
BASIC Users Manual

FOREWORD

This manual describes the 10K Microsoft BASIC available for the Microtan system
and describes the enhancements to this package by TANGERINE. Microsoft BASIC
is recognised as being "standard" BASIC and as such it is possible to run the many
published programs for computers supporting BASIC. Microsoft BASIC for the
Microtan consists of three Read Only Memories (ROM) which must be inserted into
the TANEX board. Cassette SAVE and LOAD commands are available and use
filenames and may be operated at two speeds, 300 Baud and 2400 Baud. Please
note that XBUG must be used if you wish to use the SAVE and LOAD commands.

CONTENTS

FOREWORD	 2

CHAPTER 1: MICROTAN’S 10K EXTENDED MICROSOFT BASIC	 5

Starting Basic	 5

Exiting from BASIC	 6

Installation	 6

Program Storage Using Cassettes	 6

Editing BASIC Programs	 9

CHAPTER 2 : INTRODUCTION TO THE BASIC LANGUAGE	 13

Introduction	 13

PRINT Statement	 13

Programs and Line Numbers	 14

Numbers, Operators, and Strings	 15

INPUT and GOTO Statements	 18

Variables	 19

LET Statement	 21

REM Statement	 21

IF and THEN Statements: Relational Operators	 22

FOR and NEXT Statements	 23

Arrays - DIM Statement	 25

Intrinsic Functions	 26

User-defined Functions - DEF Statement	 27

Subroutines - GOSUB and RETURN	 27

READ, DATA, and RESTORE Statements	 28

Strings and String Functions	 29

CHAPTER 3: FEATURES OF 10K MICROSOFT BASIC	 34

BASIC Commands	 34

BASIC Statements	 35

BASIC Functions - Numeric and String	 40

BASIC Error Messages	 44

BASIC Operators	 47

CHAPTER 4 : AIDS TO EFFICIENT PROGRAMMING	 50

Space Optimisation	 50

Time Optimisation	 51

Derived Functions	 52

Conversion Of BASIC ProgrAms	 53

APPENDICES	 55

Accessing User Machine Code Subroutines	 55

Using Microtan's Graphics With BASIC	 57

Cassette Data File Handling	 58

Using The Cassette Files Without Remote Control	 60

CHAPTER 1: MICROTAN’S 10K EXTENDED
MICROSOFT BASIC

STARTING BASIC

To start BASIC, enter TANBUG by pressing BREAK or issuing a reset, then type:

GE2ED<CR> (<CR> = Carriage Return)
1

BASIC responds with:

MEMORY SIZE?

Type either <CR> in which case BASIC calculates available memory space
automatically or

<Decimal Number><CR>

where Decimal Number is a number representing the amount of store which you
require BASIC to use. Store is then allocated from location 400 HEX upwards to the
limit specified. The remaining store may be used to contain, for example, user
subroutines.

Beware of typing in a number larger than the area you have available - Microsoft
Basic uses the top part for variables and print statements, which will be assigned
the wrong value.

BASIC next prompts:

TERMINAL WIDTH?

For the MICROTAN VDU, responds with <CR> since the program looks after VDU
scrolling.

BASIC responds with:

OK

You can now use BASIC.

 BAS<CR> if you have TANBUG v21

EXITING FROM BASIC

To exit from BASIC and return to TANBUG it is necessary to cause a microprocessor
reset by pressing BREAK on the ASCII keyboard. The message

TANBUG

is issued, followed by the cursor prompt.

Note that when you exit from BASIC, all your program information is destroyed . 2

You should therefore SAVE any programs required before exiting.

INSTALLATION

The minimum system requirement to run BASIC is as follows: MICROTAN 65 and
TANEX connected via mini-motherboard or system motherboard, ASCII keyboard,
2K RAM (1K on MICROTAN, 1K on TANEX).

If you wish to use the cassette SAVE and LOAD functions, XBUG must be present in
socket G2 on TANEX.

Procedure:

1. Install TANEX as per instructions in TANEX manual.

2. If SAVE and LOAD are required, install the XBUG EPROM as per the
XBUG manual.

3. Ensure power is off.

4. Install the ROM marked BASL in TANEX socket J2.

5. Install the ROM marked BASM in TANEX socket H2

6. Install the EPROM marked BASH in TANEX socket D3

7. Power up the system and refer to the instructions for starting BASIC

PROGRAM STORAGE USING CASSETTES
Note that in order to use this facility, the XBUG PROM must be resident in slot G2 of
TANEX. If it is not, reference to these two commands will cause BASIC to crash with
resultant loss of your current program. Cassette record and replay levels must have
been set up in accordance with the instructions given in the XBUG manual.

 With TANBUG v2, you can enter BASIC again without losing your program with WAR<CR> 2

(Warm Entry)

These routines dump the BASIC code in its machine format, that is it is not in text
form but in the packed-up form in which it is stored. Thus a considerable time
saving is achieved during SAVE and LOAD functions. It is not possible to dump
selected parts of programs, nor is it possible to load in additional lines to an existing
program since memory is always cleared before a load occurs. To save the program
which is in memory type:

SAVE<CR>

BASIC responds with:

FAST?

If you require the dump to be at fast speed, type:

Y<CR>

otherwise just type <CR> to obtain slow speed.

BASIC responds with:

FILENAME?

Type in the required filename - this can be up to 6 alphanumeric characters - start
the cassette recorder in record mode, and type carriage return, for example:

FILE<CR>

BASIC appends a .B to this name and responds with:

FILE.B

The file is now dumped on to cassette, BASIC responding with:

OK

when the dump is complete.

You may return to BASIC from the SAVE function at any time up to typing the final
carriage return after the filename by typing CTRL C.The SAVE is then not executed.
However, once you have started the SAVE, you cannot return to BASIC until the
SAVE is complete.

To recover a program dumped to cassette, type:

LOAD<CR>

BASIC responds with:

FAST?

Type

Y<CR>

if the required file was recorded at fast speed, carriage return otherwise. BASIC
responds with:

EXAM?

Type

Y<CR>

if you wish to compare what is on tape with what is in memory, carriage return only
if you wish the tape to actually read into memory (see section on errors for result of
an EXAM call). BASIC responds with:

FILENAME?

Type in the filename that was given to the file when it was saved, omitting the .B,
followed by carriage return. For example:

FILE<CR>

BASIC responds with the filename it is looking for:

FILE.B

Start the cassette recorder in playback mode. Now, as each file on tape is
encountered, BASIC prints this out. When the correct file is found, BASIC loads or
verifies it.When the load or verification is complete, the prompt

OK

appears on the screen.

If any of the M, F, P, or C errors appear before this prompt, then read or verification
errors were present - try reading the tape again. If errors persist, the recording is
probably corrupt.

Errors may take the following forms:

F (HEX number) A filename error occurred - unable to read the filename
header. Check that you are reading back at the same speed at
which you recorded.

P (HEX number) A parity error occurred - try reading the tape again.

M (HEX number) If loading, the memory failed to be loaded with the required
number - probably caused by a hardware fault. If examining,
the memory contains a different number to that recorded on
tape.

C (HEX number) A checksum error occurred. Similar fault as for P.

Note that within the context of BASIC the hexadecimal status numbers are
meaningless.

At any time until you actually start the tape search, you can return to BASIC by
typing CTRL C. Once the tape search has been started, the only way to stop it,
should it not find the correct file, is to type BREAK on the keyboard and then restart
BASIC.

EDITING BASIC PROGRAMS

MICROTAN BASIC allows you to edit programs either in the line mode or the
character (screen edit) mode.

Line edit mode is usually used to enter new lines, or programs, delete complete
existing lines, or modify existing lines where a large number of changes are
required.

To enter a line in line edit mode, type in a line number, followed by the program
statement, for example:

10 PRINT A<CR>

BASIC responds with a cursor character if line syntax is correct, and the line is
entered into program memory. If syntax is incorrect, the message

SYNTAX ERROR

OK

is generated, and the line does not enter program memory.

MICROTAN BASIC allows a maximum program line length of 80 characters (VDU
line length is immaterial because scrolling is done automatically). If more than this
number is typed, the BELL character, or a question mark, will be displayed on the
screen and the character ignored. All characters with ASCII codes of less then HEX
20 or greater than HEX 7E are also ignored. When entering a line, the DELETE key
deletes the character previous to the cursor. The @ deletes the whole of the line
currently being entered.

To delete a line within the stored program, type the line number followed by carriage
return, for example:

10<CR>

deletes line 10 from program storage.

To edit a line in line edit mode, type in the whole new line. For example, say you
wish to change 10 PRINT A to 10 INPUT A type:

10 INPUT A<CR>

The old line 10 is overwritten by the new line 10.

The LIST command is used to list parts of or a whole BASIC program. To list the
whole program, type:

LIST<CR>

The first 5 lines of the program are displayed on the VDU. To obtain the next 5, type
carriage return and so on until the end of the program. Should you wish to inhibit
the paging pauses, type <LF> - the program now lists to the end without pausing.
Typing CTRL C at any time stops the listing and returns you to the BASIC program.
To list a single line, type LIST followed by the line number

LIST 10<CR>

To type a selected group of lines, type

LIST 10-90<CR>

and use the paging delimiters CR, LF and CTRL C as required.

If there is only one error in a long line of BASIC code, it is tedious to type in the
whole line to correct it - MICROTAN BASIC includes a screen (cursor) editor to
resolve this problem.

To enter screen edit mode, type in the required line number followed by CTRL E
(hold down the CTRL key and depress key E). For example:

90 CTRL E

If your program does not contain a line 90, the message

NO SUCH LINE

is printed. Otherwise line 90 is displayed at the screen centre between two sets of
dashed lines. Above and below these lines appear the lines of code immediately
above and below that being edited. A flashing cursor appears between the two
dotted lines. The bottom line of the VDU displays the number of the line which you
are going to change.

You may now move the cursor around within the two dotted lines and edit the text
within them by using any of the following commands:

Once the line has been edited to satisfaction and appears to be correct, one of the
following commands can be used to make this line update the original program.

CTRL U Moves the cursor up.

CTRL D Moves the cursor down.

CTRL L Moves the cursor left.

CTRL R Moves the cursor right.

CTRL E Erases the character over which the cursor is flashing. The
rest of the line is shifted back one space to fill the gap left by
this character.

Any character Character is inserted immediately before that over which the
cursor is currently flashing. The rest of the character string is
shifted right one place to make room. The cursor is also
shifted one place to allow text to be inserted as it is written.

RUBOUT Deletes the character immediately prior to that over which the
cursor is flashing. It can therefore be used to correct badly
typed character insertions. The rest of the line, plus the cursor,
are shifted back one place.

CTRL C Returns to BASIC without updating the main program, i.e. the
edited line is ignored. Use this for gross error correction.

Carriage Return First, the edited line is checked for syntax errors. If any occur,
the line is not updated in program storage and control is
returned to the main BASIC program. If the line is
satisfactorily, the line whose number is displayed at the
bottom of the screen is deleted and the line in the edit buffer
inserted. The program then returns to BASIC command mode.
This command may therefore be used to change line numbers
of existing line by editing line numbers within the edit buffer.

Line Feed Performs as for carriage return, except that, on completion of
a successful update the BASIC stays in cursor edit mode and
the next line is opened for editing between the dashed lines.
When the end of the program is reached, control is returned to
BASIC command mode. If lines are not changed between
each step, line feed may obviously be used to step
downwards through the program.

Escape Escape functions as for line feed, but steps up the program
one line at a time.

Note that, with either line feed or escape, if the current line number is changed so
that the new line is inserted somewhere different, the old nect line and not the new
is displayed.

CTRL K Control K is used as a line delete command. The line whose
number is displayed at the bottom of the screen is deleted,
and no new line is entered. It may therefore be used to delete
selected lines while stepping through a program using the line
feed and escape commands. After a CTRL K, the next line is
opened for editing.

CTRL I Control I is used as a line insert command, and is mainly used
to duplicate lines. In this case, the line whose number appears
at the page bottom is not deleted (unless the edited line has
the same number), but the new line (whose number you have
changed) is inserted at the appropriate place within program
memory, (program lines located according to line numbers).
You may also insert completely new lines by first erasing the
information in the edit buffer (depress CTRL E and RPT until
the buffer is blank), typing in a new line and depressing CTRL
I. The next old line is displayed on completion, i.e. the editor
does not jump to display the new line.

CHAPTER 2 : INTRODUCTION TO THE BASIC
LANGUAGE

INTRODUCTION

This chapter will serve as an introduction for those of you unfamiliar with BASIC. To
help get you started writing programs, the text introduces the primary concepts and
uses of MICROTAN BASIC.

If your MICROTAN 65 does not have MICROTAN BASIC loaded and running, follow
the procedure in Chapter 1 to bring it up. We recommend that you try each example
in the chapter as it is presented. This will enhance your "feel" for BASIC and how it
is used. If you are already accustomed to programming in BASIC, turn to Chapter 3
for more information about BASIC's characteristics.

When MICROTAN displays "OK", you are ready to use MICROTAN BASIC.

NOTE: All commands to BASIC end with a carriage return. The carriage return tells
BASIC that you have finished typing the command. If you make a typing error, type
a back-arrow or RUBOUT to eliminate the last character. An at-sign (@) eliminates
the entire line that you are typing.

PRINT STATEMENT

Now, try typing in the following:

PRINT 10-4 (end with carriage return)

BASIC will immediately print:

6

OK

The PRINT statement you typed in was executed as soon as you hit the carriage
return key. BASIC evaluated the formula after the PRINT and then typed out its
value, in this case 6. Now try typing in this:

PRINT 1/2,3*10 (* means multiply, / means divide)

BASIC will print:

.5	 30

As you can see, BASIC can do division and multiplication as well as subtraction.
Note how a comma was used in the PRINT command to print two values instead of
just one. The comma divides the 72 character line into 5 fields, each 14 characters
wide. The last two of the positions on the line are not used. The comma causes
BASIC to slip to the next field on the line, where the value 30 was printed.

PROGRAMS AND LINE NUMBERS

Commands such as the PRINT statement you have just typed in are called direct
commands. There is another type of command called an indirect command. Every
indirect command begins with a line number. A line number may be any integer from
0 to 64000. Try typing in the following lines:

10 PRINT 2+3

20 PRINT 2-3

Notice that BASIC did not print either of the values. That is because BASIC
recognizes by the line numbers that these lines are to be saved and executed as a
sequence later. A sequence of indirect commands is called a program. BASIC saves
indirect commands in memory. When you type RUN, BASIC executes the program,
beginning with the lowest numbered line. If we type RUN now, BASIC will type out:

5

-1

OK

In the above example, we entered lines 10 and 20 in numerical order. However, it
makes no difference in what order you enter indirect statements. BASIC always puts
them into correct numerical order according to line number. To see a listing of the
complete program currently in memory, type LIST. BASIC will reply with:

10 PRINT 2+3

20 PRINT 2-3

OK

Sometimes it is desirable to delete a line of a program altogether. This is
accomplished by typing the line number of the line to be deleted, followed only by a
carriage return. Type in the following:

10

LIST

BASIC will reply with:

20 PRINT 2-3

OK

We have now deleted line 10 from the program. There is no way to get it back
except to re-type it. To insert a new line 10, just type in 10 followed by the new line.
Type in the following:

10 PRINT 2*3

LIST

BASIC will reply with:

10 PRINT 2*3

20 PRINT 2-3

OK

There is an easier way to replace line 10 than by deleting it and then inserting a new
line. You can do this by just typing the new line 10 and hitting the carriage return.
BASIC throws away the old line 10 and replaces it with the new one. Type in the
following:

10 PRINT 3-3

LIST

BASIC will reply with:

10 PRINT 3-3

20 PRINT 2-3

OK

It is not recommended that lines be numbered in small increments. It may become
necessary to insert a new line between two existing lines. An increment of 10
between line numbers is usually sufficient.

If you want to erase the complete program currently stored in memory, type in NEW.
If you are finished running one program and are about to type in a new one, be sure
to type NEW first. This should be done in order to prevent a mixture of the old and
new programs. Type in the following:

NEW

BASIC will reply with:

OK

Now type in:

LIST

BASIC will reply with:

OK

NUMBERS, OPERATORS, AND STRINGS

Often it is desirable to include text along with answers that are printed out in order
to explain the meaning of the numbers. Type in the following:

PRINT "ONE THIRD IS EQUAL TO";1/3

BASIC will reply with:

ONE THIRD IS EQUAL TO .333333333

OK

As explained earlier, including a comma in a PRINT statement causes it to space
over to the next fourteen-column field before the value is printed. Using a semi-
colon instead of a comma causes the value to be printed immediately, without
spacing to the next field.

NOTE: Numbers are always printed with at least one trailing space. Any text to be
printed must always be enclosed in double quotes. Try the following examples:

a) PRINT "ONE THIRD IS EQUAL TO ";1/3

ONE THIRD IS EQUAL TO .333333333

OK

b) PRINT 1,2,3

1	 2 3

OK

c) PRINT 1;2;3

1 2 3

OK

d) PRINT -1;2;-3

-1 2 -3

OK

We will digress for a moment to explain the format of numbers in BASIC. Floating
point numbers are stored internally to over nine digits accuracy. When a number is
printed, only nine digits are shown. Any number may also have an exponent.

The largest number that may represented in MICROTAN BASIC is 1.70141*10E38,
while the smallest positive number is 2.93874*10E-39.

When a floating point number is printed, the following rules are used to determine
the exact format.

1. If the number is negative, a minus sign (-) is printed. If the number is
positive, a space is printed.

2. If the absolute value of the number is an integer in the range 0 to
999999999, it is printed as an integer.

3. If the absolute value of the number is greater than or equal to .1 and less
than or equal to 999999999, it is printed in fixed point notation, with no
exponent.

4. If the number does not fall under categories 2 or 3, scientific notation is
used.

Scientific notation is formatted as follows:

SX.XXXXXXXXESTT

Each X is an integer, 0 to 9. The leading S is the sign of the numbers: a space for a
positive number and a minus signÊ for a negative number. One non-zero digit is
printed before the decimal point. This is followed by the decimal point and then the
other five digits of the mantissa. An E is then printed (for exponent), followed by the
sign (S) of the exponent; then the two digits (TT) of the exponent itself. Leading
zeros are never printed; i.e. the digit before the decimal is never zero. Also, trailing
zeros are never printed. If there is only one digit to print after all trailing zeros are
suppressed, no decimal point is printed. The exponent sign will be "+" for positive
and "-" for negative. Two digits of the exponent are always printed; that is, zeros are
not suppressed in the exponent field. The value of any number expressed thus is
the number to the left of the E times 10 raised to the power of the number to the
right of the E.

No matter what format is used, a space is always printed following a number.
BASIC checks to see if the entire number will fit on the current line. If not, a carriage
return/linefeed is executed before printing the number.

The following are examples of various numbers and the output format BASIC will
use:

A number input from the terminal or a numeric constant used in a BASIC program
may have as many digits as desired, up to a maximum length of a line (72
characters). However, only 9 digits are significant, with this version of BASIC. The
final digit is rounded up.

PRINT 1.2345678901234567890

1.23456789

OK

So far we have used several different operators in order to inform BASIC of the
calculations we wish to perform. Whenever a combination of these operators is
used, it is necessary to know which operations are to be performed first. As in
standard algebra, we can either specify which operations have the highest priority,
or we can rely on BASIC's precedence of operators. That precedence is as follows:

NUMBER OUTPUT FORMAT

+1 1

-1 -1
6523 6523

-23.460 -23.46

1E+20 1E+20

-12.3456E-07 -1.23456E-06

Priority Of Operations

1. Parentheses - any expression enclosed in parentheses is always
evaluated first.

2. Exponentiation.

3. Negation.

4. Multiplication and Division (of equal priority).

5. Addition and Subtraction (of equal priority).

6. Relational operators (all of equal priority).

=	 Equals

<>	Not Equal

<	 Less Than

>	 Greater Than

<=	Less Than or Equal

>=	Greater Than or Equal

7. Logical Operators in the order NOT, AND, then OR.

BASIC's relational and logical operators are described in detail in Chapter 3.

INPUT and GOTO Statements

The following is an example of a program that reads a value from the terminal and
uses that value to calculate and print a result:

10 INPUT R

20 PRINT 3.14159*R*R

RUN

?10

314.159

OK

Here is what is happening. When BASIC encounters the INPUT statement, it types a
question mark on the terminal and then waits for a response. When you type in 10,
execution continues with the next statement in the program, with the variable R set
to 10. In executing line 20, BASIC prints 314.159.

As you can see, the program calculates the area of a circle with radius R. To
calculate the area of different circles, we could keep re-running the program over for
each value of R. But, there is an easier way to do this; simply add another line to the
program as follows:

30 GOTO 10

RUN

?10

314.159

?3

28.3743

?4.7

69.3977

?

OK

By putting a GOTO statement on the end of our program, we have caused it to go
back to line 10 after it prints each answer. This could have gone on indefinitely, but
we decided to stop after calculating the area for three circles. This was
accomplished by typing a carriage return to the input statement (thus a blank line).

VARIABLES

The letter R in the program we just used was termed a variable. A variable name
consists of one or two characters, and the first character must be a letter. The
second character may be a letter or a number (0-9). Any character after the first two
are ignored.

Variable names may not be the same as BASIC reserved words, nor may then
contain BASIC reserved words. Reserved words are those words used as BASIC
commands, statements, or functions. For example, TO would be an illegal variable
name and FEND would be illegal because it contains the reserved word END.

Here is a list of MICROTAN BASIC reserved words:

ABS

AND

ASC

ATN

CHR$

CLEAR

CONT

COS

DATA

DEF

DIM

END

EXP

FN

FOR

FRE

GOSUB

GOTO

IF

INPUT

INT

LEFT$

LEN

LET

LIST

LOG

MID$

NEW

NEXT

NOT

NULL

ON

OR

PEEK

POKE

POS

PRINT

READ

REM

RESTORE

RETURN

RIGHT$

RND

RUN

SGN

SIN

SQR

SPC

STEP

STOP

STR$

TAB

TAN

THEN

TO

USR

VAL

WAIT 

MICROTAN BASIC also has two other variable forms; "string" and "integer". String
variables are used for character lists, and are described in this chapter.

Integer variables are very useful for saving memory space. A floating point number
requires five bytes of memory space for storage in this particular version of BASIC.
One byte stores the exponent of the number, and the other bytes are used to store
the mantissa. BASIC requires only 2 bytes of memory to store integers, because of
their smaller range; +32767 to -32767.

Integer variables are distinguished from numeric variables by a "%" after the
variable name. You may assign values to an integer variable in the same way that
you assign values to floating point variables. For example:

X%=6

D4%=5*3

If you assign a non-integer value to an integer variable, the number will be
truncated; that is, any value to the right of a decimal point will be lost. For example:

B%=4.283

PRINT B%

4

OK

During program execution, when BASIC encounters a calculation to be done with
an integer variable, these steps are followed:

1. BASIC retrieves the variable from memory.

2. The number is converted into its floating point equivalent.

3. The calculation is performed.

4. The number is converted back into an integer.

5. The result is stored in memory.

If you use integer values in a program and wish to get accurate results from
calculations, you must be very careful to ensure that values are not truncated. When
you define a variable as an integer, be certain that it will never receive a floating
point number that you may wish to recall. Although integer variables can save
significant amounts of memory space, their use may cause some loss of execution
speed.

LET STATEMENT

Besides having values assigned to variables with an INPUT statement, you can also
set the value of a variable with a LET or assignment statement. Try the following
examples:

A=5

OK

PRINT A,A*2

5 10

OK

LET Z=7

OK

PRINT Z,Z-A

7 2

OK

As can be seen from the examples, the LET is optional in an assignment statement.
BASIC "remembers" the values that have been assigned to variables using this type
of statement. This "remembering" process uses space in memory to store the data.
The values of variables are thrown away and the space in memory used to store
them is released when one of four things occurs:

1. A new line is typed into the program or an old line is deleted.

2. A CLEAR is executed.

3. A RUN is executed.

4. A NEW is executed.

Another important fact is that if a variable is encoutered in an expression before it is
assigned a value, it is automatically assigned the value zero. Zero is then
substituted as the value of the variable in the expression. For example:

PRINT Q,Q+2,Q*2

0 2 0

OK

REM STATEMENT

REM is short for remark. This statement is used to insert comments or notes into a
program. These comments can help avoid confusion - especially when you write
long programs. They are also helpful to anyone else who reads your program.

REM statements often note the purpose of a program and describe the techniques
used in accomplishing that purpose. REM statements are useful only to humans. No
information is passed to BASIC through the notes in a REM statement. When a REM
is encountered during execution of a BASIC program, everything on the rest of the
line is ignored.

IF AND THEN STATEMENTS: RELATIONAL OPERATORS

Suppose we want to write a program to find out if a number is zero or not. With the
statements we have gone over so far this could not be done. What is needed is a
statement which can be used to conditionally branch to another statement. The IF
and THEN statements do just that.

Try typing in the following program:

10 INPUT B

20 IF B=0 THEN 50

30 PRINT "NON-ZERO"

40 GOTO 10

50 PRINT "ZERO"

60 GOTO 10

When this program is typed into the computer and run, it will ask for a value for B.
Type any value you wish. The computer will then come to the IF statement. Between
the IF and THEN portion of the statement there are two expressions separated by a
relational operator. A relational operator is one of the following six symbols:

=		 Equal

>		 Greater Than

<		 Less Than

<>	 Not Equal

<=	 Less Than or Equal

>=	 Greater Than or Equal

The IF statement is either true or false, depending upon whether the two
expressions satisfy the relation or not. For example, in the program we just did, if 0
were typed in for B, the IF statement would be true because 0=0. In this case, since
the number after the THEN is 50, execution of the program would continue at line
50. Therefore, ZERO would be printed and then the program would jump back to
line 0 (because of the GOTO statement in line 60).

Suppose a 1 were typed in for B. Since 1=0 is false, the IF statement would be false
and the THEN clause would not be executed. The program would continue
execution with the next line. Therefore, NON-ZERO would be printed and the GOTO
in line 40 would send the program back to line 10.

Now try the following program for comparing two numbers:

10 INPUT A,B

20 IF A<=B THEN 50

30 PRINT "A IS BIGGER"

40 GOTO 10

50 IF A<B THEN 80

60 PRINT "THEY ARE THE SAME"

70 GOTO 10

80 PRINT "B IS BIGGER"

90 GOTO 10

When this program is run, line 10 receives two numbers from the terminal. At line
20, if A is greater than B, A<=B will be false. This will cause the next statement to be
executed, printing "A IS BIGGER", and then line 40 sends the computer back to line
10 to begin again.

At line 20, if A has the same value as B, A<=B is true so we go to line 50. At line 20,
if A is smaller than B, A<=B is true so we go to line 50. At line 50, A<B will be true
so we go back to the beginning.

Try running the last two sample programs several times. Remember, to stop these
programs, just give a carriage erturn to the input request. The try writing a few
programs of your own using the IF-THEN statement. Writing programs of your own
is the quickest and easiest way to understand how BASIC works.

FOR AND NEXT STATEMENTS

One advantage of computers is their ability to perform repetitive tasks. Let us take a
closer look and see how this works. Suppose we want a table of square roots from
1 to 10. The BASIC function for square root is SQR, and the form is SQR(X). We
could write the program as follows:

10 PRINT "1",SQR(1)

20 PRINT "2",SQR(2)

30 PRINT "3",SQR(3)

40 PRINT "4",SQR(4)

50 PRINT "5",SQR(5)

60 PRINT "6",SQR(6)

70 PRINT "7",SQR(7)

80 PRINT "8",SQR(8)

90 PRINT "9",SQR(9)

100 PRINT "10",SQR(10)

This program will do the job. But imagine how time consuming this would be if we
wanted to make a table of 100 square roots, or 1000 square roots! The inefficient
method above could be improved by using the IF statement as follows:

10 N=1

20 PRINT N,SQR(N)

30 N=N+1

40 IF N<= THEN 20

When this program is run, its output will look exactly like that of the ten-statement
program above. Let us look at how it works. Line 10 has a LET statement which
sets the value of the variable N to 1. Line 20 prints N and the square root of N using
its current value. Line 30 is a LET statement that sets the value of N to N+1. In a
LET statement, an equals sign means "to be replaced with".

Thus, the first time line 30 is executed, N becomes 2. At line 40, since N now equals
2, N<10 is true, so the THEN portion branches back to line 20, with N now at a
value of 2. The overall result is that lines 20 through 40 are repeated, each time
adding 1 to the value of N. When N finally equals 10 at line 20, line 30 will increment
it to 11. This results in a false condition at line 40, and since there are no further
statements to the program, it stops. This technique is referred to as "looping" or
"iteration". Since it is used quite extensively in programming, there are special
BASIC statements for using it. We can show these with the following program.

10 FOR N=1 TO 10

20 PRINT N,SQR(N)

40 NEXT N

The output of the program listed above will be exactly the same as the previous two
programs. But notice that the first method we used would require 1000 statements
to create a table of 1000 square roots, whereas the final example could do it with
just 3 lines.

At line 10, N is set to equal 1. Line 20 causes the value of N and the square root of
N to be printed. At line 30 we see a new type of statement. The NEXT N statement
causes 1 to be added to N, and then if N<=10, the program returns to the statement
following the FOR statement. The overall effect is the same as with the previous
program. Notice that the variable following the FOR is exactly the same as the
variable after the NEXT.

It is also possible to add a STEP clause to the FOR statement to change the
increment of the FOR loop variable.

10 FOR N=10 TO 20 STEP 2

20 PRINT N,SQR(N)

30 NEXT N

This tells BASIC to start with N=10 and to add 2 to N each time, instead of 1 as in
the previous program. If no STEP is given in a FOR statement, BASIC assumes that
1 is to be added each time. The STEP can be followed by any expression.

Suppose we want to count backwards from 10 to 1. A program for doing this would
be as follows:

10 I=10

20 PRINT I

30 I=I-1

40 IF I>=1 THEN 20

Notice that we are now checking to see that I is greater than or equal to the final
value. The reason is that we are now counting by a negative number. In the previous
examples it was the opposite, so we were checking for a variable less than or equal
to the final value. The STEP statement previously shown can also be used with
negative numbers to accomplish this same purpose.

For example:

10 FOR I=10 TO 1 STEP -1

20 PRINT I

30 NEXT I

FOR loops can also be "nested". An example of this procedure follows:

10 FOR I=1 TO 5

20 FOR J=1 TO 3

30 PRINT I,J

40 NEXT J

50 NEXT I

Notice that the NEXT J comes before the NEXT I. This is because the J-loop is
inside of the I-loop. The following program is incorrect; run it and see what
happens.

10 FOR I=1 TO 5

20 FOR J=1 TO 3

30 PRINT I,J

40 NEXT I

50 NEXT J

It does not work because when the NEXT I is encountered, all knowledge of the J-
loop is lost. This happens because the J-loop is "inside" the I-loop.

ARRAYS - DIM STATEMENT

An array is a table of values. The name of this table, which is called the array name,
can be any legal variable name, such as "A". The array name A is distinct and
separate from the simple variable A, and both can be used in a single program. To
identify an element of the array, a subscript is added in parentheses to the array
name. A(I) represents the Ith element in the array A.

BASIC must be told how much space to allocate for the entire array A. This is done
with a DIM (dimension) statement, for example,

DIM A(15)

In this example, space is reserved for the array A to have elements from A(0) to
A(15). Array subscripts always start with zero. Therefore, an array dimensioned at 15
has space for 16 elements.

If "A(I)" is used in a program before it has been dimensioned, BASIC reserves space
for 11 elements (0 through 10).

The following program illustrates the use of arrays. It asks you to input 8 numbers,
which it then sorts into ascending order.

10 DIM A(8)

20 FOR I=1 TO 8

30 INPUT A(I)

50 NEXT I

70 F=0

80 FOR I=1 TO 7

90 IF A(I)<=A(I+1) THEN 140

100 T=A(I)

110 A(I)=A(I+1)

120 A(I+1)=T

130 F=1

140 NEXT I

150 IF F=1 THEN 70

160 FOR I=1 TO 8

170 PRINT A(I),

180 NEXT I

When line 10 is executed, BASIC sets aside space for 9 numeric values, A(0)
through A(8). Lines 20 through 50 get the unsorted list from the user. The sort is
accomplished by comparing adjacent numbers. If they are already ordered, the
program proceeds. If they are not ordered, their positions in the array are reversed.
If any pairs are reversed, the variable "F" is set to 1 and at line 150, BASIC is told to
repeat the comparison process. If all the numbers are in order, lines 160 through
180 print out the sorted list. Notice that a subscript can be any expression, as
illustrated in line 110.

Arrays may also be dimensioned as integer arrays. If all elements of an array can be
represented by integers, a significant amount of memory space can be saved. An
integer array is dimensioned exactly like a numeric array, except that a % must
follow the array name. For example:

DIM A%(9)

This array will have 10 elements, each one an integer. As with other integer
variables, BASIC will perform all computations in floating point arithmetic.

INTRINSIC FUNCTIONS

BASIC provides functions to perform a number of standard mathematical
operations. These functions would be time-consuming for you to calculate and
code in BASIC, especially if you used them more than once in your program. A
BASIC function has a three- or four-letter call name followed by an argument in
parentheses. A function may be used anywhere in a program. A list of the BASIC
functions, numeric and string, appears in Chapter 3. Each function is defined and
the parameters for its argument are given.

USER-DEFINED FUNCTIONS - DEF STATEMENT

You may also define your own functions when you require a reasonably simple
calculation at more than one place in your program. The DEF statement allows you
to create a function and use it in the same way that you would use any of BASIC's
intrinsic functions. A legal user-defined function name begins with FN followed by
any acceptable BASIC variable name. A function need be defined only once and
can be defined anywhere in the program. For example:

DEF FNA(S) = S*S

The dummy argument must be a simple variable, but the expression after the equals
sign may contain the argument variable or any other program variable. If, after
defining the above function, BASIC encountered a line such as:

20 PRINT FNA(4)+5

BASIC should respond with:

21

OK

First 4*4 was calculated using the formula we defined above. Then 5 was added to
this value. More information about particular user-defined functions appears in
Chapter 3.

SUBROUTINES - GOSUB AND RETURN

A program may perform the same action in several different places. If this is
expressed by a relatively simple calculation, you can probably use a BASIC function
or a user-defined function to perform it. However, often it is a more complicated
series of calculations requiring many lines of programming. In such cases the
"GOSUB" and "RETURN" statements can be used to avoid entering the same lines
over and over. When a "GOSUB" statement is encountered, BASIC branches to a
specified line number. BASIC keeps track of the point at which it branched from the
main program, and when a "RETURN" is encountered, BASIC goes back to the
statement following the last executed "GOSUB". Observe the following program.

10 PRINT"WHAT IS THE NUMBER";

30 GOSUB 100

40 T=N

50 PRINT"WHAT IS THE SECOND NUMBER";

70 GOSUB 100

80 PRINT"THE SUM OF THE TWO NUMBERS IS",T+N

90 STOP

100 INPUT N

110 IF N=INT(N) THEN 140

120 PRINT"YOU MUST ENTER AN INTEGER. TRY AGAIN"

130 GOTO 100

140 RETURN

This program asks for two numbers which must be integers and then prints the sum
of the two. The subroutine in this program consists of lines 100 to 130. The
subroutine asks for a number, and if it is not an integer, asks for another number. It
will continue to ask for numbers until an integer is entered.

The main program prints "WHAT IS THE NUMBER" and then calls the subroutine to
determine if the number is an integer. When the subroutine returns to line 40, the
value input is saved in the variable T. This is done so that when the subroutine is
called a second time, the value of the first number will not be lost. The program then
prints "WHAT IS THE SECOND NUMBER" and the second value is entered when
the subroutine is called again. When the subroutine returns the second time, "THE
SUM OF THE TWO NUMBERS IS" is printed, followed by the value of their sum. T
contains the value of the first number that was entered and N contains the value of
the second number.

The next statement in the program is the "STOP" statement. It causes the program
to stop execution at line 90. If the STOP statement were not included in the
program, we would "fall into" the subroutine at line 100. It would then ask that
another number be input. WhenÊ program execution reached line 130, the
subroutine would try to return to the main body of the program. But since it was
never called by a GOSUB, a RETURN WITHOUT GOSUB error would occur. Each
GOSUB executed in a program must have a corresponding RETURN to be
executed later. The opposite also applies, i.e. a RETURN should be encountered
only if it is part of a subroutine which has been called by a GOSUB.

Either "STOP" or "END" can be used to separate a program from its subroutines.
STOP will print a message indicating the line at which the STOP was encountered.

READ, DATA, AND RESTORE STATEMENTS

Suppose that a program required that the same list of numbers be entered into the
program every time it was run. BASIC contains two statements for accomplishing
this purpose, the "READ" and "DATA" statements. These same statements also
make it easy to change the list of numbers whenever necessary. Consider the
following example:

10 PRINT"GUESS A NUMBER";

20 INPUT G

30 READ D

40 IF D=-999999 THEN 90

50 IF D<>G THEN 30

60 PRINT"YOU ARE CORRECT"

70 END

90 PRINT"BAD GUESS, TRY AGAIN."

95 RESTORE

100 GOTO 10

110 DATA 1,393,-39,28,391,-8,0,3.14,90

120 DATA 89,5,10,15,-34,-999999

When the program is run and the READ statement is encountered, the effect is
similar to that of an INPUT statement. But instead of getting a number from the
terminal, a number is read from the DATA statements.

The first time a number is needed for a READ, the first number in the first DATA
statement is returned. The second time one is needed, the second number in the
first DATA statement is returned. When the entire contents of the first DATA
statement have been read in this manner, the second DATA statement will be used.
DATA is always read sequentially in this manner, and there may be any number of
DATA statements in a program.

The above program plays a game whose object is to guess one of the numbers
contained in the DATA statements. For each guess that is typed in, the program
reads through all of the numbers in the DATA statements until one is found that
matches the guess. If more values are read than there are numbers in the DATA
statements, an OUT OF DATA error occurs. Line 40 checks to see if -999999 was
read. This number is used as a flag to indicate that all of the data has been read. If
-999999 is read, then the guess given was incorrect.

Before returning to line 10 to make another guess, we need to make certain that the
READs will begin with the first piece of data again. This is the function of the
"RESTORE" statement. After the RESTORE is encountered, the next piece of data
read will be the first piece in the first DATA statement.

DATA statements may be placed anywhere within the program. Only READ
statements make use of the DATA statements in a program, and any DATA
statements encountered at any other time during program execution will be ignored.

STRINGS AND STRING FUNCTIONS

A list of characters is referred to as a "string". HELLO, BASIC 6502, and THIS IS A
TEST are all strings. Like numeric variables, string variables can be assigned
specific values. String variable names are distinguished from numeric variable
names in that they have a "$" as the last character of the variable name. For
example:

A$="BASIC 6502"

OK

PRINT A$

BASIC 6502

OK

This example assigns the string value "BASIC 6502" to the string variable A$. Note
that a character string to be assigned to a variable must be entered in quotes.

Now that A$ has a string value, it is possible to use various string functions to learn
more about that value. String functions are similar to numeric functions, and are
called and passed arguments in the same way. One of these functions is the "LEN"
or length function. When called, it returns an integer equal to the number of
characters in a string.

For example:

PRINT LEN(A$),LEN("HELLO")

10 5

OK

The number of characters in a string may range from 0 to 255. A string which
contains 0 characters is called the "NULL" string. Before a string variable is set to a
value in the program, it is initialised to the null string, in much the same way that
numeric variables are initialised to 0. Printing a null string on the terminal will cause
no characters to be printed, and the print head or cursor will not be advanced to the
next column. For example:

PRINT LEN(Q$);Q$;3

0 3

OK

Another way to create the null string is by using quotation marks with nothing
between them, i.e. Q$="". Setting a string variable to the null string can be used to
free up the string space used by a non-null string variable.

It is often desirable to be able to access parts of a string and manipulate those
parts. The string A$ was previously defined. If we wished to see only some of its
contents we might use:

PRINT LEFT$(A$,5)

BASIC

OK

"LEFT$" is a string function which returns a string composed of the leftmost
characters of its string argument. Another example might read:

FOR N=1 TO LEN(A$):PRINT LEFT$(A$,N):NEXT N

B

BA

BAS

BASI

BASIC

BASIC

BASIC 6

BASIC 65

BASIC 650

BASIC 6502

OK

Since A$ has 10 characters, the loop will be executed with N=1,2,3,...,9,10. The first
time though only the first character will be printed. The second time, the first two
character will be printed, etc.

There is a similar string function called "RIGHT$" which returns the right N
characters from a string expression. Try substituting RIGHT$ for LEFT$ in the
previous example and note the result.

There is also a string function which allows us to take characters from the middle of
a string. For example:

FOR N=1 TO LEN(A$):PRINT MID$(A$,N):NEXT N

BASIC 6502

ASIC 6502

SIC 6502

IC 6502

C 6502

 6502

6502

502

02

2

OK

MID$ returns a string starting at the Nth position of A$ to the end (last character) of
A$. The first position of the string is position 1 and the possible position of a string
is position 255. Very often it is desirable to extract only the Nth character from a
string. This can be done by calling MID$ with three arguments. The third argument
specifies the number of characters to return. For example:

FOR N=1 TO LEN(A$):PRINT MID$(A$,N,1),MID$(A$,N,2):NEXT N

B	 BA

A	 AS

S	 SI

I	 	 IC

C	 C

	 	 6

6		 65

5		 50

0		 02

2		 2

OK

Strings may also be concatenated (joined together) through the use of the "+"
operator. Try the following:

B$="HELLO"+" "+A$

OK

PRINT B$

HELLO BASIC 6502

OK

Concatenation is especially useful if you wish to take a string apart and then put it
back together with slight modifications. For instance:

C$=LEFT$(B$,5)+"-"+MID$(B$,7,5)+"-"+RIGHT$(B$,4)

OK

PRINT C$

HELLO-BASIC-6502

OK

Sometimes it is desirable to convert a number to its string representation and vice-
versa. "VAL" and "STR$" perform these functions. Try the following:

STRING$="567.8"

OK

PRINT VAL(STRING$)

 567.8

OK

STRING$=STR$(3.1415)

OK

PRINT STRING$;LEFT$(STRING$,5)

3.1415 3.14

OK

"STR$" can be used to perform formatted I/O on numbers. A number may be
converted to a string and then LEFT$, RIGHT$, and MID$ can be used to re-format
the number as desired. STR$ can also be used to find out how many print columns
a number will requires. For example:

PRINT LEN(STR$(3.157))

 6

OK

VAL is useful in many different applications. If a program accepted a question from
a user such as:

"WHAT IS THE VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1
FEET?"

VAL could be used to extract the numeric values 5.36 and 5.1 from the question.

The following program sorts a list of string data and prints out the sorted list. This
program is quite similar to the one given earlier in this chapter that sorted a numeric
list. 

100 DIM A$(15):REM ALLOCATE SPACE FOR STRING MATRIX

110 FOR I=1 TO 15:READ A$(I):NEXT I

115 REM READ IN STRINGS

120 F=0:I=1

125 REM SET EXCHANGE FLAG TO ZERO AND SUBSCRIPT TO ONE

130 IF A$(I)<=A$(I+1) THEN 180

135 REM DON'T EXCHANGE ORDERED ELEMENTS

140 T$=A$(I+1): REM USE T$ TO SAVE A$(I+1)

150 A$(I+1)=A$(I): REM EXCHANGE TWO CONSECUTIVE ELEMENTS

160 A$(I)=T$

170 F=1:REM FLAG EXCHANGE OF ELEMENTS

180 I=I+1:IF I<15 GOTO 130

185 REM ONCE PASS IS MADE THRU ALL ELEMENTS,

187 REM CHECK TO SEE IF WE EXCHANGED ANY.

188 REM IF NOT, SORT COMPLETED.

190 IF F THEN 120

200 FOR I=1 TO 15:PRINT A$(I):NEXT I:REM PRINT LIST

210 REM STRING DATA FOLLOWS

220 DATA APPLE,DOG,CAT,BASIC,MICROSOFT,COMPUTER

230 DATA MONDAY,"***ANSWER***","FOO"

240 DATA RANDOM,BISCUIT,BELLEVUE,SEATTLE,BYTE,BIT,SUGAR

Strings may also be elements of arrays. These are dimensioned exactly like numeric
arrays, except that the variable used as the array name must be a string variable
(having character "$"). For instance

DIM A$(10,10)

creates a string array of 121 elements, eleven rows by eleven columns (rows 0 to 10
and columns 0 to 10). Each array element is a complete string, which can be up to
255 characters in length.

CHAPTER 3: FEATURES OF 10K MICROSOFT
BASIC

BASIC COMMANDS

A command is usually given after BASIC has typed OK. This is called the
"command level". Commands may be used as program statements. Certain
commands, such as LIST, NEW, and LOAD will terminate program execution. The
form and function of each command is described below.

CLEAR Clears all variables: resets FOR and GOSUB state, RESTOREs data.

LIST x-y Lists program starting at line specified by x, up to and including line
specified by y. If no y is specified, the program will be listed from x to
the end of the program. If neither x nor y is specified, the entire
program will be listed.

NULLx Sets the number of null (ASCII 0) characters printed after a carriage
return/linefeed. X may be specified in the range 0 to 71. NULL must be
specified for hardcopy terminals that require a delay after a CR/LF. We
recommend that you use a null setting of 0 or 1 for Teletypes. A setting
of 0 will work with Teletype compatible CRTs. (Teletype is a registered
trademark of Teletype Corporation).

RUNx If x is not specified, starts execution of the program currently in
memory at the lowest numbered statement. RUN deletes all variables
(does a CLEAR) and restores DATA. If you have stopped your program
and wish to continue execution at some point in the program, use a
GOTOx statement to stat execution of your program at the desired
line. X may be used optionally to start execution at a specified line
number.

NEW Deletes current program and all variables.

CONT Continues program execution after a Control/C is typed or a STOP
statement is executed. You cannot CONTinue after an error, after
modifying your program, or before your program has been run. One of
the main purposes of CONT is debugging.

LOAD Loads the program from the cassette tape. A NEW command is
automatically done before the LOAD command is executed. When the
LOAD is complete, BASIC will type out the usual OK.

SAVE Saves on cassette tape the current program in memory. The program
in memory is left unchanged. More than one program may be stored
on cassette using this command.

BASIC STATEMENTS

The following summary of BASIC statements defines the general format of each
statement, and includes an example of each statement's application. In the
following statements and descriptions, an argument of:

V or W	 denotes a numeric variable.

X		 denotes a numeric expression.

X$	 denotes a string expression.

I or J	 denotes an expression that is truncated to an integer before the

	 	 statement is executed.

Truncation means that any fractional part of the number is lost, e.g. 3.9 becomes 3,
4.01 becomes 4. An expression is a series of variables, operations, function calls
and constants which, after the operation and function calls are performed using the
precedence rules, evaluates to a numeric or string value. A constant is either a
number (such as 3.14) or a string literal (such as “GOOD”).

DATA 10 DATA 1,3,-156,.04,”NUMBER",CAT

Specifies data to be read from left to right. Information appears in
statements in the same order as it will be read in the program.
Strings may be read from DATA statements. If you want the string
to contain leading spaces (blanks), colons (:) or commas (,), you
must enclose the string in double quotes. It is impossible to have a
double quote within string data or a string literal.

DEF 100 DEF FNA(V)=V/B+C

BASIC provides many commonly used functions for you, but you
may define your own functions using this statement. A function is
named with FN followed by any legal variable name, for example:
FNX,FNQ2,FNNY. User defined functions are restricted to one line.
A function may be defined by any expression, but may have only
one argument. In the above example, B and C are variables that
are used in the program. Executing the DEF statement defines the
function. User defined functions can be redefined by executing
another DEF statement for the same function. V is called the
dummy variable. User defined string functions are not allowed.

DIM 133 DIM A(3),B$(2,4,4),Z(2*1)

Allocates space for arrays. All array elements are set to zero by the
DIM statement. Arrays can have more than one dimension. Up to
255 dimensions are allowed, but due to the restriction of 72
characters per line, the practical maximum is about 34 dimensions.
Arrays can be dimensioned dynamically during program execution.
If an array is not explicitely dimensioned with a DIM statement, it is
assumed to be a singly dimensioned array whose subscript may
range from 0 to 10 (eleven elements). All subscripts start at zero,
which means that an array dimensioned at n contains n+1
elements.

END 999 END

Terminates program execution without printing a BREAK message.
Using the command CONT after an END statement causes
execution to resume at the statement after the END statement.
END can be used anywhere in a program. It is not necessary to
have an END statement at the end of a program.

FOR 150 FOR V=1 TO 6.5 STEP .5

(Also see NEXT statement). V is assigned the value of the
expression following the equals sign, in this case, 1. This is called
the initial value. Then the statements between this FOR statement
and the corresponding NEXT statement are executed. The final
value is the value of the expression following the TO. The initial
value is incremented by the step value until it reaches the final
value.

If no STEP is specified, it is assumed by BASIC to be 1. If the STEP
is positive and the new value of the variable is <= the final value
(6.5 in this example), or the step value is negative and the new
value of the variable is => the final value, then the first statement
following the FOR statement is executed. Otherwise the statement
following the NEXT statement is executed. All FOR loops execute
the statements between the FOR and NEXT loops at least once,
even in cases like FOR V=1 TO 0. Expressions may be used for the
initial, final, and step values in a FOR loop. The values of the
expressions are computed only once, before the body of the
FOR...NEXT loop is executed. When the statement after the NEXT
is executed, the loop variable is never equal to the final value, but
is equal to whatever value caused the FOR...NEXT loop to
terminate. Do not use nested FOR...NEXT loop with the same index
variable. The depth of FOR loop nesting is limited only by the
available memory.

GET GET A

GET A$

Fetches a single character from the keyboard without displaying it
on the screen and without requiring that the return key be pressed.

GOTO 50 GOTO 100

Branches to specified line number.

GOSUB 10 GOSUB 910

Branches to the specified statement until a RETURN is
encountered, when a branch is then made to the statement after
GOSUB. GOSUB nesting is limited only by the available memory.

IF...GOTO 32 IF X=Y+23.4 GOTO 92

Branches to a specified line number if expression is true. If
expression is not true, program execution continues at next line
number in sequence.

IF...THEN IF X<12 THEN PRINT "INCORRECT"

IF X=5 THEN 200

If the relation is true, the THEN clause is executed. The THEN
clause may be a statement or a line number for branching. If the
relation is not true, the next numbered statement will be executed,
and any further statements on the original line will be ignored. For
example: 100 IF X=5 THEN Y=2: PRINT "INCORRECT". If X is not
equal to 5, then "INCORRECT" will never be printed.

INPUT 5 INPUT V,W,W2

10 INPUT "VALUE";V

Requests that data be entered from the terminal. Each value must
be separated from the last one by a comma. The last value typed
in should be followed by a carriage return. A "?" is given by BASIC
as the prompt character. Only constants may be entered in
response to the INPUT statement, such as 4.5E-3 or "CAT".
Expressions are not legal responses. If more data items are
requested by an INPUT statement than are entered from the
terminal, a "??" is printed and BASIC will wait for the rest of the
data. If more data items are typed in than requested, the extra data
items will be ignored. BASIC gives the message "EXTRA
IGNORED" in this event. Strings must be input in the same format
as they are specified in DATA statements. In the second example
above, the prompt VALUE? will be printed on the terminal when
data is requested. If carriage return is typed in response to an
INPUT statement, BASIC returns to the command level. Typing
CONT after an INPUT command has been interrupted will cause
execution to resume at the INPUT statement.

LET 300 LET W=X

310 W=X

Each of the above statements accomplishes the same thing. Any
value which previously resided in W is lost, and it is replaced with
the value of X. The use of LET is optional.

NEXT 550 NEXT V

550 NEXT

550 NEXT V,W

Marks the end of a FOR loop. If no variable is given, as in the
second example above, the most recent FOR loop will be
matched. As in the third example, a single NEXT statement may be
used to match multiple FOR statements. It is equivalent to NEXT V:
NEXT W.

ON…GOTO 100 ON I GOTO 10,20,30,40

Branches to the line indicated by the Ith number after the GOTO.
That is:

IF I=1 THEN GOTO 10

IF I=2 THEN GOTO 20

IF I=3 THEN GOTO 30

IF I=4 THEN GOTO 40

If I=0 or if I attempts to select a non-existent line (>=5 in this case),
the statement after the ON statement is executed. However, if I is
>255, or <0, an ILLEGAL QUANTITY error will result. As many line
numbers as will fit on a line can follow an ON...GOTO. The
following statement: 105 ON SGN(X)+2 GOTO 40,50,60, will
branch to line 40 if the expression X is less than zero, to line 50 it it
equals zero, and to line 60 if it is greater than 0.

ON...GOSUB 110 ON I GOSUB 50,60

Identical to ON...GOTO, except that a subroutine is called instead
of a GOTO. RETURN from the GOSUB returns control of the
program to the statement after the ON...GOSUB.

POKE 300 POKE I,J

The POKE statement stores the byte specified by its second
argument (J) into the location given by its first argument, (I). The
byte to be stored must be => 0 and <=255, or an ILLEGAL
QUANTITY error will occur. The address (I) must be =>0 and
<=65535, or an ILLEGAL QUANTITY error will result. Be careful not
be POKE into locations occupied by BASIC. One of the main uses
of POKE is to pass arguments to machine language subroutines.
PEEK is the complementary function to the POKE statement.

PRINT 360 PRINT X,Y,Z

500 PRINT

390 PRINT"EQUALS";A

Prints the value of expressions to the terminal. If the list of values
to be printed out does not end with a comma or a semi-colon, then
a carriage return/linefeed is executed after all the values have been
printed. Strings enclosed in quotes may also be printed. If a semi-
colon separates two expressions in the list, their values are printed
next to each other. If a comma appears after an expression in the
list, and the print head is at position 56 or more, then a carriage
return/linefeed is executed. If the print head is before print position
56, the spaces are printed until the carriage is at the beginning of
the next 14-column field. If there is no list of expressions to be
printed, as in the second example (line 500) above, then a carriage
return/linefeed is executed.

READ 490 READ V,W

Reads data from a DATA statement into the variables specified in
the READ statement. The first piece of data read will be the first
piece of data listed in the first DATA statement. Subsequent data
will be read until all data in the first statement is exhausted. When
this occurs, the program will begin to read data from the second
DATA statement. An attempt to READ more values than exist in the
program's DATA statements will result in an OUT OF DATA error.

REM 500 REM THIS LINE COMPUTES AVERAGES

Writes comments in the program listing without affecting
execution. Even though REM statements are not executed, other
statements may branch to them. A REM statement is terminated
only by the line's end, not by ":".

RESTORE 510 RESTORE

Allows the re-reading of DATA statements. After a RESTORE, the
next item read will be the first item listed in the first DATA
statement of the program.

RETURN 50 RETURN

Terminates a subroutine and returns to the statement after the
most recently executed GOSUB.

STOP 9000 STOP

Causes BASIC to stop program execution and enter command
mode. BREAK IN LINE 9000 (by this example) will be printed after
execution is halted. Executing a CONT after a STOP branches to
the statement following the stop.

BASIC FUNCTIONS - NUMERIC AND STRING

Numeric Functions

BASIC Functions perform certain frequently used calculations so you do not have to
supply the formulas or write the code yourself. For these calculations, you may
"call" a BASIC function that is already resident in memory. You must specify the
argument to the function, which is represented in the descriptions below as "X" or
"I". X may be a number or numeric expression. X may contain variable names. All of
the following would be acceptable arguments for functions receiving argument "X":
3, 3*5, A, A+2, (A+B)*7. Functions receiving the argument "I" must receive an
integer. Passing a non-integer as an argument will cause the integer to be
truncated.

WAIT 805 WAIT I,J,K

This statement reads the status of location I, exclusive ORs K with
that status, and then ANDs the result with J until a non-zero result
is obtained. Execution of the program continues at the statement
following the WAIT statement. If the WAIT statement has only two
arguments, K is assumed to be 0. If you are waiting for a bit to
become zero, there should be a 1 in the corresponding position of
K. I,J, and K must be =>0 and <=255.

ABS(X) Returns the absolute value of the expression X. ABS gives X if
X=>0, -X otherwise.

INT(X) Returns the largest integer less than or equal to X. For example:
INT(.23)=0, INT(7)=7, INT(-.1)=-1, INT(-2)=-2, INT(1.1)=1. The
following would round X to D decimal places: INT(X*10^D+0.5)/
10^D

RND(X) Generates a random number between 0 and 1. If X<0 it starts a
new sequence of random numbers using X. Calling RND with the
same X starts the same random number sequence. X=0 gives the
last random number generated. Repeated calls to RND(0) will
allways return the same random number. X>0 generates a new
random number between 0 and 1. Note that (B-A)*RND(1)+A will
generate a random number between A and B.

SGN(X) Returns 1 if X>0, 0 if X=0, and -1 if X<0.

SIN(X) Gives the sine of the expression X. X is interpreted as being in
radians. Note that: COS(X)=SIN(X+3.14159/2) and that: 1 radian =
57.2958 degrees; so that the sine of X degrees = SIN(X/57.2958).

SQR(X) Returns the square root of X. An ILLEGAL QUANTITY error will
occur if X is less than 0.

TAB(I) Spaces to the specified print position (column) on the terminal.
May be used only in PRINT statements. Zero is the leftmost
column on the terminal, 71 the rightmost. If the carriage s beyond
position I, then no printing is done. I must be =>0 and <=255.

USR(I) Calls the user's machine language subroutine with the argument I.
See POKE and PEEK.

ATN(X) Returns the arctangent of the argument X. The result is returned in
radians and ranges from -pi/2 to pi/2. (pi/2=1.5708).

COS(X) Gives the cosine of the expression X. X is assumed to be in
radians.

EXP(X) Returns the constant E (2.71828) raised to the power X. The
maximum argument that can be passed to EXP without overflow is
87.3365.

FRE(X) Returns the number of memory bytes currently unused by BASIC.

LOG(X) Returns the natural (base e) logarithm of argument X. To obtain the
base Y logarithm of X, use the formula LOG(X)/LOG(Y). For
example the base 10 (common) log of 7=LOG(7)/LOG(10).

PEEK(I) Returns the contents of memory address I. The value returned will
be =>0 and <=255. If I is >65535 or <0, an ILLEGAL QUANTITY
error will occur. An attempt to read a non-existent memory address
will return an unknown value.

String Functions

A string, as described in Chapter 2, is a series of characters. A string may be from 0
to 255 characters in length. All string variables must end in $, for example, A$, B7$,
HELLO$. The following functions return values and information pertaining to strings.
In the descriptions below, arguments are represented by:

X$	 Any string or string expression.

I	 	 Any integer or integer expression whose value is >=0 and <=255.

J		 Any integer or integer expression whose value is >=0 and <=255.

X		 Any number or numeric expression.

POS(I) Returns the current position of the terminal print head (or cursor on
CRT's). The leftmost character position on the terminal is position
0 and the rightmost is 71.

SPC(I) Prints I spaces or blank characters on the terminal. May be used
only in a PRINT statement. I must =>0 and <=255 or an ILLEGAL
QUANTITY error will result.

TAN(X) Returns the tangent of the X. X is assumed be in radians.

ASC(X$) Returns the ASCII numeric value of the first character of X$. See
Chapter 2, for ASCII/number conversion table. An ILLEGAL
QUANTITY error will occur if X$ is the null string.

CHR$(I) Returns a one character string whose single character is the ASCII
equivalent of the value of the argument.

FRE(X$) When called with a string argument, returns the number of bytes
currently unused by BASIC. Identical to FRE with a numeric
argument.

LEFT$(X$,I) Gives the leftmost I characters of the string expression X$.

LEN(X$) Returns the length of the string expression X$ in characters (bytes).
Non-printing characters and blanks are counted as part of the
length.

MID$(X$,I,J) MID$ called with two arguments (X$ and I) returns characters from
X$ starting at character position I. If I>LEN(X$), then MID$ returns
a null string. MID$ called with three arguments returns a string
expression composed of the characters of X$ starting at the Ith
character for J characters. If I>LEN(X$), MID$ returns a null string.
If J specifies more characters than are left in the string, all
characters from the Ith on are returned.

RIGHT$(X$,I) Returns the rightmost I characters of X$. If I>=LEN(X$) then
RIGHT$ returns all of X$.

STR$(X) Gives a string which is the character representation of the
numerical expression X. For instance, STR$(3.1)="3.1".

VAL(X$) Returns the string expression X$ converted to a number. For
example: VAL("3.1")=3.1. If the first non-space character of the
string is not a plus (+) or minus (-) sign, or a digit, or a decimal
point, then VAL will return a 0.

Special Characters

BASIC ERROR MESSAGES

After an error occurs, BASIC gives an error message and then returns to command
level and types OK. Variable values and the program text remain intact, but the
program cannot be continued and all GOSUB and FOR context is lost. The format
of error messages is:

Direct Statement: ?XXERROR

Indirect Statement: ?XXERROR IN YYYY

In the above formats, "XX" represents a fully printed message. The "YYYY" is the
line number in which the error occurred in the indirect statement. The following
descriptions indicate the meaning of BASIC's error codes and messages.

@ (At sign). Erases the current line being typed, and types a carriage
return/linefeed. An "@" is usually a shift/P.

RUBOUT Erases last character typed. If no more characters are left on the
line, a carriage return/linefeed is typed.

CR (Carriage return). A carriage return must end every line typed in.
Returns the print head or CRT cursor to the first position (leftmost)
on line. A linefeed is always executed after a carriage return.

CTRL/C (Control C). Interrupts execution of a program or a LIST command.
CTRL/C has effect when a statement finishes execution, or in the
case of interrupting a LIST command, when a complete line has
finished printing. In both cases a return is made to BASIC's
command level and OK is typed. BREAK IN LINE XXXX is printed,
where XXXX is the line number of the next statement to be
executed.

: (Colon). A colon is used to separate statements on a line. Colons
may be used in direct and indirect statements. The only limit on the
number of statements per line is the line length. It is not possible to
GOTO or GOSUB to the middle of a line.

CTRL/O (Control O). Typing CTRL/O once causes BASIC to suppress all
output until a return is made to command level, or until an input
statement is encountered, or until another CTRL/O is typed, or until
an error occurs.

? (Question mark). The question mark is the equivalent of PRINT. For
instance, ?2+2 causes the same output as PRINT 2+2. Question
marks can also be used in indirect statements. When a program is
listed, BASIC prints all questions marks as PRINT.

Bad Subscript

An attempt was made to reference an array element which is outside the
dimensions of the array. This error can occur if the wrong number of dimensions is
used in an array reference; for instance, LET A(1,1,1)=Z when A has been
dimensioned DIM A(2,2).

Redim’d Array

After an array was dimensioned, another dimension statement for the same array
was encountered. This error often occurs if an array has been given the default
dimension 10 because a statement like A(I)=3 precedes the statement DIM A(100) in
a program.

Illegal Quantity

The parameter passed to a mathematical or string function was out of range. These
errors commonly occur due to:

1. A negative array subscript (LET A(-1)=0).

2. An unreasonably large array subscript i.e. >32767.

3. LOG with a negative or zero argument.

4. SQR with a negative argument.

5. A^B with A negative and B not an integer.

6. A call to USR before the address of the machine language subroutine has
been patched in.

7. Calls to MID$, LEFT$, RIGHT$, WAIT, PEEK, POKE, TAB, SPC or
ON...GOTO with an improper argument.

Illegal Direct

INPUT or DEF statement was used as a direct command.

Next Without For

The variable in a NEXT statement corresponds to no previously executed FOR.

Out Of Data

A READ statement was executed but all of the DATA statements in the program
have already been read. The program tried to read too much data or insufficient
data was included in the program.

Out Of Memory

Program too large, too many variables, too many FOR loops, too many GOSUBs,
expression too complicated, or any combination of the above.

Overflow

The result of a calculation was too large to be represented in BASIC's number
format. If an underflow occurs, zero is given as the result and execution continues
without printing any error message.

Syntax

Missing parenthesis in an expression, illegal character in a line, incorrect
punctuation, etc.

RETURN Without GOSUB

A RETURN statement was encountered without a previous GOSUB statement
having been executed.

Undefined Statement

An attempt was made to THEN, GOSUB, or GOTO a statement which does not
exist.

Division By Zero, Can't Continue

Attempt to continue a program when none exists, an error occurred, or after a new
line was typed into the program.

String Too Long

Attempt was made by use of the concatenation operator to create a string more
than 255 characters long.

String Formula Too Complex

A string expression was too complex. Break it into two or more shorter ones.

Type Mismatch

The lefthand side of an assignment statement was a numeric variable and the
righthand side was a string, or vice-versa, or a function which expected a string
argument was given a numeric one or vice-versa.

Undef’d Function

Reference was made to a user defined function which had never been defined.

File Data

Some kind of error.

BASIC OPERATORS

Arithmetic operators

BASIC's arithmetic operators perform 6 functions. They are:

Note that negation is quite separate and distinct from subtraction. When you use
the minus sign to negate a variable or a number, BASIC treats such usage as zero
minus the variable or number. For example: X=-Y is processed as X=0-Y by BASIC.
However, X=10-Y is an example of the arithmetic operation subtraction, and as such
takes its usual place in the precedence of operators.

Priority of operations

When more than one operation is performed in a single formula, BASIC evaluates
each portion using the following schedule of priority:

1. Parentheses - any expression enclosed in parentheses is always
evaluated first.

2. Exponentiation.

3. Negation.

4. Multiplication and Division (of equal priority).

5. Addition and Subtraction (of equal priority).

SYMBOL EXAMPLE FUNCTION

- -51,X=-A Negation

+ Z=R+T+Q Addition

- J=100-I Subtraction

* X=R*B*D Multiplication

/ C=X/1.3 Division

^ X^3 Exponentiation

6. Relational operators (all of equal priority).

=	 Equal

<>	 Not Equal

<	 Less Than

>	 Greater Than

<=	 Less Than or Equal

>=	 Greater Than or Equal

7. Logical Operators in the order NOT, AND, then OR.

If, in any given expression, the above rules do not clearly designate the order of
priority, then evaluation proceeds from left to right.

Relational Operators

Relational operators allow a comparison of two values and are most frequently used
to compare expressions or strings in an IF...THEN statement. The six relational
operators are:

Any expression that contains one of these operations will always have the value of
TRUE(-1) or FALSE(0). For example, (4=7)=0, (4=4)=-1, (7<4)=0, and (7>4)=-1. The
THEN clause of an IF statement is executed whenever the expression after the IF is
not evaluated at 0. For example, IF X THEN... is equivalent to IF X<>0 THEN. When
applied to strings, the relational operators test alphabetic sequence. Comparison is
made on a character by character basis according to the ASCII codes until a
difference is found. If the end of one string is reached before a difference is found,
the shorter string is considered smaller than the other string.

MATH SYMBOL BASIC SYMBOL EXAMPLE MEANING

= = X=Y X has the value of Y

< < X<Y X is less than Y

<= <=, =< X<=Y X is less than or equal to Y

> > X>Y X is greater than Y

>= >=, => X>=Y X is greater than or equal to Y

<> <>, >< X<>Y X is not equal to Y

Logical operators

The Logical Operators are used for bit manipulation and for performing Boolean
operations. These three operators convert their arguments to sixteen bits, signed
two's complement integers in the range -32768 to +32767. They then perform the
specified logical operation on them and return a result within the same range. If the
arguments are not in this range, an ILLEGAL QUANTITY error occurs.

The operations are performed in bitwise fashion. This means that each bit of the
result is obtained by examining the bit in the same position for each argument. The
following truth table shows the logical relationship between bits.

The examples below show some uses of the logical operators.

A typical use of the bitwise operators is to test bits set in I/O locations which reflect
the state of some external device. Bit position 7 is the most significant bit of a byte,
while position 0 is the least significant.

AND OR NOT

A B A AND B A B A OR B A NOT A

1 1 1 1 1 1 1 0

1 0 0 1 0 1 0 1

0 1 0 0 1 1

0 0 0 0 0 0

63 AND 16 = 16 Since 63 equals binary 111111 and 16 equals binary
10000, the result of the AND is binary 10000 or 16.

15 AND 14 = 14 15 equals binary 1111 and 14 equals binary 1110, so 15
AND 14 equals binary 1110 or 14.

-1 AND 8 = 8 -1 equals binary 1111111111111111 and 8 equals binary
1000, so the result is binary 1000 or 8.

4 OR 2 = 6 Binary 100 OR'd with binary 10 equals binary 110, or 6
decimal.

10 OR 10 = 10 Binary 1010 OR'd with binary 1010 equals binary 1010,
or 10.

NOT 0 = -1 The bit complement of binary 0 to 16 places is sixteen
ones (1111111111111111) or -1. Also NOT -1=0

NOT X NOT X is equal to -(X+1). This is because to form the
screen bit two's complement number, you take the bit
(one's) complement and add one.

CHAPTER 4 : AIDS TO EFFICIENT
PROGRAMMING

SPACE OPTIMISATION

The following hints will help you save memory space.

1. Use multiple statements per line. There is a small amount of overhead (5
bytes) associated with each line in the program. Two of these 5 bytes
contain the line number of the line in binary. This means that no matter
how many digits you have in your line number, (minimum number is 0,
maximum number is 64000), it takes the same number of bytes. Putting
as many statements as possible on a line will cut down on the number of
bytes used by your program.

2. Delete all unnecessary spaces from your program. The statement

10 PRINT X, Y, Z

uses three more bytes than

10PRINTX,Y,Z

Note: All spaces between the line number and the first non-blank
character are ignored.

3. Delete all REM statements. Each REM statement uses at least one byte
plus the number of bytes in the comment text. For instance, the
statement

130 REM THIS IS A COMMENT

uses 24 bytes of memory. In the statement

140 X=X+Y:REM UPDATE SUM

the REM uses 14 bytes of memory including the colon before the REM.

4. Use variables instead of constants. Suppose you use the constant
3.14159 ten times in your program. If you insert a statement 10
P=3.14159 into the program, and use P instead of 3.14159 each time it is
needed, you will save 40 bytes. This will result in improved execution
speed.

5. The END statement is entirely optional at the end of a program.

6. Re-use the same variables. If you have a variable T which is used to hold
a temporary result in one part of the program and you need a temporary
variable later in your program use T again. Or, if you are asking the
terminal user to give a YES or NO answer to two different questions at
two different times during the execution of the program, use the same
temporary variable A$ to store the reply.

7. Use GOSUBs to execute sections of program statements that perform
identical actions.

8. Use the zero elements of arrays; for instance A(0), B(0,X). Simple (non-
matrix) numeric variables like V use 6 bytes; 2 for the variable name, and
4 for the value. Simple non-matrix string variables also use 6 bytes, 2 for
the variable name, 2 for the length, and 2 for a pointer. Array variables
use a minimum of 12 bytes. Two bytes are used for the variable name, 2
for the size of the array, 2 for the number of dimensions, and 2 for each
dimension along with 4 bytes for each of the array elements.

String variables also use one byte of string space for each character in
the string. This is true whether the string variable is a simple string
variable like A$, or an element of a string array such as Q1$(5,3). When a
new function is defined by a DEF statement, 6 bytes are used to store the
definition.

9. Reserved words such as FOR, GOTO or NOT, and the names or intrinsic
functions such as COS, INT and STR$ take up only one byte of program
storage. All other characters in programs use one byte of program
storage each. When a program is being executed, space is dynamically
allocated on the stack as follows:

1. Each active FOR...NEXT loop uses 22 bytes.

2. Each active GOSUB (one that has not yet returned) uses 6 bytes.

3. Each parenthesis encountered in an expression uses 4 bytes and
each temporary result calculated in an expression uses 12 bytes.

10. Use integer variables. Integer variables require 2 to 4 fewer bytes for
storage than floating point variables.

TIME OPTIMISATION

The following hints should improve the execution time of your BASIC program. Note
that some of these hints are the same as those used to decrease the space used by
your programs. This means that in many cases you can increase the efficiency of
both space and speed at the same time.

1. Delete all unnecessary spaces and REMs from the program. This may
cause a small decrease in execution time because BASIC would
otherwise have to ignore or skip over spaces and REM statements.

2. Use variables instead of constants. It takes more time to convert a
constant to its floating point representation than it does to fetch the value
of a simple or matrix variable. This is especially important within
FOR...NEXT loops or other code that is executed repeatedly. THIS IS
PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10!

3. Variables that are encountered first during the execution of a BASIC
program are allocated at the start of the variable table. This means that a
statement such as 5 A=0:B=A:C=A will place A first, B second, and C
third in the symbol table (assuming line 5 is the first statement executed
in the program). Later in the program, when BASIC finds a reference to
the variable A, it will search only one entry in the symbol table to find A;
whereas it would search 2 entries to find B, three to find C, etc.

4. Omit the index variable from NEXT statements. NEXT is somewhat faster
than its equivalent NEXT I because no check is made to see if the
variable specified in the NEXT is the same as the variable in the most
recent FOR statement.

DERIVED FUNCTIONS

The following functions, while not intrinsic to BASIC, can be calculated using the
existing BASIC functions. Use the DEF statement.

SECANT	 	 	 	 SEC(X)=1/COS(X)

COSECANT	 	 	 	 CSC(X)=1/SIN(X)

COTANGENT	 	 	 COT(X)=1/TAN(X)

INVERSE SINE	 	 	 ARCSIN(X)=ATN(X/SQR(X*X+1))

INVERSE COSINE	 	 	 ARCCOS(X)=-ATN(X/SQR(X*X+1))+1.5708

INVERSE SECANT	 	 	 ARCSEC(X)=ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708

INVERSE COSECANT	 	 ARCCSC(X)=ATN(1/SQR(X*X-1))+
(SGN(X)-1)*1.5708

INVERSE COTANGENT	 	 ARCCOT(X)=-ATN(X)+1.5708

HYPERBOLIC SINE		 	 SINH(X)=(EXP(X)-EXP(-X))/2

HYPERBOLIC COSINE	 	 COSH(X)=(EXP(X)+EXP(-X))/2

HYPERBOLIC TANGENT	 	 TANH(X)=-EXP(-X)/(EXP(X)+EXP(-X))*2+1

HYPERBOLIC SECANT	 	 SECH(X)=2/(EXP(X)+EXP(-X))

HYPERBOLIC COSECANT		 CSCH(X)=2/(EXP(X)-EXP(-X))

HYPERBOLIC COTANGENT	 COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1

INVERSE HYPERBOLIC SINE	 	 ARGSINH(X)=LOG(X+SQR(X*X+1))

INVERSE HYPERBOLIC COSINE		 ARGCOSH(X)=LOG(X+SQR(X*X-1))

INVERSE HYPERBOLIC TANGENT	 ARGTANH(X)=LOG((1+X)/(X))/2

INVERSE HYPERBOLIC SECANT		 ARGSECH(X)=LOG((SQR(X*X+1)+1)/X)

INVERSE HYPERBOLIC COSECANT	 RGCSCH(X)=LOG((SGN(X)*SQR(X*X+1)+1)/
X)

INVERSE HYPERBOLIC COTANGENT	 ARGCOTH(X)=LOG((X+1)/(X-1))/2

CONVERSION OF BASIC PROGRAMS

Though implementations of BASIC on different computers are in many ways similar,
there are some incompatibilities for which you should watch if you are planning to
convert some BASIC programs that were not written in Microsoft BASIC.

1. Array subscripts. Some BASIC's use "[" and "]" to denote array
subscripts. Microsoft BASIC uses "(" and ")".

2. Strings. A number of BASIC's force you to dimension (declare) the length
of strings before you use them. You should remove all dimension
statements of this type from the program. In some of these BASICs, a
declaration of the form DIMA$(I,J) declares a string matrix of J elements
each of which has a length of I. Convert DIM statements of this type to
equivalent ones in BASIC: DIM A$(J). Microsoft BASIC uses "+" for string
concatenation, not "," or "&". Microsoft BASIC uses LEFT$, RIGHT$ and
MID$ to take substrings of strings. Other BASIC's use A$(I) to access the
Ith character of the string A$, and A$(I,J) to take a substring of A$ from
character position I to character position J. Convert as follows:

This assumes that the reference to a substring of A$ is not an
assignment. If the reference to A$ is on the lefthand side of an
assignment, and X$ is the string expression used to replace characters in
A$, convert as follows:

OLD NEW

A$(I)=X$ A$=LEFT$(A$,I-1)+X$+MID$(A$,I+1)

A$(I,J)=X$ A$=LEFT$(A$,I-1)+X$+MID$(A$,J+1)

OLD NEW

A$(I) MID$(A$,I,1)

A$(I,J) MID$(A$,I,J-I+1)

3. Multiple assignments. Some BASIC's allow statements of the form:

500 LET B=C=0

This statement would set the variables B and C to zero. In Microsoft
BASIC this has an entirely different effect. All the "="'s to the right of the
first one would be interpreted as logical comparison operators. This
would set the variable B to -1 if C equalled to 0. If C did not equal 0, B
would be set to zero. The easiest way to convert statements like this one
is to rewrite them as follows:

500 C=0:B=0

4. Some BASIC's use a backslash instead of ":" to delimit multiple
statements per line. Change the backslash to ":" in the program.

5. Programs which use the MAT functions available in some BASIC's will
have to be re-written using FOR...NEXT loops to perform the appropriate
operation.

APPENDICES

ACCESSING USER MACHINE CODE SUBROUTINES

In situations where sections of high-speed processing are required, it may be
advantageous to use machine code subroutines. A user machine code subroutine
must have the following characteristics:

1. Exit from the subroutine is by instruction RTS.

2. The stack must be at the same level on exit as at entry.

3. The only zero page RAM locations that can be used are (HEX) 35 to (HEX)
80.

Note that these zero page locations are corrupted by BASIC if an INPUT command
is used. User subroutines should therefore save any zero page values in RAM
adjacent to the subroutine, and restore them to zero-page when next called.

To call a user subroutine from BASIC, the following set of steps is required:

1. Decide whereabouts in memory you are going to put your subroutine -
this should be near the top of available memory space.

2. POKE the decimal number corresponding to the lower 8 bits of the
subroutine start address into decimal location 34 (see POKE, chapter 3).

3. POKE the decimal number corresponding to the higher 8 bits of the
subroutine start address into decimal location 35.

4. Call the subroutine via the USR command.

For example, to call a machine code subroutine whose start is located at address
HEX 1F00

Low byte of subroutine address = HEX 00 = decimal 00

High byte of subroutine address = HEX 1F = decimal 31

10 POKE 34,0 ; set up low byte

20 POKE 35,31 ; set up high byte

30 X=USR(I) ; call the subroutine

Note that X and I (these may be any variable) are dummy locations which have no
meaning within the program context.

Transfer of parameters between the user subroutine and BASIC program are
effected by using the BASIC PEEK and POKE functions to access a common area
of RAM. For example, to access a parameter calculated by the above subroutine
call, the following code is required:

User subroutine:

1F00 LDA $1EFE ; pickup input parameter

... ; code to calculate parameter

...

STA $1EFF ; result stored in location 1EFF

RTS ; return to BASIC

BASIC:

10 M=1

20 POKE 7934,M ; poke M to HEX location $1EFE

30 POKE 34,0

40 POKE 35,31

50 X=USR(I) ; call user subroutine at $1F00

60 N=PEEK(7935) ; N = result at HEX $1EFF

Note that the BASIC address parameters must be in decimal notation.

To enter a machine code subroutine to memory, you should carry out the following
steps:

1. Using the TANBUG monitor, enter your user subroutine at the top end of
your available memory. You can do this with either the TANBUG "M"
command, the XBUG translator, or from cassette.

2. Enter BASIC by typing GE2ED.

3. In response to the "MEMORY SIZE" prompt, type in a decimal number
whose HEX value is below the start address of your user subroutine.

4. Enter your BASIC program, either from the keyboard or from cassette.

You are now ready to run the program.

Using Zero Page Locations

BASIC and the associated TANBUG subroutines together use up all zero page
locations. Therefore, when employing user subroutines, you cannot use zero page
RAM to hold information between one user subroutine and the next. The only
exception to this rule is if you are not using the BASIC INPUT command, in which
case you may use locations $35 (HEX) to $80 (HEX).

You may of course use any zero page location you like within your user subroutine
providing you save its contents on entry (either on the stack or in memory allocated
to your subroutine) and restore it on exit from the subroutine.

Program Crashes

As will all machine code programs, a system crash occurs if you try to execute
incorrectly entered code. Often, it will be impossible to recover BASIC after a crash,
and the machine will behave in an unpredictable way until a RESET is executed. For
this reason it is recommended that an up-to-date tape dump is kept of all code -
minimum effort is then required for program re-entry.

Using Interrupts With BASIC

You can not directly enter a "BASIC" written interrupt routine via an interrupt. There
are two ways to handle interrupts in BASIC.

1. The interrupt can set a flag stored in a memory location outside BASIC's
program area. The BASIC "WAIT" command (chapter 3) can then be used
to poll this location and hold program execution until the flag becomes
set.

2. If other program functions are being executed and are required to
continue until an interrupt occurs, then the PEEK command may be used
to examine the flag, and only take action if it is set.

A user machine code interrupt routine is loaded into memory in a similar way to that
described for user machine code subroutines. The MICROTAN 65 manual gives
details of the method of adding interrupt driven peripherals.

Note that user interrupt routines must obey the following rules:

1. The accumulator, X and Y registers must be saved on entry and restored
on exit (the Processor Status is saved automatically).

2. The stack level must be the same on exit as at entry.

Note also that 6502 interrupts are disabled during cassette file read and write.

USING MICROTAN'S GRAPHICS WITH BASIC

You can use the POKE and PEEK functions in BASIC to produce a graphics (or
mixed alphanumeric and graphics) display. The required data is written directly to
the memory-mapped VDU. Note, however, that if you use BASIC's PRINT or INPUT
command the display is scrolled and the graphics information is lost.

In alphanumeric mode you can consider the display as being made up of 16 rows of
32 characters each. The following sub-routine (which may of course be allocated
any line number) puts the character held in string Z$ out on the screen at the co-
ordinates specified in X and Y. If X and Y are too large no action is taken.

(The comments shown are not part of the program but are used to explain each
step).

100 REM SCREEN ADDRESSED CHAR OUTPUT

110 IF X>31 THEN RETURN ; check X size

120 IF Y>15 THEN RETURN ; ditto Y.

130 ADDR=512+X+((15-Y)*32) ; where to put ut.

140 DTA=ASC(Z$) ; data

150 POKE ADDR,DTA ; write it out

160 RETURN

The following subroutine can be used to address the 64x64 chunky graphics space.
The input parameters X and Y specify the screen co-ordinates, while if Z is a 0 the
pixel is obliterated, if Z is a 1 a pixel is displayed. If Z is negative then the screen is
not changed but a value of 0 or 1 is returned in Z to indicate the state of that pixel. If
X and Y are out of range then no action is taken.

Warning - do not re-enter command mode with graphics set or you may need to
reset to normal mode. Note that, initially the screen contains all spaces and
therefore some graphics information is already present when you run a program.
You may need to clear it just to use this subroutine.

200 REM GRAPHICS SUBROUTINE

210 IF X>63 THEN RETURN ; X bound

220 IF Y>63 THEN RETURN ; Y bound

230 ADDR = 512+X/2+(INT(Y/4))*32 ; calculate address

240 BIT = 2^((X AND 1)+2*(3-(Y AND 3))) ; calculate required bit pattern

250 DTA = PEEK (ADDR) ; read data

260 IF Z<0 GO TO 350 ; skip if Z negative

270 IF Z>0 GO TO 350 ; skip if Z positive

280 DTA = DTA AND (NOT BIT) ; if zero, clear this bit

290 DUMMY = PEEK (49136) ; set graphics

300 POKE ADDR,DTA ; write it

310 POKE 49139,0 ; set char mode

320 RETURN

330 DTA = DTA OR BIT ; output a 1

340 GO TO 290

350 Z = DTA AND BIT ; what is this bit

360 IF Z = 0 THEN 320

370 Z = 1

380 RETURN

CASSETTE DATA FILE HANDLING

MICROTAN BASIC contains software to allow you to write data files to and read
files from an ordinary cassette player. You can use this either to read in a complete
data file, process it, and record the results (single cassette non remote mode) or
implement a motor remote control facility and use two cassette units for a read-
process-write facility.

Dual Cassette Recorder Connections

On the MICROTAN mini-rack, cassette socket 0 should be used for the replay
machine and cassette socket 1 for the record machine. If you are using a single
recorder only this should be plugged into socket 0.

The XBUG firmware is necessary to use the data file handling facility. BASIC will
crash on these commands if the PROM is not present. Cassette players must have
their input/output levels set up as described in the XBUG manual before use with
BASIC.

Remote Control Connections

The 6522 on TANEX which handles the cassette I/O has pin PB5 allocated as
control for the replay cassette, and PB6 as record cassette control. The cassette
drive is off when the pin output is high or three-state.

Different types of cassette recorder have different remote control options, while
some have none at all. You should check which type your recorder has and connect
it up as required.

WARNING: IF YOU ARE USING A MAINS POWERED RECORDER ENSURE THAT IT
IS NOT POSSIBLE FOR ANY EXTERNAL VOLTAGE OR MAINS VOLTAGE TO
APPEAR ON YOUR MICROTAN SYSTEM. DO NOT CONNECT THE CONTROL
OUTPUTS DIRECT TO THE REMOTE CONTROL INPUT OF YOUR CASSETTE
PLAYER, AN INTERFACE CIRCUIT MUST BE USED.

The remote control circuit shown below will be suitable for most portable recorders.
If you are using one cassette only but require remote control, you should wire the
relays so that your cassette operates when either PB5 or PB6 is asserted. It may be
necessary to incorporate an override switch to allow you to rewind your cassette.

BASIC Programming Commands

Data file manipulations are carried out by POKEing into certain zero page locations
immediately prior to executing INPUT or PRINT statements. After execution of the
statement, normal mode is automatically returned.

The legal operations are:

POKE 14,0	 	 sets fast data format.

POKE 14,1	 	 sets CUTS data format

These do not need to precede I/O statements.

Example:

The program

10 POKE 14,1

20 POKE 22,255

30 PRINT "FILE1"

40 PRINT "NAMED"

50 STOP

sets CUTS speed, records the message "FILE1", prints "NAMED" on the VDU, then
exits.

USING THE CASSETTE FILES WITHOUT REMOTE
CONTROL

Recording

First, record a filename of your choice as described in the example above. Then
record all data generated by your program using the POKE 22,254 command. This
may either be done as your program generates it (though if you are doing long
calculations this could be inefficient), or from store at the end of the program.

Playback

Rewind the tape. Use the POKE 22,1 command to look for your filename (all
individual records with short headers will be ignored). Once you have found this,
you can then read in your data records. Note that if you take a long time to process
each record then the cassette may play back the next record before you are ready
for it.

POKE

PRINT...

Turns the cassette on, records a long header, then all
data in the print statement. Turns cassette off.

POKE 22,254

PRINT…

Turns cassette on, records a short header, then all data
in the print statement. Turns cassette off.

POKE 22,1

INPUT...

Turns cassette on, looks for a long file header, reads the
recorded line, turns the cassette off.

POKE 22,2

INPUT...

As above but does not look for a long file header.

10 POKE 14,1		 	 ; sets CUTS speed

20 POKE 22,1		 	 ; look for the file name

30 INPUT A$

40 IF A$="FILE1" THEN 20	 ; is it the one ?

50 POKE 22,2

60 INPUT A	 	 	 ; get the data

70 A=A+2:PRINT A	 	 ; process it

80 GOTO 50	 	 	 ; next record

Remote Control Operation

Remote control operation is similar to that described above. However, you can now
read in one record at a time from your input cassette, process it, and record it on
your output cassette.

Errors

If a parity error occurs on read, the message PARITY is printed, and the program
returns to the command mode. By typing CONT<CR> you can then enter data
manually and the program will continue.

Note that if you exit from a program while the PRINT or INPUT statements are set
up for cassette (this may occur if you CTRL C out of a program, or if you do not find
the file you are looking for), then it may be necessary to depress CTRL C a few
times to regain command mode.

File Formatting

From the command description it is obvious that cassette input-output is entirely
free format - the content is totally up to you the user. It is more time efficient if you
store as many characters as possible, for example:

POKE 22,254

PRINT A;",";B;",";C

is almost three times as fast as recording each one separately. If you use this
method care should be taken over 4 points:

1. The type of input statement used to read input data should be the same
format as the output statement, i.e. errors will occur if you try to read a
string with a numeric input statement.

2. You, the user, must output commas between each number in a multiple
statement as shown above.

3. You must always read the correct number of entries in a record - i.e. if
you record three numerics in a record you must read three back.

4. Records must have a maximum length of 80 characters, otherwise only
the first 80 will be read.

