessed,
and the absolute address contained in the second
and third bytes of the instruction used as a base
address to indicate the start of the table or list.

9) Implied Addressing: In implied addressing the
address to be accessed is implicitly stated in the
instruction, such as "decrement IX'" implies an
operation on the IX register.

10) Relative Addressing: This addressing mode can
only be used with branch instructions, indeed it is
the only addressing mode that can be used with
branch instructions. The second byte of the two
byte instruction is used as a signed binary dis-
placement which is added to the program counter
when it is pointing to the next instruction.
Therefore the program can be made to jump

forwards or backwards from its present position by ‘

-128 to +127 memory locations (not instructions)
TANBUG's offset command O calculates the offset to
be added for you.

11) Indexed Indirect Addressing: This addressing
mode makes use of the index X register and is
referred to as '"(Indirect, X)". The second byte
of the two byte instruction is added to the
contents of the IX register, a carry, if generated,
being discarded. The result of this addition
points to a location in page zero whose contents
forms the low order byte of the effective address,
the next memory location in page zero containing
the high byte of the effective address.

12) Indirect Indexed Addressing: This addressing
mode makes use of the 1Y register and is referred
to as "(Indirect), Y". The second byte of the two
byte instruction points to a location in page zero,
the contents of which are added to the contents of
the 1Y register, the result being the low order
byte of the effective address. The carry generated
by this addition is added to the contents of the
next memory location in page zero, forming the
high order byte of the effective address.

13) Absolute Indirect: The second byte of the three
byte instruction forms a low order byte of a
pointer address, the third byte containing the high
order byte of the pointer address. The contents of
the fully specified pointer address contains the low
order byte of the effective address and the next
memory location the high order byte.

Note the importance of the zero page in the memory map. This
page should be used for addressing modes and commonly used
constants in a program and not cluttered up with data or a

rrogram that can reside almost anywhere.
Subroutines

In programs there is often a program routine which needs to be
performed quite often and in various places in the program.
Instead of writing the program routine several times in different

places, it can be written once as a subroutine, thus saving

N N G R —

e et 1 N GERINE B

valuable memory space. The subroutine code can be located any-
where in memory. When it is required % execute the subroutine in
a program the programmer uses the "jump to subroutine"
instruction, JSR. This is a three byte instruction using absolute
addresing. In order to know where in the program it must return
o, the cpu puts the program counter value of the next instruction
after the subroutine call onto the stack. The cpu then Jjumps to
the subroutine code and executes it. At the end of the subroutine
there must be the "return from subroutine" instruction RTS. The
program counter value of the next instruction after the subroutine
call being pulled off of the stack. Subroutines may call other
subroutines, and subroutines may also call themselves i.e. be re—
entrant. The return addresses are all stored on the stack in the
correct sequence.

Interrugts

Interrupts are a means by which a peripheral device may request
the cpu to execute a program, not unlike a subroutine, that will
service the peripheral in some way. The program code is generally
referred to as an interrupt service routine. There are two types of
interrupt available on the 65@2 microprocessor - maskable and non-
maskable. Maskable interrupts can be disabled, that is the cpu
will not recognise them, by setting the interrupt disable bit I of
the processor status word. Non-maskable interrupts cannot be
disabled. When an external device generates an interrupt the cpu
completes the instruction it is currently executing, then places the
program counter value of the next instruction and the processor
status word onto the stack. The program counter is then loaded
with the appropriate interrupt vector. For the maskable interrupt
the vector is located in location FFFE (low order address byte) and
FFFF (high order address byte) and for the non-maskable interrupt
in locations FFFA and FFFB. This interrupt vecwr is the starting
location of the interrupt service routine. At the end of the routine
the user must execute the "return from interrupt"' instruction RTI.
The cpu then returns to the point where it was interrupted by
pulling the old program counter and processor status word off the
stack. When an interrupt occurs the interrupt disable flag I is set.

If more than one interrupting device is allowed on one or both of
the interrupt types, then the appropriate interrupt vector must

point to a routine which tests each device, in order of priority, 1
see which caused the interrupt. This is done by reading the
peripheral port which contains the individual interrupt flag of each
device. The routine then directs the cpu to the appropriate
interrupt service routine. Because interrupts use the stack to store
the cpu state when an interrupt occurs, interrupts may be serviced
during the servicing of a current interrupt, i.e. they may be
nested.

Instruction Set

The 6502 has 56 instructions. Each instruction may be 1, 2 or 3
bytes long. There now follows the tables of every instruction
which fully explain its operation and available addressing modes.
The tables use the following notation.

Accumulator

e

Index Registers

Memory

Processor Status Register
Stack Pointer

Change

~ U g oE X >

No Change

Add

Logical AND

- Subtract

¥ Logical Exclusive Or

t

+

| Transfer from Stack

| Transfer to Stack

= Transfer

wy Transfer to

\Y Logical OR

PC Program Counter

PCH Program Counter High

PCL Program Counter Low

OPER Operand

Immediate Addressing Mode

NN G E R /N

e M TN GERINEEN

Add memory to accumulator with carry ADC
Operation: A+ M + C —A, C NZCIDVYV
LA

Addressing Assembly Language oP No. No.

Mode Form CODE Bytes Cycles
Immediate ADC #Oper 69 =9 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 =
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 3 4%
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Oper), Y 74 2 5%

* Add 1 if page boundary is crossed.

"AND" memory with accumulator AND
Operation: A A M — A NZCIDV
S

Addressing Assembly Language OP No. No.

Mode Form CODE Bytes Cycles
Immediate AND #0per 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4.
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4%
Absolute, Y AND Oper, Y 39 3 4%
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 B*

* Add 1 if page bou_mdary is crossed.

r——S—IO ———-ﬁ

ASL Shift Left One Bit (Memory or Accumulator)
Operation: C—7 6 543210 — ¢ NZECTIDYV
/7] _ _ _
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Accumulator ASL A PA 1 2
Zero Page AST, Oper @6 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper QE 3 6
Absolute, X ASL Oper, X 1E 3 7
BCC Branch on Carry Clear
Operation: Branch on C = ¢ NZCIDV
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Relative BCC Oper 9P 2 o%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

\- PANEERE —————— e

s i TN GERINEEN

Branch on carry set BCS
Operation: Branch on C =1 NZCIDV
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Relative BCS Oper B® 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.

Branch on result zero BEO
Operation: Branch on Z =1 NZCIDYV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BEQ Oper FQ 2 2%

¥ Add 1 if branch occurs to same page.

¥ Add 2 if branch occurs to next page.

—

r—— 5>-12 '_'—-ﬁ

BIT Test bits in memory with accumulator
Operat:ion:AAM,M7—N,M6—V NZCIDYV
M,/_ _ Mg
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
BIV” Branch on result minus
Operation: Branch on N = 1 NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BMI Oper 3¢ 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs t different page.

\- PANEERE —————— e

—— o ——— TTEERTE

Branch on result not zero BNE
Operation: Branch on Z = 0 NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BNE Oper D@ 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

Branch on result plus BPL
Operation: Branch on N = @ NZCIDYV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BPL Oper 10 2 D

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

-—

r_— 5—14'_-—ﬁ

BRK Force Break
Operation: Forced Interrupt PC + 2 | P | NZCIDUV
— —_— - 1 .- -
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied BRK 1,0 1 7
1. A BRK command cannot be masked by setting I.
BVC Branch on overflow clear
Operation: Branch on V = O NZCIDYV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BVC Oper 5@ 2 2%
*¥ Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

\- PANEERE —————— e

—— s ——— DRI~

Branch on overflow set BVS
Operation: Branch on V = 1 NZCIDYV
Addressing Assembly Language (@)% No. No.
Mode Form CODE Bytes Cycles
Relative BVS Oper 7% 2 2%

¥ Add 1 if branch occurs to same page.
¥ Add 2 if branch occurs to different page.

Clear carry flag CLC
Operation; ¢ — C NZCIDYVYV
9 __
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied CLC 18 1 2

r—— 5-16 ——ﬁ

CLD Clear decimal mode
Operation: ¢ —D NzZCIDYV
S
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied CLD D8 1 2
CLI Clear interrupt disable bit
Operation: @ — 1 NZCIDYV
-9 __
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied CLI 58 1 2

NG 1 U —

—— e ——— DAEERITE

Clear overflow flag CLV
Operation: @ —V NZCIDV
_____)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied CLV B8 1 2
Compare memory and accumulator CMP
Operation: A—M NzZCIDYV
FrE_
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate CMP #0per Cc9 2 2
Zero Page CMP Oper C5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper CD 3 A
Absolute, X CMP Oper, X DD 3 4%
Absolute, Y CMP Oper, Y D9 3 4
(Indirect, X) CMP (Oper, X) C1 2 6
(Indirect), Y CMP (Oper), Y D1 2 5 *

¥ Add 1 if page boundary is crossed.

—

r—— 5-18 —'—ﬁ

CPX Compare memory and index X
Operation: X —M NZCIDV
E T .
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate CPX #0Oper E@ 2
Zero Page CPX Oper E4 2
Absolute CPX Oper EC 3
CPY Compare memory and index Y
Operation: Y —M NZCIDYV
/1] _
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate CPY #0per o) 2 2
Zero Page CPY Oper C4 2 3
Absolute CrY Oper CC 3 4

\~ AT CERIE —————eee

——— o —— TEERITE ~

Decrement memory by one DEC
Operation: M - 1 —M NZCIDV
A —
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page DEC Oper Cé 2 5
Zero Page, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 7
Decrement index X by one DEX
Operation: X - 1 —X NZCIDV
A
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied DEX CA 1 2

r__ 5-—20—_-ﬁ

DEY Decrement index Y by one
Operation: Y - 1 —Y NZEEDY
o
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied DEY 88 1 2
EOR "Exclusive - Or'" memory with accumulator
Operation: A ¥ M —A NZCIDYV
/!l
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate EOR #0per 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4%
Absolute, Y EOR Oper, Y 59 3 4%
(Indirect, X) EOR (Oper, X) 4] 2 6
(Indirect), Y EOR (Oper), Y 51 2 5*
* Add 1 if page boundary is crossed.

\- AN EERINE ———————————

——— oa ——— TTEERTE

Increment memory by one |NC
Operation: M + 1 —M NZCIDV
/!l _
Addressing Assembly Language (0] No. No.
Mode Form CODE Bytes Cycles
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper‘,_ X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
Increment index X by one |NX
Operation: X + 1 —X NZCIDYV
/-
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied INX E8 1 2

r—— 522 _-—ﬁ

|NY Increment index Y by one
Operation: Y + 1 —Y NZCTIDYV
o
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied INY C8 1 2
JMP Jump to new location
Operation: (PC + 1) — PCL NZCIDYV
(pCc +2)—pCHL
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Absolute JMP Oper 4C
Indirect JMP (Oper) 6C

\- A ERRIE, ——— e

— s —— FERIE ~

Jump to new location saving return address JSR
Operation: PC + 2 |, (PC + 1) — PCL NZCT'TLDV
(PC + 2) —PCH

Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Absolute JSR Oper 20 3 6
Load accumulator with memory LDA
Operation: M — A NZCIDYV
/1 _
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate LDA #0per A9 2 2
Zero Page LDA Oper AS 2 3
Zero Page, X LDA Oper, X BS 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4%
Absolute, Y LDA Oper, Y BS 3 4%
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y Bl 2 5#*

* Add 1 if page boundary is crossed.

-—

F_— 5—24'_ﬁ

LDX Load index X with memory
Operation: M — X NZCIDYV
A S
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate LDX #0per A2 2 2
Zero Page LDX Oper A6 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AE 3 -
Absolute, Y LDX Oper, Y BE 3 4*
* Add 1 when page boundary is crossed.
LDY load index Y with memory
Operation: M — Y NZCIDYV
Y S,
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Immediate LDY #Oper AD 2 2
Zero Page LDY Oper A4 2 3
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4*
* Add 1 when page boundary is crossed.

\- TN R e

— s ——— DAEERITE

Shift right one bit (memory or accumulator) LSR
Operation: —7 6 543 210 —C NZCIDV
e/ / _ _ _
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Accumulator ISR A 44 i 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4F 3 6
Absolute, X LSR Oper, X 5E 3 7
No operation NOP
Operation: No operation (2 cycles) NZCIDYV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied NOP EA 1 2

#

r__S—ZG—_-ﬁ

ORA "OR" memory with accumulator
Operation: A VM -—A NZCIDYV
/] _ _
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate ORA #Oper ®9 2 2
Zero Page ORA Oper @5 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper @D 3 4
Absolute, X ORA Oper, X 1D 3 4%
Absolute, Y ORA Oper, Y 19 3 4%
(Indirect, X) ORA (Oper, X) P 2 6
(Indirect), Y ORA (Oper), Y 11 2 G*

Add.- 1 on page crossing.

PHA

Operation: A |

Push accumulator on stack

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied PHA 48 1 3

NG E R I D —

TN GERINEEN

Push processor status on stack PHP
Operation: P | NZCIDV
Addressing Assembly Language (0] No. No.
Mode Form CODE Bytes Cycles
Implied PHP @8 1 3
Pull accumulator from stack PLA
Operation: A | NZCIDV
4 A
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied PLA 68 1 4

r_— 5~28 _ﬁ

PLP Pull processor status from stack
Operation: P | NZCIDV
From Stack
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied PLP 28 1 4
ROL Rotate one bit left (memory or accumulator)
[M or A —I
Operation: 76 5432 1¢ — C NZCIDV
/1] _ _ _
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

N NG R 1 U —

R L NGERINERN

Rotate one bit right (memory or accumulator) ROR

L M or A I
Operation: C—76543210 NZCIDWV
FLT
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROR A BA il 2
Zero Page ROR Oper 66 2 5
Zero Page, X ROR Oper, X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute, X ROR Oper, X FE 3 7
Return from interrupt RTI
Operation: P | PC| NZCIDYV
From Stack
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied RTI Faly) 1 6

RTS Return from subroutine
Operation: PC|, PC + 1 —PC NZCIDUV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied RTS 60 1 6
SBC Subtract memory from accumulator with borrow
Operation: A - M - C —A NZCIDV
Note: C = Borrow VA A
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate SBC #0per E9 2 2
Zero Page SBC Oper ES 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4%
Absolute, Y SBC Oper, Y F9 3 4%
(Indirect, X) SBC (Oper, X) E1l 2 6
(Indirect), Y SBC (Oper), Y F1 2 5 *
* Add 1 when page boundary is crossed.

\~ AN EERIE e oo/

—— e ——— DAEERITE

Set carry flag SEC
Operation: 1 —C NZCIDYV
p— ——— 1 — — —
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied SEC 38 1! 2
Set decimal mode SED
Operation: 1 — D NZCIDYV
— — Je— - 1 -
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied SED F8 iF 2
Set interrupt disable status SE'
Operation: 1-—1 NZCIDV
—— - —— 1 —_— —
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Impliead SEI 78 1 2

N

F*&SZ ﬁ

STA Store accumulator in memory
Operation: A —M NZCIDV
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6
STX Store index X in memory
Operation: X -—M NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper 8E 3 4

\- PANEERE —————— e

r———-——- 5433 —— @&M@@BEME j

Store index Y in memory STY
Operation: Y —M NZCIDYV
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Zero Page STY Oper 84 3
Zero Page, X STY Oper, X 94
Absolute STY Oper 8C 4
Transfer accumulator to index X TAX
Operation: A —X NZCIDV
fof o o
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied TAX AA 1 2

F_—'S—EA ———ﬁ

TAY Transfer accumulator to index Y
Operation: A —Y NZCIDV
/! _
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied TAY A8 1 2
TYA Transfer index Y to accumulator
Operation: Y —A NZCITDWV
Fad
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied TYA 98 1 2

\- PANEERE —————— e

—— e ——— TATEERITE

Transfer stack pointer to index X TSX
Operation: 5 —X NZCIDYV
" S
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied TSX BA 1 2
Transfer index X to accumulator TXA
Operation: X —A NZCITDV
/o
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied TXA 8A 1 2
Transfer index X to stack pointer TXS
Operation: X —8 NZCIDV
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied TXS 9A 1 2

—

@1
@2
@3
@4
75
?6
@7
@8
@9
@A
@B
@C
@D
PE
@F
10
11
12
13
14
15
16
17
18
19
1A
1B
10
1D
1E
1F

BRK

ORA - (Indirect,X)
Future Expansion
Futﬁre Expansion
Future Expansion:
ORA - Zero Page
ASL - Zero Page
Future Expansion
PHP

ORA - Immediate
ASL - Accumulator
Future Expansion
Future Expansion
ORA - Absolute
AST, - Absolute
Future Expansion
BPL

ORA - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page,X
ASL - Zerc Page,X
Future Expansion
CLC

ORA - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ORA -~ Absolute,X
ASL - Absolute,X
Future Expansion

20
21
22
23
24
o5
26
27
28
29
2A
2B
2C
2D
°F
oF
3¢
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

r——- 5—36'——ﬂ

JSR

AND - (Indirect, X)
Future Expansion
Future Expansion
BIT - Zero Page
AND - Zero Page
ROL - Zero Page
Future Expansion
PLP

AND - Immediate
ROL - Accumulator
Future Expansion
BIT - Absolute
AND - Absolute
ROL - Absolute
Future Expansion
BMI

AND - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND - Zero Page,X
ROL - Zero Page,X
Future Expansion
SEC

AND - Absclute,Y
Future Expansion
Future Expansion
Future Expansion
AND - Absolute,X
ROL - Absolute,X
Future Expansion

N G R —

41
42
43

45

47

49
4A
4B
4C
4D
4E
AF

51
b2
53
54
55
56
57
58
59
S5A
5B
5C
5D

SF

SE -

RTI

EOR - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
ISR - Zero Page
Future Expansion
PHA

EOR - Immediate
LSR -~ Accumulator
Future Expansion
JMP - Absolute
EOR - Absolute
LSR - Absolute
Future Expansion
BVC

EOR - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page,X
LSR - Zero Page,X
Future Expansion
CLI

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute, X
LSR - Absolute,X
Future Expansion

S B A NGERINERN

60
61
62
63

65

67
68
69
6A
6B
6C
6D
6E
oF
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
ZE
7F

RTS

ADC - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page
ROR - Zero Page
Future Expansion
PLA

ADC - Immediate
ROR - Accumulator
Future Expansion
JMP - Indirect
ADC - Absolute
ROR - Absolute
Future Expansion
BVS

ADC - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page,X
ROR - Zero Page,X
Future Expansion
SEI

ADC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC - Absolute,X
ROR - Absolute,X
Future Expansion

N

81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
99
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

Future Expansion
STA - (Indirect,X)
Future Expansion
Future Expansion
STY - Zero Page
STA - Zero Page
STX - Zero Page
Future Expansion
DEY

Future Expansion
TXA

Future Expansion
STY - Absolute
STA - Absolute
STX - Absolute
Future Expansion
BCC

STA - (Indirect),Y
Future Expansion
Future Expansion
STY - Zero Page,X
STA - Zero Page,X
STX - Zero Page,Y
Future Expansion
TYA

STA - Absolute,Y
TXS

Future Expansion
Future Expansion
STA - Absolute,X
Future Expansion
Future Expansion

AP -
Al -

Fiv:
A4 -

A5 -

A6 -
A7 -

A9 -
AA -
AB -
AC -
AD -
AE -
AF —

Bl -
B2 -
B3 -
B4 -
BS -
B6 -
B7 -

B9 -
BA -
BB -
BC -
BD -
BE -
BF -

LDY - Immediate
LDA - (Indirect,X)
LDX - Immediate
Future Expansion
LDY - Zero Page
LDA - Zero Page
LDX - Zero Page
Future Expansion
TAY

LDA - Immediate
TAX

Future Expansion
LDY - Absolute
LDA - Absolute
LDX - Absolute
Future Expansion
BCS

LDA - (Indirect),Y
Future Expansion
Future Expansion
LDY - Zero Page,X
LDA - Zero Page,X
LDX - Zero Page,Y
Future Expansion
CLV

LDA - Absolute,¥Y
TSX

Future Expansion
LDY - Absolute,X
LDA - Absolute, X
LDX - Absolute,Y
Future Expansion

N N G R —

Co -
c1 -

C3 -
Cc4 -
Cs5 -
Cce -
C7 -
C8 -
C9 -
CA -
CB -
CcC -
CDh -
CE -
CF -

D1 -
D2 —
D3 -
D4 -
D5 -
D6 -

D8 —

DA -
DB -
DC -
DD -
DE -
DF -

D7 -

CPY - Immediate
CMP - (Indirect,X)
Future Expansion
Future Expansion
CPY - Zero Page
CMP - Zero Page
DEC - Zero Page
Future Expansion
INY

CMP - Immediate
DEX

Future Expansion
CPY - Absolute
CMP - Absolute
DEC - Absolute
Future Expansion
BNE

CMP - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
CMP - Zero Page,X
DEC - Zero Page,X
Future Expansion
CLD

CMP - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
CMP - Absolute, X
DEC - Absolute,X
Future Expansion

EQ -
El =
E2 —

E4 -
ES5 -
E6 -
E7 -
E8 —~
EQ -
EA -
EB -
EC -
ED -
EE -
EF -

F1 -
F2 —
F3 -
F4 -
FS5 -
Fe ~
F7 -
Eg —
F9 -

FB -
FC -
FD -
FE =
FF ~

———— > —— TG

CPX - Immediate
SBC - (Indirect,X)
Future Expansion
Future Expansion
CPX - Zero Page
SBC - Zero Page
INC - Zero Page
Future Expansion
INX

SBC - Immediate
NOP

Future Expansion
CPX - Absolute
SBC - Absolute
INC - Absolute
Future Expansion
BEQ

SBC - (Indj'rect),Y
Future Expansion
Future Expansion
Future Expansion
SBC - Zero Page,X
INC - Zero Page,X
Future Expansion
SED

SBC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
SBC -~ Absolute, X
INC - Absolute, X
Future Expansion

-

1/ INGERINERN

TANBUG
V2

e M TN GERINEEN

Notes for Users Familiar with TANBUG V1

TANBUG version 2 has been designed such that all your programs
written under TANBUG V1 will run identically under TANBUG
V2. TANBUG V2, which occupies 2K instead of TANBUG Vlis

1K, contains extira features as follows:

Basic Warm Start
Parallel Printer Driver

Serial Printer Driver

[l

ink to External (user) Software Driver
%8232 Input to the Monitor
Additional Subroutines, Including Memory Management

Basic Clear Screen

TANBUG V2 1is compatible with Microsoft Basic V1 and XBUG
V5. However, XBUG VS5 Translator format was specifically
designed for screen output and gives an overprinted format.
The best method of obtaining a listing is to use the Instruction
dissassembler to 1list code in memory. Later versions of XBUG

will have this problem rectified.

ﬁ 6-2 ﬁ

The TANBUG monitor program is located in 2K bytes of read
only memory (ROM) at the top of the address space i.e.
pages 248 - 255. It contains facilities to enter, modify, run
and debug programs. This chapter of the manual gives full
details of the command facilities and subroutines available

to the user.

TANBUG will only operate in the memory map of the Microtan
system, it is not a general purpose 6502 software package
and has been specifically written for Microtan. Locations
F7F7, F7F8 and F7F9 are reserved for a jump to an expansion
monitor ROM which 1is positioned on the expansion board,

more about this later.

Locations 20@-3FF i.e. pages 2 and 3 are the visual display
memory - TANBUG writes to these locations whenever a command
is typed to the monitor. Locations BFF@-BFF3 are the addresses
of the peripheral attachments, e.g. keyboard, graphics function
flip-flop etc. Locations 10¢-1FF i.e. page 1, are used as
the stack by the microprocessor. Since the stack is of the
push down variety it follows that the whole of the area will
not be wused as stack storage in the majority of programs.
TANBUG requires to wuse locations 1F@-1FF as stack storage
(only 16 locations). The rest of this area is free for user
programs. Locations A4@-FF are also available as user RAM,
the preceeding locations @#-3F being reserved for use by TANBUG.
User programs which do not wuse the stack may therefore
be loaded anywhere i.e. the area 4@-1EF. For user programs
which do wuse the stack, the wuser must calculate how many

stack locations are required and reduce the upper limit accord-

ingly.

\- A ERRIE, ——— e

e INGERINEEN

TANBUG contains coding to automatically identify whether
the keypad or full ASCI1 keyboard is connected to the keyboard
socket. This coding is executed every time a reset is issued,
and thereafter a sequence of code, particular to the keyboard
type in use, 1is executed. Reset must therefore always be

issued after changing the keyboard type.

When using an ASCIl encoded alphanumeric keyboard, monitor
commands are typed in as shown in this chapter. There is
however no reset key on an ASCI1 keyboard, one must be
fitted as shown in the chapter describing assembly of the
Microtan kit., TANBUG drives this type of keyboard in the

interrupt mode.

The keypad is used somewhat differently, its layout being

shown below.

DEL Sp
SHIFT | o cr | ®ST

M G 5 N

c D E F

p ESC B L

8 9 A B

0 c R

4 5 6 7

0 1 2 3

TANBUG interrogates the keypad for a depressed key, then
translates the matrix encoded signal into an ASCII character
which it puts up on the visual display just as if the equivalent
key were depressed on an ASCll encoded keyboard. Because
of the limited number of keys it has been necessary to incor-
porate a shift function on the keypad. So to obtain the character
P for example, the wuser presses and releases SHIFT, then

depresses and releases P.

N

r,!""""""""""""""""--------l 6-4 ----------------------..\
The SHIFT key contains a self cancelling facility - if the
user presses SHIFT twice 1in succession the pending shift
operation 1is cancelled. So as an example, wusing the two
keys SHIFT and 8, the operation SHIFT P yields P on the
display. SHIFT SHIFT P yields 8 on the display. Otheér special
purpose keys on the keypad are RST, which issues a reset
to the Microtan, and DEL which delete the last character
typed. Repeated deletes erase characters back to the beginning

of the line.

Keyboard Protocol

If you have a serial KB enabled, the system disables the
keypad at startup, i.e. you cannot use it (the keypad) at
all.

1If a serial KB 1is disabled, then the system looks for the
two types of keyboard as before. (ASCII keyboard and keypad).
If you are using the serial KB and have an ASClI KB plugged
in, the serial KB is disabled as soon as you hit a key on
the ASCII KB'

From now on in this chapter, the Microtan will be treated
as having one type of keyboard only, since all functions
required can be derived by depressing the appropriate key

or keys on whithever is used - keyboard or keypad.

Having described some of the background to TANBUG, it is
now possible to describe the commands and syntax of TANBUG
i.e. how to use it. An example is shown later on. All numerical
values of address, data and monitor command arguments
are in hexadecimal. The symbol < CR> means on depression
of the carriage return key, <SP> the space key or bar,
< ESC > the escape key (ALT on some keyboards) and <LF>
line feed. In all examples, text to be typed by the user
will be underlined, while TANBUG responses will not. B indicates
the cursor. <ADDR> means a hexadecimal address, ARG
means hexadecimal data and <TERM> means one of the terminators
<CR> , <SP> , <ESC> , or <LF> .

j = See Appendix.

SN GERINE

———— o ——— FATEEIE

A1l commands are of the form

<COMMAND> <TERM>
or < COMMAND> <ARG> <TERM>
or < COMMAND> <ARG>, <ARG> <TERM>
or < COMMAND> <ARG>, <ARG>, <ARG><TERM>

where <COMMAND> is one of the mnemonic commands and <ARG>
is a hexadecimal arugment application to the command being
used. The requirement argument is defined for each command.

1t should be noted at an early stage that the longest argument

will contain 4 hexadecimal characters. If more are typed all
but the last 4 are ignored. As an example consider the memory
modify command M12340978 <CR> . 1In this case location @378
will be modified or examined as all but the last 4 characters

are ignored.

<TERM > is one of the terminating characters <CR>, <SP>,
<LF> or <ESC>. In fact TANBUG accepts any of the '"control"
characters (HEX code @-2¢) as terminator. TANBUG will reply

with a ? if an illegal command is encountered.

Starting the Monitor TANBUG:

Press the RST key on the keypad or the reset key or button
connected to the Microtan. TANBUG will scroll the display

and respond with

TANBUG
L

On a system rack Micron, a reset is automatically executed
on power-up. Note: that on initial power up the top part
of the display will be filled with spurious characters. These
will disappear as new commands are entered and the display
scrolls up. On subsequent resets the previous operations remain
displayed to facilitate debugging. Note: that if your Micron
is not fitted with the lower case option, then your prompt
will be a ? and not the block K.

N

ﬁﬁ-ﬁ ﬁ

Memory Modify/Examine Command M:

The M command allows the user to enter and modify programs
by changing the RAM locations to the desired values. The
command also allows the user to inspect ROM locations, modify
registers etc. To open a location, type the following
M <ADDR> < TERM >
TANBUG then replies with the current contents of that location.
For example to examine the contents of RAM location 100
type M1@@<C=> TANBUG then responds on the display with
M1gg, 08,1

assuming the current contents of the location were @E.

There are now several options open to the user. 1f any termi-
nator 1is typed the location 1is closed and not altered and
the cursor moves to the next line scrolling up the display
by one row. If, however, a value is typed followed by one
of the terminators <CR>, <LF> or <ESC> the location is modified
and then closed. For example using <CR>

M1g9,0E, FF

n
location 1#¢ will now contain FF. If however <SP> is typed,
the location is re-opened and unmodified.

M1, 0 , FF

Mp160,0E ,}
This facility is wuseful if an erroneous value has been typed.
The terminators <LF> and <ESC> modify the current location
being examined, then opens the next and previous locations
respectively i.e. using <LF>

M10@, 0, FF

M@191,AB, I
and using <ESC>

M199,0E,

M@gFF,56,1
Using <LF > makes for very easy program entry, it only being
necessary to type the initial address of the program followed
by its data and <LF>, then responding to the cursor prompt

for subsequent data words.

N G R —

i TN GERINEEN

Note: that locations 1FE and 1FF should not be modified. These
are the stack loctions which contain the monitor return
addresses. If they are corrupted TANBUG will almost certainly
"crash" and it will be necessary to issue a reset in order to

recover.

The Modify memory command only accepts one byte of information
at a time, while programming convention dictates that all bytes
of an instruction are written on one line. For example, a pro-

gram may be printed as

P10@ ASPP LDA#D
@102 8548 STA 4f

This would be entered via TANBUG as

M10@,PE,A9<LF> (First byte of first instruction)
M1#1,FF,@B<LF> (Second byte of first instruction)
M1¢2,AB,85<LF> (First byte of next instruction)
M10@3,08, 48 <LE> (etc.)

List Command L:

The 1list command allows the user to list out sections of memory
onto the display. It is possible to display the contents of a
maximum of one hundred and twenty consecutive memory loca-
tions simultaneously. To list a series of locations type
L <ADDR>, <NUMBER> <TERM>

where ADDR is the address of the first location to be printed
and NUMBER is the number of lines of eight consecutive loca-
tions to be printed. TANBUG pauses briefly between each line
to allow the user to scan them. For example, to list the first
16 locations of TANBUG (which resides at F8@@-FFFF) type
LF80@,2<CR>. The display will then be

LF8¢9, 2 |
F809 4C 51 F9 4C B2 F9 4C 9B
F808 F9 4C 79 FE A9 @D 4C 75

|
If zero lines are requested (i.e. <NUMBER> = @) then 256 lines

will be given.

r—_G—B-'—ﬁ

Go Command G:

Having entered a program using the M command and verified
it using the L command, the user can use the G command
to start running his own program. The command is of the
format G <ADDR> <TERM>. For example, to start a program
whose first instruction is at location 10@ type GIlg@ <CR>.
When the wuser program 1is started the cursor disappears.

On a return to the monitor it re-appears.

The G command automatically sets up two of the microprocessors

internal registers

a) The program counter (PC) 1is set to the start

address given in the G command.
b) The stack pointer (SP) is set to location 1FF.

The contents of the other four internal registers, namely
the status word (PSW), index X (IX), index Y (1Y) and accumu-
lator (A), are taken from the monitor pseudo registers (described
next). Thus the user can either set up the pseudo registers
before typing the G command, or use instructions within

his/her program to manipulate them directly.

Register Modify/examine Command R:

Locations 15 to 1B within the RAM reserved for TANBUG are
the user pseudo registers. The user can set these locations
prior to issuing a G command. The values are then transferred
to the microprocessors internal registers immediately before
the wuser program is started. The pseudo register locations
are also used by the monitor to save the user internal register
values when a breakpoint is encountered. These values are
then transferred back into the microprocessor when a P command
is issued, so that to all intents and purposes the user program

appears to be uninterrupted.

NN G E R 1|\

—— o —— FATEEIE ~

The R command allows the wuser to modify these registers
in conjunction with the M command. To modify/examine registers
type R <CR > and the following display will appear (location
15 containing @@ say).

R
M@g15, 90,1

Now proceed as for the M command.

Naturally the M command could be used to modify/examine
location 15 without wusing the R command - the R command
merely saving the user the need to remember and type in
the start location of the pseudo registers. Pseudo register

locations are as follows.

Location Function
15 Low order byte of program counter (PCL)
16 High order byte of program count (PCH)
17 Processor status word (PSW)
18 Stack pointer (SP)
19 Index X (IX)
1A Index Y (1Y)
1B Accumulator (A)

Two typical instances of the use of the R command are:-

a) Setting up PSW, 1X, 1Y and A before starting a user

program.

b) Modifying registers after a breakpoint but before
proceeding with program execution (using the

P command) for debugging purposes.

Note that when modifying registers in case (b) care
must be taken if PCL, PCH or SP are modified, since
the proceed command P wuses these to determine the
address of the next instructions to be executed (PCL,
PCH) and the user stack pointer (SP).

-

ﬁ 6-10 ﬁ

Single Instruction Mode S:

Single instruction mode is a very powerful debugging aid.
When set TANBUG executes the user program one instruction
at a time, re-entering the monitor between each instruction
and printing out the status of all of the microprocessor's
internal registers as they were after the last instruction
executed in the wuser program. The S command is wused in
conjunction with the proceed command P and the normal mode
command N. Examples are given 1in the description of the

P command.

Normal Mode Command N:

The N command is the complement of the S command and is
used to cancel the S command so that the microprocessor
executes the wuser program in the normal manner without
returning to the monitor between each instruction. Reset automa-

tically sets the normal mode of operation.

Proceed Command P:

The P command is wused to instruct TANBUG to execute the
next instruction in the user program when in single instruction
mode. Pseudo register contents are transferred into the micro-
processor's internal registers and the next instruction in
the user's program is exe cuted. The monitor is then re-entered.
P may also be wused with an argument thus P <NUMBER>
<CR > where NUMBER 1is less than or equal to FF. In this
case the program executes the specified number of instructions

+1 before returning to the monitor.

Each time the monitor is re-entered after execution of an
instruction or instructions, the status of the microprocessor
internal registers, as they were in the wuser program, are

printed across the screen in the following order:

N G E 1 o —

e N GERINERN

Address of next instruction to be executed.
Processor status word.

Stack pointer.

Index register X.

Index register Y.

Accumulator.

Note that these are in the same order as the

pseudo registers, described earlier.

Whenever the user program 1is entered, the cursor is removed
from the display. Whenever the monitor is entered, the
cursor returns to the display as a wuser prompt. While in
the monitor between user instructions, any monitor command
can be typed. A program must always be started by the
G command, then P wused if in single instruction mode. A
P command used before a G command is issued, is likely

to cause a program ''crash” and should not be attempted.

As an example, consider the simple program which repeatedly

adds 1 to the accumulator.

Address Data Mnemonic Comment

109 69 ADC 1 : add 1 to acc.
141 g1

192 4C JMP 16¢

143 1)

184 g1

Set the single instruction mode and start the program. The
user may wish to initially set the accumulator to @@ by

using the M command.

2
G149
@192 20 FF 99 #1

TANBUG then responds with the characters shown above.

-—

r——— 6-12 .__ﬁ

3192 is the address of the next instruction to

be executed.
20 is the processor status word value.
FF is the low byte value of the stack pointer.

The high byte is always set to 1, the stack

is therefore pointing atlecation 1FF,.

o9 is the value of the index X register.
%) is the value of the index Y register.
g1 is the wvalue of the accumulator. It is a

1 as 1 has been added to the accumulator
and it 1is assumed that the user cleared

the accumulator before starting the program.

Since the <cursor has re-appeared, TANBUG 1is ready for
any monitor command. For example, registers or memory
locations can be modified, or the program may be re-started
from scratch by typing G188 <CR> again. If the user wishes
to continue then type P <CR>. The resulting display is

5

G109

pip2 26 FF @8 99 0l
P

Pl00 20 FF @0 00 01
i

Since the instruction at location 1§02 was "Jump to 1g@",
the status print out shows that this has indeed occurred.
Registers, since they were not modified by any program
instruction, remain unchanged. To proceed further type

P <CR> again.

\- PANEERE ——m————

——————— o ——— TANCEERIE ~

S

G199

gig2 20 FF g9 09 Pl
P

P08 20 FF g0 09 Pl
P

pig2 26 FF 99 09 02

The add instruction has been executed again, so the accumulator
has incremented by 1 to become 2. Now typing P4 <CR>
gives a display.

S

G109

gig2 20 FF 09 99 01
P

9168 26 FF 09 09 01
P

gig2 26 FF 08 09 02
P4

gig2 26 FF 09 09 @l

TANBUG allowed execution of 4 instructions before again
returning to the monitor. The 4 instructions were 2 add
instructions and 2 jump instructions thus giving the accumulator

the value 4.

By typing N<CR > then P <CR> removes the single instruction
mode and causes the program to proceed. It now does not
return to the monitor but continues to race around this
small program loop continually adding and jumping back.
There is no way to exit from this trivial program except
by a microprocessor reset or, if wusing an alphanumeric

keyboard, by typing ESC.

-—

r__ 6-14 ——ﬁ

It can be seen that the S and P commands are particularly
useful when tracing a program which contains instructions
that transfer program control e.g. jumps, branches and
sub-routines, since these commands allow the user to interrogate

the order of execution of his/her program.

Breakpoint Command B;

A breakpoint is a complementary debugging aid to single
instruction mode. Instead of stepping singly through all
instructions in a program, the breakpoint facility allows
the wuser to specify the address at which he requires the
monitor to be re-entered from his/her program. As an example,
consider a long program in which a fault is suspected to
exist near the end. It would be very tedious and time
consuming to single step through the program to the problem
area. A breakpoint can be set just previous to where the
fault 1is suspected to exist and the program started with
the G command. Normal execution occurs until the breakpoint
is reached, then the monitor 1is re-entered with the same
status print-out as for single instruction mode. Any monitor

commands can then be used and the program continued.
The format of the breakpoint command is
B <ADDR>, <NUMBER> <CR>
where <ADDR> is the address of any instruction OPCODE
(but not argument), <NUMBER> 1is any number from § - 7

defining one of 8 breakpoints. B <CR> removes all breakpoints.

As an example consider the following program

108 E8 LOOP: INX

191 C8 INY

182 69 @1 ADC#1

104 4 08 @1 JMP LOOP

N G R —

————— o ——— FATEEIITE ~

Firstly set index X, index Y and the accumulator to @¢
using the R command. To set breakpoint @ at the jump instruc-
tion and start the program type B1@4,8 <CR> . The display
will then be

B194,0
G1¢g
gipL 20 FF @1 @1 @1

The jump instruction was reached and the breakpoint re-
directed control back to TANBUG. 1f it were required, single
instruction mode could be set for further debugging. However,
assume that we wish to execute the loop again by typing

P<CR>.

B194,0

G1gg

P12 20 FF @1 @1 #1
P

pi1gL 20 FF @92 @92 @2
N

The proceed command P has gone once through the breakpoint
and then re-entered the monitor. 1f P <NUMBER > <CR> was
typed it would have proceeded through the breakpoint
<NUMBER > times.

Up to 8 breakpoints can be set at 8 different locations.
The B <CR> command removes all breakpoints. A single
breakpoint can be removed by setting its address to .
For example, imagine a breakpoint is set as follows: B1@2,2,
and it 1is subsequently wished to remove it but leave any

others unaltered; type B@,2<CR> to remove it.

Caution. The breakpoint system works by replacing the
user's instruction with a special instruction (BRK) whose

opcode is @@. Replacement is carried out when G or P is typed.

-

ﬁ 6-16 T b ————

On return to the monitor the original opcode is replaced.
It is therefore possible to corrupt the wuser program under
some circumstances. The following points should therefore

be observed:

a) Breakpoints must only be set at the opcode part

of a user instruction and nowhere else.

b) 1f the user program utilises the BRK instruction
as part of the wuser code, then the user must
have his own special interrupt routine and cannot

use breakpoints.

c) If breakpoints are set in the user program and
a reset 1is issued while the microprocessor is
executing the user program rather than the monitor,
the breakpoints are lost and those locations
at which breakpoints were set in the user program
will be corrupted. These locations must be re-
entered using the M command before restarting

the user program.

d) Setting more than one breakpoint at the same

address causes the user program to be corrupted.

e) To use breakpoints, the wuser must not have
modified the interrupt link, i.e. the interrupt
code within TANBUG must be executed.

The status of breakpoints may be inspected by using the
M command to examine the breakpoint status table. This

is located in RAM locations 2@-2F and are as follows:

Address Contents
20 PCL B@
21 PCH B@
22 PCL Bl
23 PCH B1

NG ER N

N GERINERN

Address Contents
24 PCL B2
25 PCH B2
26 PCL B3
27 PCH B3
28 PCL B4
29 PCH B4
2A PClL: B
2B PCH B5
2C PCL B6
2D PCH B6
2E PCL B7
2F PCH B7

For' example, typing M2@<CR> followed by <LF> gives

M28, 99
Mgg21, 01,1

This indicates that breakpoint @ is set to location 108 by
taking the contents of location 2§ as PCL and of location
21 as PCH. 1f the breakpoint is set at location @ then this

particular breakpoint is disabled.

Offset Command O:

The offset command O is a program writing aid. It calculates
branch offsets for the user for incorporation as arguments

in branch instructions. Consider the example:

109 E8 LOOP: INX

191 C8 INY

192 69 ADC#1

163 @1

12¢ D@ BNE LOOP

121 (branch argument)

-—

ﬁ 6-18 ﬁ

To calculate the number to enter into location 121 is quite
tedious without a facility such as the O command. It is used

with the following format.

0<ADDR. OF BRANCH OPCODE><ADDR. OF DEST.><CR?>

and in this case it would be necessary to type 120,100
<CR>. The display would be

12¢,1¢¢ = DE
n

F@ 1is the number that should be entered into location 121
such that if the BNE instruction is true the program counter

will jump to the label LOOP.

Note that the maximum branch range is 7F forwards and

backwards. If the range is exceeded a ? is displayed.

Copy Command C:

The copy command allows copying of the contents of one

block of memory to another. Its format is
C<START ADDR. SOURCE><END ADDR. SOURCE><START ADDR. DEST.>

Suppose it is required to copy the block of data in locations
FCP@-FDPP into a block starting at location 2¢@. This may
be achieved by typing CFC@@,FD@s,20¢ <CR> . The display
will be

CFC@@, FD@g, 200
1

As 209 1is the starting address of the display memory, the
user will notice that the top half of the screen has been
over written with all sorts of weird and wonderful characters.
What this example has done is to take the first 256 bytes
of TANBUG and copy them into the top half of the display.

NG E R I D

————— v —— TANEERIE ~

The display then scrolled having the top 7 rows filled with

2
these characters.

Breakpoints and the ESC Key

1f an alphanumeric keyboard is being wused, depression
of the ESC key (ALT on some keyboards) will cause a re-
entry into the monitor from the user program. This is possible
because the alphanumeric keyboard 1is interrupt driven.

For example, if the trivial program

196 69 LOOP: ADC#1

191 01

162 4C JMP LOOP
163 09

194 91

has been started by typing the G command, the program
continues to loop around continuously with no exit path
to the monitor, except by issuing a reset. Instead of a

reset the user can press the ESC key, TANBUG responding
thus

g198 28 FF @1 @1 01
n

Using the ESC key has caused a breakpoint to be executed
and the monitor invoked. The register print-out above is
only typical, the value of each being that when the ESC
was depressed. Any monitor command may now be typed,
for example P causes the user program to proceed once

again.

The ESC facility is most wuseful in debugging where the
user program gets into an unforseen loop where breakpoints
have not been set. It enables the user to rejoin the monitor
without using reset and losing the breakpoints that have

been set.

2 = See Appendix

N

r__ 6-20 ﬁ

Notes:

a) The ESC facility is only implemented on interrupt
driven keyboards, i.e. alphanumeric ASCIl keyboards.

and is not implemented on the keypad.

b) Interrupt must be enabled for the ESC facility
to operate. TANBUG enables interrupts when entering
a user program, therefore do not disable interrupts

if the ESC facility is required.
c) The wuser must not have modified the interrupt
jump link. TANBUG's interrupt code must be

executed.

Input/Qutput Control

TANBUG V2 contains subroutines, accessible from machine
code or user subroutines, as well as directly via the keyboard,

to allow input/output to user peripherals.

Information about which devices are in wuse 1is stored in
the printer status word, which is at location @ 1in RAM.

The word is made up as follows:

bit 7 , bit ¢
BAS SCN | SER | PAR | EXT | DC SPECIAL | SER
WARM | DIS | O/P | O/P | O/P | FLAG | PRINT 74

ON ON ON MODE ON

In more detail:

BIT 8 SER 1/P ON - set by the monitor on initialisation
if a serial keyboard is connected
to Tanex, Cleared if not, or
if a keypad 1is connected to
the Microtan, or if an ASCII

keyboard interrupts.

\- A ERRIE, ——— e

——— e —— TANEERTE

BIT 1 SPECIAL PRINT - set to @ by monitor on initialisation.
When @, a line of output to a
parallel device is terminated by
LF only, while to a serial device
CR LF is output. This may Dbe
set to 1 by the user so that, if
his printers require them, the
serial interface terminates with
LF only while the parallel interface
gives CRLF.

BIT 2 DC FLAG - used by the monitor to denote output

control codes for printers on/off.

BIT 3 EXT OUTPUT ON - zeroed by the monitor on initialisation.
If set to 1 by the user, can be
linked to a user output driver

subroutine.

BIT 4 PAR O/P ON ~ zeroed by the monitor on initialisation.
If set to 1 by any of the various
control commands, initialises the

printer and directs output to it.

BIT 5 SER O/P ON - as Bit 4, but for serial printer

interface on Tanex.

BIT 6 SCN DIS - set to @ by initialisation. 1If set
to a 1 by control commands, inhibits

output to the screen.

BIT 7 BAS WARM -Used by the monitor for BASIC
warm start.

Important Notes:

a) If you wish to change the value of any of the
bits in the printer status word, you should
leave the BAS WARM and DC FLAG bits set to

their current values.

-

r__ 6-22 _ﬁ

b) The SCN DIS facility is available for your use.
However, the monitor subroutines require the
screen to be enabled for command storage. There-
fore, if you are wusing a teletype for input,
you should leave the screen area enabled, even
though you may not have a TV display connected
to the Microtan.

The bits in the printer status word, as well as being user
programmable, are changed by certain monitor commands,
and also by control codes output via TANBUG. These are

described individually for each printer.

Every time that the subroutine OUTALL or OUTRET (or OUTPCR,
OPCHR) 1is called, either from the monitor, BASIC, or a
user program, the printer status word is examined and
output is routed to all those devices which are enabled.
Thus you can use your printers with all existing software

merely by controlling the output bits as described below.

Parallel Printer

TANBUG V2 contains software to drive the optional 6522 on

Tanex in a Centronics-type parallel output mode.

Table 1 shows the pin connections for the interface cable.

N R L

—— s —— TATEERITE

Function

GND 25 D1

Function Printer Connector Pin Tanex Skt No & Pin
Data 1 2 C1 - 2
Data 2 3 ciT - 3
Data 3 4 Cl - 4
Data 4 5 cT - 5
Data § 6 cL - 6
Data 6 7 ct - 9
Data 7 8 Ci1 - 10
Data 8 9 1 - 11
Strobe 1 i - 12
Ack 10 1 - 13
INIT 31 DL - 2
BUSY 11 DI - 3
ERROR 32 D1 - 4
GND 19 cT - 7
GND 21 ci - 8
GND 23 pL - 7
- 8

PA@

PAl

PA2Z

PA3

PA4

PAS

PA6

PA7

CA2

CAl

PB@

PB1

PB2

ov

cv

ov

ov

F_— 6-24 _-ﬁ

There are two subroutines for the parallel printer - one
to initialise it and one to output data. Timing diagrams

for a typical printer are shown in Figs. 2 and 3.

Fig. 2 - Initialisation

INITIAL |&— Ti—>]|

§
BUSY | le—— MAX .500ms—
}
A i
ACK i
[e—fe—>
Fig. 3 - Character Output \I 10 us
e Y
DATA | i i
t
' !
i
STROBE l
— Tac_ ‘ Ts . - e
* ke 5
[T4 '
|
—]
ACK i
f&—)k—n’
Te T7

A) Ti, T220.5 (yus). Data signal must be stable
during Tl and T2 centering on falling-edge of
STROBE. '

B) 1 (ps)gT390(us) vvvvvssn.. Pulse width of STROBE.

C) 30(yus)<T4. Delay time between STROBE input and ris-
ing-edge of BUSY signal is over 30 ps.

D) 60(s) £TS5. Minimum length of T5 of BUSY signal
is 60 ¥, TS5 varies with every input data. When
print command 1is input, BUSY signal becomes
"HIGH" until completion of print-out. (Max. 3s).

E) T6, T7 = 10(ys). ACK is output by falling-edge

of BUSY with the timing of T6 and T7.
F) 0<T8. Right after the rising-edge of ACK, STROBE is

allowed to be input.

N NG R 1 U —

TN GERINEEN

Fig 4 - Signal Descriptions

DATA 1 - 8 8 bit parallel data -~ logic H = 1.

STROBE A low pulse strobes in data.

ACK A low pulse signifies data received.

INIT A low pulse initialises the printer.

BUSY A high indicates the printer is busy.

ERROR A Low indicates an error in the printer.

(e.g. no power, paper out).

In addition some printers have an output select pin (output from
Tanex) and paper out pin (input to Tanex). These are not jmple-
mented in Tanbug V2, though of course you may connect these

via the 6522 and your own software if required.

Controlling the Parallel Printer

The parallel printer can be controlled in several ways:

a) When running the monitor, or the BASIC interpreter,
the printer can be turned on or off by typing *P
(hold down the CTRL key and hit P). Successive opera-
tions of this kind alternately turn the printer on and
off. As an example, consider listing a BASIC program
(the printer is off).

Program entry

10 PRINT "THIS 1S AN EXAMPLE"<CR>
LIST +P <CR>

The printer is turned on and your program listed.

The +P is not printed.

N

F_— 6-26 .—ﬁ

b) From within a user program, you can turn the printer
on by using the OUTALL subroutine to output the code
(DC1) 2. Thereafter, all output transmitted by the OUTALL
subroutine is also transmitted to the printer (see section

on subroutines).

Example, to turn the printer on:

LDA # 11

JSR OUTALL joutput DC1
LDA #$2

JSR OUTALL joutput 2

The printer can be turned off by outputting (DC1l) 3.

c) You can output directly to the parallel printer without
going through OUTALL by using the OUTPAR subroutine,
but note that the printer must be initialised first.
Refer to the detailed description of subroutines.

d) The printer is turned off by a RESET.

Printer Errors

1f your printer is in an error condition, the system will fail to
respond for 10 seconds while a timeout check takes place. The
message "PRINT ERROR" will then be displayed on the TV screen,
and the printer will be disabled by TANBUG. Rectify the error

and repeat.

Note that the many printers work in line mode, i.e. characters
are stored up until a line terminator (LF) occurs, then the whole

line is output in one shot.

\~ AT CERIE ——————eee

s S TN GERINEEN

Using Other Types of Parallel Printers

Other types of parallel printers with a Centronics - compatible
interface should operate without modification. Note, however, that
some printers use <LF> as a buffer terminator - Tanbug V2 outputs
a line of text terminated by <LF> only - no carriage return is
output. 1If your printer requires the sequence <CR LF> then you
can set the 'special print" bit in the printer status word, which
will cause this sequence to be output. Use the following code,

which must be executed after every reset:

LDA $0 ;get status word
ORA #2 ;set print bit
STA $¢ ;store it

If you wish to use a non-Centronics parallel printer, you must
add logic to produce the interface signals shown in Figs. 2 and
3.

IMPORTANT NOTE

If the data transfer rate to your printer is slower than your cassette
data rate, you must disable your printer before using the XBUG

E or F commands, otherwise filename errors will occur.

Serial Printer

Tanbug V2 contains software to drive a serial printer via the
UART on Tanex. The interface may either be V24 or 20mA current

loop - refer to the Tanex manual for selection.

Fig. 5 shows the printer connections.

Fig. 5 - Serial Printer Connections

Function

r_— 6-28 _-_ﬁ

Tanex Connection

Printer Ground El -
Printer Drive (V24) El -
or

Printer Drive (20mA) + El -
Printer Drive (20mA) - El -
Printer Enable El -

Note that the modem control pin 8, printer
to operate - you can ground this at the

so that an error is given if the printer is

OBeration

Whenever a reset is executed, the serial

up to the following specification:

110 baud

Internal clock Rx
8 bits/word

2 stop bits

Parity disabled
Non-echo
Interrupt disabled
RTS Low

Enable Rx/Tx

from BASIC,

3 = See Appendix

from the monitor,

8

connect to E1 - 7
enable, must be grounded

printer end if required

not connected.

printer interface is set

This allows connection of a normal 110 baud teletype printer.3

Output can be controlled by the following methods:

a) From any monitor command, or from BASIC, repeatedly
typing +V (hold down CTRL and hit V) alternately
turns the printer on and off. When on, any output

or via the OUTALL or

NG E R I D

——— s —— TEERITE ~

OPCHR subroutines, is directed to the serial printer

as well as any other output device which is enabled.

b) From within a wuser program the printer can be turned
on by using the OUTALL subroutine by outputting (DC1)
@ and off by (DCl)l.
See example under parallel printer.

c) You can output directly to the serial printer without
affecting other devices by using the OUTSER subroutine,
See section on subroutines.

d) The printer is turned off by a reset.

Printer Errors

1f the oprinter 1is disabled for hardware reasons, the message
"PRINT ERROR" is displayed on the screen, and TANBUG V2 turns

the printer off.

IMPORTANT NOTE

1f you are using a printer at 110 baud, you must turn the printer
off before using XBUG V5 "E" and "F" commands, otherwise due
to the slow transfer rate filename errors will occur. Cassette handling

should be executed via the screen.

Using Other Serial Printers

TANBUG V2 initialises the serial printer as stated above. If you
wish to wuse printers with other specifications (for example, a
different baud rate) you can modify the UART status registers
BFD2 and BFD3 via the monitor "M" command, referring to the
Tanex Manual for the functions of each status bit. Note that you

must do this after each reset.

-

F__ 6-30 -_—ﬁ

TANBUG V2 outputs CR LF at the end of each line, this sequence
being required for most serial devices. By setting the "SPECIAL
PRINT" bit in the Printer Status Word (described in more detail
in the Parallel Printer Section) you can output LF only as a ter-

minator.

Screen Qutput Suppression

TANBUG V2 allows you to suppress output to the screen display

- this is wuseful, for example, in situations where you wish to

input data via the keyboard and display and output different
4

data on the printer.
Screen output is turned off and on as follows:

a) In the monitor or BASIC, or via the JPLKB or POLLKB
subroutines, by typing +S (hold down CTRL key and
hit S). Successive operations turn the display off and

on.

b) From within a wuser program the screen is turned on
by outputting (DCl) 4 via the OUTALL subroutine, and
off by (DCl1l) 5. See example under parallel printer.

c) Output can be made to the screen without affecting
other enabled devices by calling the OUTSCR subroutine.
See descriptions of subroutines.

d) The screen is turned on by a reset.

IMPORTANT NOTE. The monitor subroutine HEXPCK, and also

XBUG use the screen as data storage. Therefore, it is necessary

to enable the screen when using the monitor even though you may

not have a TV display connected.

& = See Appendix

N NG R 1 U —

e R TN GERINEEN

External Output Devices

TANBUG V2 allows you to link in your own output device to work
with the Monitor and Microsoft BASIC. If bit 3 in the printer status
word, EXT O/P ON, is set, then the zero-page locations INTSL2,3
are used as a jump location to link in your own handler subroutine.

As an example:

LDA #0 juser program code

STA INTSL2

LDA #48

STA INTSL3 ;user subroutine at 4000

LDA PSTAT ;jget status word

ORA #8

STA PSTAT ;yturn on ext printer
LPOD suser subroutine

RTS

Note that the subroutine must be in memory before the external

drive is enabled.
The external printer may be turned off by the code

LDA PSTAT
AND #F7
STA PSTAT

It is also turned off by a reset.
NOTE 1If you enable the external printer, you cannot link in extra

interrupts using the INTSL1 facility (described in the interrupt
section). Use the INTFS facility instead.

1

0011
0012

INTSL2
INTSL3

-

li

r__ 6-32 _-—ﬁ

When a (DCl)(Number) code is output, these do not appear at
the output device. Should you wish to output a DC1 code directly,

then you should write DC1 twice:

LDA#11
JSR OUTALL
LDA#11
JSR OUTALL

which will cause one DCl to be printed.

Any illegal codes (DC1) (lIllegal code) will cause just the illegal
ASCI1 code to be printed.

Note that the Translator and Instruction Disassembler in XBUG
V5 is primarily for use with the TV display, and give an abridged
format on each type of printer. Later versions of XBUG will give

the correct printing format.

Using an External Keyboard

TANBUG V2 will accept serial input from the UART on TANEX, and
feed it to the monitor and BASIC programs. It is accepted via
the JPLKB (POLLKB) subroutine.

Fig. 6 shows the serial input connections.

Function Tanex Connection
Ground El - 7
DPCD El1 - 10
DSR El - 11
Serial in V24 El - 12
or

20mA in + El - 13
20mA in - El - 7

To enable the input, DCD and DSR must be tied to ground. This

can be done on the input plug so that serial input is only recog-

N NG E RV D

———— oo —— TATEEIE ~

nised when a keyboard is plugged in.

Method of Operation

On a reset, TANBUG V2 looks to see if a keyboard is connected
by determining whether DCD and DSR are tied to ground. If
they are then the serial interface is set up as described under
serial printer but in addition the UART input interrupt is
enabled, and the serial printer is turned on. The]JPLKB sub-
routine (used by the Monitor and Microsoft Basic) recognises
interrupts from the serial keyboard, and passes them to the

monitor.

1f, while the serial keyboard is enabled, an interrupt from
the Microtan keyboard port occurs, the serial keyboard is
disabled and future input must come from the Microtan keyboard

until another reset occurs.

You should always press reset after plugging in an external

keyboard since this can cause an error interrupt.

If you are using a hex keypad to initialise the Micron, you
may leave the pad plugged in. The monitor will accept input
only from the keypad until the following sequence of operations

is typed:-

Press return key on teletype
Press return key on keypad

Input will now be accepted from the teletype.

Once the serial input is disabled, either by the user or via
an interrupt from the Microtan keyboard port, bit @ of the
Printer Status Word (SER 1/P ON) is cleared. Under this con-
dition, the monitor interrupt routine will not recognise a UART
interrupt. This enables the wuser to configure the system,
via the software interrupt link, to handle UART interrupts

for his own purposes.

N

r—— 6-34 _-—-ﬁ

NOTE that if you are using serial input/output with no display,
you must use the +V command to turn off the printer while
reading -cassette tapes, otherwise due to the slow printing

speed, Filename errors will occur.

As with the serial printer, you can modify the UART status
words BFD2 and BFD3 to allow keyboard input at different
baud rates, different word lengths etc. Refer to the Tanex

manual for status word designations.

The input and output speeds must be the same baud rate -

different input and output speeds are not allowed.

External Input to Monitor

External input devices running under interrupt can be linked
to the monitor. Interrupt link INTSL1, 2, 3, (see section on

interrupts) should be set to jump to user code of the form

4

PUSH ACC ON STACK

YES
INTERRUPT 2 p
CLEAR INTERRUPT
LOOK FOR OTHERS ACC=INBUT ASC11 CODE

~

JMP JWA SKB

\- PN EERINE —————————

————————— o ——— T EENITE ~

User Subroutines

Certain input/output subroutines are available to the user.
Since these rely on a standard display format, this will

be described first, followed by the user subroutine descriptions.

Tanbug V2 contains more user subroutines than Tanbug V1.
Note that you can use your software written for Tanbug VI
without modification, since care has been taken to preserve
the same locations for subroutines in Tanbug V2. Tanbug V2,
however, contains a jump table at the low end of ROM, and

this should now be used to access subroutinesin future programs.

Display Format

Tanbug V2 is equipped with a "screen clear, cursor home"
command. Monitor commands can be input on any line of the
screen, but must begin at the left-hand edge. The cursor
moves towards the right as characters are entered. When a
line is filled, or a carriage return is output, the cursor
moves down one line unless it is on the bottom 1line, when
the display is scrolled (all lines shift up one row) and the
bottom line becomes available for more output. However, there
is no reason why wusers should restrict themselves to this
mode of operation unless they intend to use Tanbug's subroutines
to control the display in their own programs. It should be
noted that the display memory is read/write memory and may
be used as a character buffer prior to processing thus saving

RAM locations for a user program.

Subroutine JPLKB

Subroutine JPLKB is used to interrogate the keyboard for a
typed key. (Appropriate software for the type of keyboard
in use 1is automatically set-up by TANBUG when a reset is
issued). On exit from the subroutine the RAM location labelled
ICHAR (address @#@@1) contains the ASCI1 code of the character
typed, whether it is typed on the keypad or on an alpha-
numeric keyboard. When using the alphanumeric keyboard,

interrupts must be in the enabled state. As an example use

the code

ﬁ 6-36 ﬁ

1) CLI ;enable interrupts
2) JSR JPLKB ;poll the keyboard
3) LDA ICHAR ;load acc. with character

The sequence of operations here are

1) Enable interrupts so that alphanumeric keyboard may

be interrogated.

2) The program loops around within the JPLKB subroutine

until a key is pressed.

3) The program exits from JPLKB with the ASCI1 code for
the key pressed in the location labelled ICHAR. The

accumulator is loaded with this value.

Notes: Address of JPLKB is F81D. Address of ICHAR is @@@1. The
registers IX, 1Y and A are corrupted, therefore, the wuser must

save and restore their values if necessary.

Subroutine OUTRET

This subroutine outputs a carriage return to all the output devices,
which react if they are enabled. It also re-instates the cursor,
which is switched off when a user program is started. This sub-
routine should be called in a user program prior to any display

input or output to clear the bottom line.

Notes: Address of subroutine OUTRET is F80B. Registers 1X and
1Y are unaffected. Register A is corrupted and must be saved
if required. This subroutine is equivalent to OUTPCR in Tanbug
Vl‘

Subroutine OUTALL

This subroutine is called to output a character held in the accumu-
lator, to all output devices which react if they are enabled. The
cursor, obliterated on a wuser program start, is re-instated. As

an example, consider the code

\- AT EETRIE e e

—— o —— DATEERITE ~

.
.

LDA#30
JSR OUTALL
LDA#31
JSR OUTALL

Since 3@ 1is the ASCI1 code for the character "$" and 31 is
the ASCI1 code for the character "1", the result (assuming
this is the first call to this subroutine) on the current 1line

of the display is
210

Repetitive calls of OUTALL will fill the current line of the
display with the appropriate characters. When the end of the
line 1is reached, OUTALL moves on ta the next line on the
display. Carriage return is not output to printers, though

you can of course output a carriage return via OUTALL.

Notes: Address of subroutine OUTALL is F8PE. Registers IX
and 1Y are wunaltered. Register A is corrupted and must be
saved 1if required. This subroutine 1is equivalent to OPCHR in
Tanbug V1.

Subroutine JHXPN

Subroutine JHXPN takes a binary value from the accumulator
and outputs it as two hexadecimal characters to all output

devices. Consider the code

N

r——— 6-38 —-ﬁ

PHA ; save A on stack
JSR OUTRET ; scroll display
PLA ; recover A

JSR JHXPN ; output A in hex
JSR OUTRET ; scroll display

This code will display the contents of the accumulator as two
hex characters. For example if the accumulator contained the

value 2C the resulting display would be

2C
n

Notes: Address of subroutine JHXPN is FB8l1A. Register 1Y is
unaltered. Registers IX and A are corrupted and must be saved
if required. This subroutine is equivalent to HEXPNT in Tanbug
Vi.

Subroutine JHXPK

This subroutine reads hex characters from the current line of
the display and packs them up into two eight bit binary values,
enabling a sixteen bit word to be assembled. It is useful for
incorporation into programs which require numerical keyboard
input. Usually JPLKB is wused in conjunction with OUTALL to
enter data to the display, then JHXPK called when a carriage

return is encountered. The following user code could be wused

to do this
JSR OUTRET ; scroll display
NXTCHR: JSR JPLKB ; wait for character
LDA ICHAR ; put it in A
CMP# @@ ; carriage return ?
BEQ GOPACK ; yes, pack it

NG E R I D

—————— o ——— TGN ~

JSR OUTALL ; else store in display
JMP NXTCHR ; get next character
1) GOPACK: LDY#0@ ; set 1Y to first char.
2) JSR JHXPK ; pack it
3)

In this example the subroutine is used in the following way:

1) Set 1Y with the character position at which packing
is to start. The left most location of the current
line corresponds to setting 1Y to #. The next location

corresponds to IY equal to 1 etc.

2) Call JHXPK. Characters are packed until a character
other than 0-9 or A-F 1is encountered; an exit then

occurs.

3) Continue into the wuser code where the values of
HXPKL and HXPKH will be read.

For example, packing 1 CR gives HXPKL = 1 and HXPKH = @,
Packing FEDC CR gives HXPKL = DC and HXPKH = FE. Packing
FEDCBA CR gives HXPKL = BA and HXPKH = DC, i.e. if more
than four hexadecimal characters in succession are encountered
then the last four are packed. Additionally, two flags in
the processor status word (PSW) are used to indicate exit conditions.
The zero flag Z 1is. clear if the terminating character is the
cursor (ASCI1 code FF), set otherwise. The overflow flag V
is set if there was one or more hex characters, clear if the
first character encountered by the subroutine was not a hexadecimal

character.

Notes: Address of subroutine JHXPK 1is F817. Address of HXPKL
is @P13 and HXPKH is @@14. Registers 1X, IY and A are all
corrupted and must be saved if necessary. This subroutine
is equivalent to HEXPCK in Tanbug V1.

N

r—_ 6-40 -ﬁ

Subroutine JCURSF

Subroutine JCURSF is used to obliterate the cursor from the screen.
It writes a space into the location pointed to by ICURS + ICURSH
and VDUIND, where the cursor would be displayed by the monitor
and OUTRET, OUTALL subroutines. Address of JCURSF is F829. No

registers are corrupted.

Subroutine JCURSN

Subroutine JCURSN 1is the converse of JCURSF, that is it writes
the cursor symbol 7F to the location pointed to by ICURS + 1CURSH
and VDUIND.

The above two subroutines can be used to control the Microtan
cursor. Refer to the display address map on page 3.2 of the Microtan
manual to obtain the addresses of the start of each line. A program
to place the cursor at the end of the second line on the display
would be as follows:

JSR JCURSF ; turn the cursor off, wherever it is
LDA #20 ; set low part of line address

STA ICURS

LDA #2 ; set high part of line address

STA 1CURSH

LDA #3$1F

STA VDUIND ; set how many chars long line

JSR JCURSN ; switch the cursor on

JCURSN is located at F826. No registers are corrupted.

Subroutine RETMS

Calling subroutine RETMS (via JSR or]JMP) can be used to return
to the monitor after executing your program, without a Tanbug

message being printed. The stack pointer is reset to 1FF.

Address of RETMS is F820. The monitor corrupts X, Y and A.

\- AT EETRIE e e

—— e —— TATEERITE

Subroutine RETMON

This subroutine performs as RETMS, except that the stack is not
reset. You can therefore return to the monitor, via the instruction
JMP RETMS, without changing your programs stack. By calling
JSR RETMON, you can if required call the monitor as a subroutine

in your program.

RETMON is located at F823. The monitor corrupts X, Y and A.

Subroutine JMNRW

Subroutine JMNRW is included to allow simple manipulation of the
memory management system. (For hardware operation, refer to the
section on memory management). The subroutine itself is located
in the Monitor area, with its variables in zero page. These areas
are not affected by operation of the memory management. Sub-
routine JMNRW can therefore be called from code resident in bank
@ to access other pages. on exit, page @ is reselected by the sub-

routine.
The following zero-page locations are used by the subroutine:

MEMSEG(40): The 1least significant 4 bits are set by the user to
contain the page number to be written to. If they are set to #
a write operation is not executed. The most significant 4 bits
operate similarly for a read. (They correspond directly to the
memory management status word). The subroutine is thus multi-
purpose in that it can read, write, or read old contents and write

new contents in one operation.

MEMDAW(41): The user loads this location with data to be written
before calling JMNRW.

MEMDAR(42): The subroutine loads this location with data read

from the required location.

MEMLO(43): Low byte of address to be manipulated.

-—

r—_ 6-42 -_-ﬁ

MEMHI(44): High byte of address to be manipulated.

Note that the subroutine does not change the contents of any of
these locations, therefore if you wish to repeatedly read and write
from a particular location you only need to carry out the setup

procedure once.

Example - to read from location 6000 in page 1, and then write

a different value:

LDA #11 ; set up for read and write
STA 4§ ; to page 1

LDA #FF

STA 41 ; data to be written

LDA #9

STA 43

LDA #6¢ ; set up address

STA 44

JSR JMNRW ; execute

LDA 42 ; read data loaded to acc.

Address of JMNRW is F811. No registers are corrupted.

Subroutine JMNRW1

This subroutine is exactly equivalent to JMNRW, but after the operation
has been executed, the address held in locations 43, 44 is in-
cremented by 1, providing a convenient means for block operations.

Address of JMNRWL is FB814.

Subroutine PRPUP

Subroutine PRPUP powers up the parallel printer interface, and
initialises the printer ready to receive data. See also the section

on input/output control.

Note that this subroutine does not set the "PAR ON" bit in the
Printer Status Word, but merely sets up the hardware to initialise

the printer.

NN G E R I P

e TG ERIINERN

PRPUP is located at F8@@. The accumulator is corrupted.

Subroutine OUTPAR

Subroutine OUTPAR outputs the character held in OCHAR (location
2) to the parallel printer interface, irrespective of whether the
"PAR ON" bit in the printer status word is set. The printer should

be initialised via PRPUP at the start of your program.
OUTPAR is located at F8@3. A. X and Y are corrupted.

Subroutine OUTSER

As OUTPAR, but outputs via the V24 UART on Tanex. There is no

need to initialise this, as it is done by Tanbug on a Reset.

OUTSER is located at F8@6. A, X and Y are corrupted.

Subroutine OUTSCR

Subroutine OUTSCR takes the ASCI1 wvalue in the accumulator, and

outputs it to the display screen but neither printer.

OUTSCR is located at F8@9. A, X and Y are corrupted.

1nterruEts

TANBUG wuses the maskable and non-maskable interrupts. However,
means have been provided to access the interrupts via both hard-
ware and software. Of necessity user interrupts may, in some

cases, place restrictions on certain monitor commands.

The Maskable Interrupt

When TANBUG is initialised by a reset, certain RAM locations are
set up to link through the interrupts for monitor use. These loca-
tions are 1labelled INTFS1, INTFS2, INTFS3 and INTSLl1. When a
maskable interrupt occurs, the following sequence of events is
obeyed (assuming the RAM locations mentioned above have not been
modified).

-

r———- 6-44 —__ﬁ

a) The program jumps to INTFS1 in RAM.

b) The locations INTFS1, INTFS2 and INTFS3 contain the
instruction JMP KBINT. The program therefore jumps
to KBINT which resides in the monitor ROM.

c) The monitor software looks to see what caused the inter-
rupt. If a BRK instruction, then the breakpoint code
is executed. 1f a keyboard interrupt, location ICHAR
is updated with the new ASCII character which is read

from the keyboard 1/0 port.

d) If the interrupt is caused by anything other than a
BRK instruction, then the monitor jumps to location
INTSL1.

e) Normally INTSL1 contains an RTI instruction - the pro-

gram would then return to where it was interrupted.

It can therefore be seen that the user can implement his/her own

interrupt service routines in two ways.

1) A fast interrupt response by modifying the locations
INTFS1, INTFS2 and INTFS3 to jump to the user inter-
rupt service code. In this case breakpoints and the
ESC command cannot be used unless the user program
jumps back to the monitor service routine after execut-

ing its own code.

2) A slower interrupt response by modifying INTSL1, INTSL2
and INTSL3 to jump to user service routine, after
executing the monitor service routine. The RAM locations
INTSL1, INTSL2 and INTSL3 would be modified to contain
the instruction JMP USER. This method places no res-

trictions on monitor commands.

The slow interrupt facility cannot be used if the external

output link 1is in operation. See section on printers.

NG R

———— oo ——— TEERTTE ~

A number of things should be noted when using interrupts:

a) An RTI instruction must always occur at the end of
user code to return the program to the point at which
it was interrupted, unless the user code jumps back

to the monitor service routine.

b) If a reset is issued, the INTFS and INTSL locations
are set back to their monitor values by TANBUG, and

the user has to reset them.

c) If any microprocessor internal registers are used in
the user interrupt service routine, they must be saved
before modification, and restored before the RTI instruc-
tion, i.e. on return to the monitor the registers IX,
1Y and A must contain the same values as they had

on entry to the user routines.

d) The interrupt jump locations should be modified by
instructions in the user program at run time and not
by the use of the M command. This is because TANBUG
software uses keyboard interrupts. If using an alterna-
tive link at INTFS1, no breakpoints can be set.

e) Addresses of RAM locations are: INTFS1 = @@@4, INTFS2
= §@gg5, INTFS3 = @@@6, INTSL1 = @p1g, INTSL2 = gg11,
INTSL3 = @@12.

The Non-maskable Interrupt

The non-maskable interrupt vector is accessed in the same way
as explained for the maskable interrupt. The user can obtain
access by modifying locations NMIJP, NMIJP1l, and NMIJP2. Note
that single instruction mode will be inoperative and that break-
points will be destructive, i.e. they are destroyed when they have
been executed once and replaced with the original code. Addresses
of RAM 1locations are: NMIJP = @@@7, NMIJP1 = @@@8 and NMIJP2
= 9099.

N

ﬁ 6-46 ﬁ

Error Linking

1t will be noted that TANBUG displays a question mark whenever
an illegal command is typed. In order to allow future expansion
of the monitor, an error link to memory external to the monitor
ROMs is incorporated.

When an error occurs the following sequence of events is initiated:

a) The program jumps to F7F7.

b) With no expansion board (TANEX) present the address
F7F7 (outside TANBUG space) is decoded as address
FFF7 (inside TANBUG space).

c) A question mark is printed.

With TANEX present, a special link is incorporated to return the
program to the monitor. The user may remove this link and insert
an EPROM in the position which includes the address F7F7 contain-
ing the code JMP USERCODE at address F7F7, where USERCODE may
contain software to deal with any extra commands the user wishes
to add to the monitor. Note that this facility will be wused by
future TANGERINE software.

There are two methods of returning to the monitor from external

code:

1) The instruction RTS at the end of the user code returns
to the monitor, gives a carriage return then continues

looking for commands.

2) The instruction JMP FFF7 returns to the monitor, giving

a question mark on the display.

\- PN EERINE —————————

———— v ——— FATEEIE ~

Example of TANBUG's Use

The following simple example program clears the screen by calling
OUTPCR F times, then slowly fills the screen with asterisks. It
is used as an example to demonstrate the use of some of TANBUG's
commands.

Deliberate errors are later written into the program to demonstrate

TANBUG's fault finding capabilities.

The first step in writing a program is to produce a flowchart
of program execution. The second step is to write the program
in assembly language code using the instruction mnemonics. The
third step is to look up and write the op-codes and arguments
for each instruction. At this stage the branch code arguments
will be left blank and TANBUG's O command used.

The flowchart and program listing now follows.

r—— 6-48 —__ﬁ

Start

Set index to ¢

Call OUTPCR

Decrement index

Obliterate cursor

Initialise
display index

Output *

Delay

Increment
display index

Display full?

Yes

Return to monitor

\~ AT CERIE ——————eee

i TN GERINERN

Example program listing

P50 0p P VDUIND: ¢ ;display index
@52 AP @F START: LDY# F ;set Y index

@p54 29 73 FE SCRAG: JSR OUTPCR ;carriage return
57 88 DEY ;do E times

¢ps8 16 (arg 1) BPL SCRAG

@PSA A9 2 LDA# 2¢ ;load A ascii space
¢ps5C 8D EF @3 STA 3E@ ;obliterate cursor
@PSF A9 @ LDA# @ ;set display index
@pe1 85 5@ STA VDUIND

¢P63 A3 @2 LDA# 2

Ppes5 85 51 STA VDUIND+1

P67 AP @O CONT: LDY# @ ;clear Y index
P69 A9 2A LDA# 2A iset ascii *

gp6B 91 5@ STA (VDUIND),Y

@PpeD A2 QF LDX# F ; delay loop

@p6F AP FF LDY# FF

Pp71 88 DECIT: DEY

gp72 DP (arg 2) BNE DECIT

‘Op74 CA DEX

op75 DP (arg 3) BNE DECIT

@p77 18 CLC sinc display index
P78 E6 5S¢ INC VDUIND

gp7A DY (arg 4) BNE NOMSB

@¢p7C E6 51 INC VDUIND+1

PP7E A5 51 NOMSB: LDA VDUIND+1 ;top of display?
@psp C9 @3 CMP# 3

@p82 DP (arg 5) BNE CONT ino - continue
P84 A5 5S¢ LDA VDUIND

¢pp86 C9 FF CMP# FF

¢pp88 DP (arg 6) BNE CONT ; double prec. cmp.
op8A 0P BRK ;return to monitor

-

r— 6-50 ﬁ

Program entry is performed using the M command. For the time
being set the branch arguments (arg 1 - arg 6) to §J, these can

be altered when calculated, using the O command.

Once the program is entered the branch offsets are calculated.
The first is arg 1 which has an opcode address of ##58 and
branches to the label SCRAG at location #054. By typing 058,54 CR
TANBUG prints out the value of arg 1 as FA. This may now be
placed in location @@59 using the M command. By repeating the
exercise for the other five arguments, it will be found that loca-
tion @973 should contain FD, @@76 should contain FA, @@7B should
contain @2, #083 should contain E3 and ##89 should contain DD.

The program will now run if it has been entered correctly. To
start the program type G52 CR since the first instruction of the
program is at location @@52. When the screen is full of asterisks
the program exits to the monitor. Alternatively, if an alphanumeric
keyboard is being used, depression of the ESC key causes an exit
to the monitor. If the program does not run correctly, then it
may be necessary to issue a reset in order to regain control.
The program can be listed by typing L58,8 CR yielding a display
of

L5¢,8

gosg @09 @8 AP @QF 20 73 FE 88

gp58 16 FA A9 20 8D EP @3 A9

ggeg @9 85 58 A9 @2 85 S1 AP

gP6e8 @@ A9 2A 91 50 A2 OF AP

gp7% FF 88 D@ FD CA D@ FA 138

@78 E6 58 D@ @2 E6 51 A5 51

gp8¢ C9 @3 DP E3 A5 54 C9 FF

gp88 DY DD @P XX XX XX XX XX

providing the program has been correctly entered (XX indicates
any value as these locations are not part of the program). If
the program failed to run, carefully check the listing from the
L command with the program listing and correct any errors with

the M command.

NN G E R 1|\

N GERINEEN

Having got the program working it is now possible to introduce
a deliberate error to demonstrate the use of breakpoints and the
single instruction mode. The error to be introduced is to put the
wrong value for the branch argument on the first occurrence of
the instruction BNE DECIT; instead of location 73 containing FD
change it to FB. Now the register 1Y will never be zero and the
program will loop here. If the program is started now only one
asterisk will be printed and then nothing else will happen.

Debugging steps are as follows:
a) Regain control to the monitor by issuing a reset.

b) The first part of the program is being executed correctly
as the display scrolls. Furthermore, it is at least
getting to location 6B because an asterisk is printed.
It would be very tedious to single instruction this
far from the beginning because the OUTPCR routine
is called sixteen times. Therefore, set a breakpoint
at location 6D by typing B6D,@<CR>.

c) Start the program again by typing G52<CR>. The display
scrolls and the status message

ggeD 31 FF @F 09 2A
i

is displayed. Control is now back in the monitor.
d) Set single instruction mode by typing S<CR>.

e) Repeatedly typing P <CR> causes single instructions to
be executed followed by a status print-out. The follow-

ing sequence of instructions will be observed.

gg6F 21 FF @F @@ 2A
2071 Al FF @F FF 2A
gg72 Al FF @F FE 2A
gp6F Al FF @F FE 2A

—

r— 6-52 ﬁ

Now if the code were correct the program could not
go back to location 6F. In fact, since 1Y is shown
to be FE, the program should have jumped back to
location 71. The branch instruction 1is probably at
fault, therefore examine it and its argument using

the M command.

M72, Dg,
M@@73,FB, 1

The value in location 73 should be FD, therefore, change
it by typing FD<CR>.

£) Remove single instruction mode and breakpoints by
typing N<CR> the B<CR>.

g) Restart the program by typing G52<CR> . The program

should now run correctly.

Note that when using an alphanumeric keyboard, debugging is
slightly easier. When the program sticks in a loop ESC can be
used to return to the monitor (provided interrupts have not been
disabled). Single instruction mode can then be set to determine

the loop in which the program was running.

Memory Management Control

The memory management system allows selection of alternative banks

of certain areas of memory:-

)
@
4 Page 109 ; Unaffected by memory
St'ad: |fFF) Mmanagement
Display AFF ;
TANEX RAM \FFF) ;
2000 Alternative banks within
y this range can be selected
)
BBFF)
) Unaffected by memory
10 ROM) management
N)

\- PN EERINE —————————

————— — o ——— FATEEIIE ~

This is carried out by means of a write-only status word at location
FFFF - located within the monitor space, but since the monitor
ROM is read-only, a write to this location does not affect the

monitor, and saves address space.

The control register is allocated as follows:

7 6 5 4,3 2 1 ¢ BIT

Read Write

Bits 0,1 and 2 (for write) and 4, 5 and 6 (read) control which
expansion slot within the motherboard is to be accessed. Bit 3
(write) and 7 (read) must be § to access the system rack containing
the Micron, 7 to access an expansion rack. 1t can be seen that
the ROM area, the 1/0 area, plus the 7K of RAM on TANEX, are
unaffected by the memory management settings. Thus any of the
programs in ROM, plus those written for the TANEX 7K, can access
any page of additional memory simply by setting the required

bits in the Memory Management word.

However, when a program 1is written to reside in RAM upwards
of address 2000, it is not possible to use code located within this
space to read data from another page because, as soon as the
memory management status read page is changed, the instruction

fetch will also occur at that page.

To allow data to be written/retrieved from other pages in this
case, two memory management subroutines, fully described in the

subroutine section, are supplied.

It is strongly recommended that page ¥ only of additional RAM
(2000-BBFF) is used to store code (machine or BASIC) and that

other pages are accessed via the memory management subroutines.

-

r—_ 6-54 ._-ﬁ

Tanbug V2 and Microsoft Basic

Tanbug V2 has been designed to be completely compatible with
existing versions of Microsoft Basic. In addition, extra facilities

have been included to enhance BASIC's features.

Basic Initialisation and Warm Start

Instead of typing GE2ED <CR> to start BASIC, you should now
type

BAS <CR>

This starts BASIC for you, and initialises the system so that

you can recover with a warm start. (GE2ED does not do this).

Now, if vyou exit from BASIC using THE RESET key, you can
re-enter it, preserving the program you had entered in BASIC,

by typing
WAR <CR>

you can, in fact, execute other monitor functions (Modify Memory,
Translate, Instruction disassemble etc.) in between leaving
BASIC and re-entering it, provided you do not corrupt any
of locations (hex) 80 - 15F, or any of your program locations
(from 400 upwards, the limit depending on the length of your

program).

Your can NOT use WAR when:
a) Reset was hit while BASIC was dumping to cassetie.
b) Reset was hit while BASIC was loading from cassette.

c) If you have not first initialised BASIC with a BAS

command.

NN G E R I P

e R G ERINERN

A failure-to-run will be denoted by a breakpoint status error
printout, from which it will be necessary to hit RESET and
type BAS.

Printer Control from Microsoft BASIC

There are two methods of printer control via TANBUG V2, direct

mode and program mode. (See also section on printers).
In direct mode, printers can be controlled as follows:

CTRL P - repeated operations alternately turn the
parallel printer on and off.

CTRL V - repeated operations alternately turn

the serial printer on and off.

CTRL .S - repeated operation alternately turn
the TV display on and off.

In program mode, certain character pairs can be output to

control the printer as follows (decimal numbers):

17, @ Serial output on
17, 1 Serial output off
17, 2 Parallel output on
17: 3 Parallel output off
17 & Screen on

17, 5 Screen off

As an example, the following program asks a question on the
display, prints the answer on the printer but not on the display,
then asks another question on the display (printer is off,

screen on assumed at start).

-

r__ 6-56 'ﬁ

1¢ INPUT "WHAT 1S YOUR NAME"; A$

26 PRINT CHR$(17); CHR$(5); CHR$(17); CHR$(2)
3 PRINT A$

4p PRINT CHR$(17); CHR$(3); CHR$(17); CHR$(6)
56 INPUT "WHAT 1S YOUR ADDRESS"; A$

etc.
Clear Screen

In direct mode, typing CTRLL (except when in EDIT) clears the
display and puts the cursor in the top left hand corner of the

screen. Subsequent operations then work down the screen.

A screen clear can also be called from program mode by the

instruction
PRINT CHR$(12)

Memory Management Control

Page @ of expansion RAM (address 2¢@@ upwards) only, can be
used for BASIC program expansion. Other memory pages can be
used for data storage by calling the memory management subroutines
via the USR command. For a full description of these subroutines,
see the soubroutine section and memory management section of this

manual,
As an example, consider a BASIC subroutine to read the contents

of memory location 66¢@ (hex) in page 1, and then write 1 to it:-

(the comments are for clarification and are not part of the program),

4pp¥ POKE 34, 17

4Pl POKE 35, 248 ; set up subroutine address (F8 hex)
4p2¢ POKE 64, 17 ; set up which page (llhex), read and
write

N G R —

——————— v —— TANEEITE ~

4033 POKE 65, 1 ; data to be written

iL¥ POKE 67, @ ; mem address (6000 (hex))

4s5¢ POKE 68, 96

468 X = USR(I) ; execute

4P78 X = PEEK (66) : read data into X (before write)

Since all locations except the read value are unaffected (unless
you use the INPUT command) subsequent writes need only consist
of

4LD8H POKE 65, 2 ; new data

4699 X = USR(1) ; write

Note that you can also call the MMINC subroutine (POKE 34,20
POKE 35, 248) which automatically increments the memory address
in locations (decimal) 67 and 68. This facility enables writing

to or reading from sequential locations with minimal code overhead.
Note that decimal locations 64 - 68 are corrupted by use of the
input command, so if this is used between memory management.

operations, these locations must be reset by POKES.

Cursor Control

The cursor may be placed anywhere on the screen by calling the
JCURSF and JCURSN routines in Tanbug V2, via the USR call.

The screen can be divided as follows:

@ 1 2 30 31 X coord
(decimal)
@2 20
@2 32
@2 64
ete

r* 6-58 ﬁ

A flow diagram for the cursor control subroutine is as follows:

!

POKE ADDRESS OF JCURSF
SUBROUT INE (41, 248)
INTO 34, 35

!

CALL USR

POKE Y CO-ORD INTO 14,11
(see diggram)

<

POKE X CO-ORD INTO 3

Iy

POKE JCURSN (38, 248)
IN 34. 35

CALL USR

The cursor will, of course, obliterate the character over which

it appears.

The example program below make the cursor appear in the top
right-hand quadrant of the screen, (it is necessary to type CTRLC

to exit from this program).

N G R —

R —— e — G ERINER

19 POKE 34, 41
20 POKE 35, 248
33 X = USR(@)
49 POKE 10, 32
54 POKE 11, 2
68 POKE 3, 3¢
7¢ POKE 34, 38
8¢ POKE 35, 248
9% X = USR (@)
168 GOTO 100
OK

ﬁ 6-60 ﬁ

TABLE OF HEX ASCII CODES
(0.7} NUL
P1 Control A - Home
@2 Control B
@3 Control C
P4 Control D
@5 Control E
6 Control F
@7 Control G - Bell
?8 Control H - Backspace
?9 Control 1 - Horizontal Tab - Cursor Right
PA Control J - Line Feed
@B Control K
pC Control L - Page Clear - Form Feed
@D Control M - Carriage Return
PE Control N
PF Control O
19 Control P
11 Control Q
12 Control R
13 Control S
14 Control T
15 Control U
16 Control V
17 Control W
18 Control X
19 Control Y
1A Control Z - Vertical Tab - Cursor Up
1B S1
1C S2
ib S3
1E sS4
1F S5
Note that the codes @) - 1F produce special symbols when used
in display memory.

\~ AT CERIE ——————eee

et T/INGERINERN

TABLE OF HEX ASCII CODES (CONTINUED)

69
61

Space

2¢
21

41

62

42

22

63
64

65

£ or #

23
24
25
26
27
28
29
2A
2B
2C
2D
2E
er

45

%

66
67

47
48
49

68
69

6A
6B
6C
6D
6E
6F

4A
4B
4C
4D
4E
4F
50
51

70
71

31

72

52

32

73
74
75
76

53
54
55

34
35

56
57

36

77
78
79

37

58
59
5A
5B
5C
5D
S5E
5F

38

39

7A
7B
7C
7D
7E
7F

3A
3B

3C
3D
3E
3F

B or Rubout

IANGERINE

COMPUTER SYSTEMS LIMITED Forethill Works Forehiill Ely Cambs Engiand

