
THE ADVANCED
USER GUIDE
FOR THE BBC MICRO

BRAY, DICKENS & HOLMES

The
Advanced

User
Guide

for the BBC Microcomputer

Andrew C. Bray,
St. Catharines College,
Dept. of Computer Science,
Cambridge University

Adrian C. Dickens,
Churchill College,
Dept. of Engineering,
Cambridge University

Mark A. Holmes BA,
Fitzwilliam College,
Dept. of Clinical Veterinary Medicine,
Cambridge University

Published by the Cambridge Microcomputer Centre

Published in the United Kingdom by:
The Cambridge Microcomputer Centre,
153-154 East Road,
Cambridge,
England
Telephone (0223) 355404
Tlx 817445
ISBN 0 946827 00 1

Copyright © 1983 The Cambridge Microcomputer Centre
First published 1983

Re-mastered by dv8 in 2017
Fifth revision January 2021

For the latest revision of this PDF go to:
https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242

The Authors would like to thank Clive Birks, Andrew Cripps, Nigel Dickens, Tim
Dobson, Alistair France, Jonathan Griffiths, Dr Hermann Hauser, Nicholas Holmes,
Dr John Horton, Chris Jordan, Brian Jones, Peter Morrison, Dan Nanayakkara and
Alex Van Someren for their assistance in the production of this book.

All rights reserved. This book is copyright. No part of this book may be copied or
stored by any means whatsoever whether mechanical, photographic or electronic,
except for private or study use as defined in the Copyright Act. All enquiries should
be addressed to the publishers. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
information contained herein.

The Authors gratefully acknowledge Acorn Computers Limited for their kind
permission to reproduce the complete circuit diagram and keyboard circuit diagram.
The Authors would like to point out that Acorn Computers Limited reserve the right
to make improvements in the specification of its products. Therefore the circuit
diagrams and other contents of this book may not be in complete agreement with the
product supplied.

The Authors thank Rockwell International for their permission to reproduce
diagrams from their R6522 data sheet. These diagrams remain the copyright of
Rockwell International.

Please note that within this text the terms Tube, Econet and Electron are registered
tradenames of Acorn Computers Limited. CP/M is a registered trademark of Digital
Research Inc. All references in this book to the BBC Microcomputer refer to the
computer produced for the British Broadcasting Corporation by Acorn Computers
Limited.

This book was prepared using the Acornsoft VIEW wordprocessor on the BBC
Microcomputer and then computer typeset by Computerset and MFK Graphics of
Saffron Walden. Book production by Cambridge Marketing Limited.

https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242
https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242
https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242
https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242
https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242
https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242
https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242
https://stardot.org.uk/forums/viewtopic.php?f=42&t=17242

3

Contents
Introduction 5

1 Introduction for those new to machine code 7

Operating System commands

2 Operating System commands 11

Assembly Language Programming

3 The BASIC assembler 21
4 Machine code arithmetic 31
5 Addressing modes 35
6 The assembler mnemonics 41

Operating System interfaces

7 Operating system calls 101
8 *FX/OSBYTE calls 109
9 OSWORD calls 247

10 Vectors 253
11 Memory usage 267
12 Events 287
13 Interrupts 295
14 RS423 309
15 Paged ROMs 317
16 Filing systems 333

4

Hardware

17 An introduction to the hardware 353
18 The video circuit (6845) 359
19 The video ULA 377
20 The serial interface 385
21 The paged ROM select register 395
22 Programming the 6522 VIA 397
23 The system 6522, including sound and speech 417
24 The user 6522 425
25 Disc and Econet interfaces 427
26 The analogue-to-digital converter 429
27 The Tube 433
28 The 1 MHz bus 437

Appendices

A *FX/OSBYTE call index 449
B Operating System calls summary 455
C Table of key numbers 456
D VDU codes 459
E PLOT number summary 460
F Screen mode layouts 462
G US MOS differences 478
H Disc upgrade 480
I Circuit board links 482
J Keyboard circuit diagram 489

Bibliography 491

Glossary 493

Index 499

5

Introduction
The ‘Advanced User Guide for the BBC Microcomputer’ has
been designed to be an invaluable supplement to the User
Guide. Information already contained in the User Guide is
only repeated in this book in sections which contain much
new information and where omitting the duplicated details
would have left the section incomplete. Some parts of the
User Guide are factually inaccurate or incomplete and where
details in this book are at variance with corresponding
information in the User Guide the reader will find that a more
accurate description is usually found in these pages.

This reference manual contains a considerable amount of
information about 6502 assembly language programming, the
operating system and the BBC Microcomputer hardware. The
intention has not been to provide the inexperienced user with
a tutorial to guide him or her through the complexities of
these advanced concepts. However, it is hoped that the
information has been presented in a way that enables users
new to assembly language programming and unfamiliar with
hardware topics to develop their understanding of the
machine and to expand the scope of their programming.
Contained within this book is an extensive description of the
software environment and the hardware facilities available to
the assembly language programmer. The authors have
presumed that the readers of this Advanced Guide are
reasonably familiar with the basic use of the BBC
Microcomputer. While every attempt has been made not to
bury the facts under a mountain of computer jargon the use of
technical terms is an inevitable consequence of attempting to
condense a large number of facts into an easily accessible
form.

All the information about the operating system is exclusively
based on OS 1.20. The hardware information has been
verified with an issue 4 circuit board but where possible
differences on earlier issue boards have been noted.

While this book gives the programmer full access to all the
BBC microcomputer’s extensive software and hardware
facilities using techniques which the designers of the machine

6

intended programmers to use, it also opens the door to a
multitude of ‘illegal’ programming techniques. For the
enthusiast, direct access to operating system variables or chip
registers may enable him to perform the bizarre or even the
merely curious. For the serious programmer, on the other
hand, attention to compatibility and machine standards will
enable him to write software which will run on BBC
Microcomputers of all configurations. The responsibility rests
with YOU, the user. The value of your machine depends on
continued software support of the highest quality; unlike
many machines the BBC microcomputer has been designed to
be used in a variety of different configurations and the
operating system software provides extensive information
about the current hardware and software status. The
operating system makes most of the allowances required for
the different configurations automatically, but only when the
legal techniques are adhered to, so please use them.

The final paragraph in this introduction must be a word of
apology to those programmers engaged in the task of software
protection. Many of the details contained in this book will
give those intent on pirating software inspiration to
circumvent their protection techniques. On the other hand
these same details may also give the software protectors
inspiration. In the end no software protection is complete.
Any protection technique relies on the fact that the person
trying to break the protection has a threshold at which he
decides that the effort and resources required are greater than
the reward. For some this threshold is higher than others but
for these people the reward is often the victory in the
intellectual battle with the programmer of the protection
method. For those intent on denying the software producer
his income, one hopes that this threshold is somewhat lower.

7

1 Introduction for those
new to machine code
There comes a time in every programmer’s life (well, most
programmers’, anyway) when the constraints of a high level
language (e.g. BASIC) prevents him from implementing a
particular program idea or from utilising some machine
facility. At this stage the programmer must often seek
recourse to the microprocessor’s native language, its machine
code.

At the heart of any microcomputer is the microprocessor. This
microprocessor is the brain of the computer and provides the
computer with all its computing power. The BBC
Microcomputer uses a 6502 microprocessor and the brief
description of machine code given here applies specifically to
the 6502. The microprocessor performs instructions which are
contained in memory. Each instruction which the
microprocessor understands can be contained within a single
byte of memory. Depending on the nature of this instruction
the microprocessor may fetch a number of bytes of data from
the memory locations following the instruction byte. Having
executed this instruction the microprocessor moves on to the
byte after the last data byte to get its next instruction. In this
way the microprocessor works its way sequentially through a
program. These single byte instructions are called operation
codes (or just opcodes) although they are frequently referred to
as machine instructions (or just instructions). The data used
by the instructions are called the operands. A program using
the native machine instructions is called a machine code
program. An assembler is a software package (a language or a
program) which enables a programmer to create a machine
code program.

Machine code is substantially different from a higher level
language such as BASIC. The machine code programmer is
limited to three registers for temporary storage of data while
in BASIC he has unlimited use of variables. For more
permanent storage in machine code programs, the register
values can be copied to bytes of memory. Only very limited

8

arithmetic is available; there are no multiply or divide
instructions. There are no automatic loop structures such as
FOR…NEXT or REPEAT…UNTIL and any loops must be
explicitly set up by the programmer using conditional
branches (these approximate to IF … THEN GOTO … in
BASIC). The range of instructions available are sufficient to
enable extremely complex programs to be written, but a lot
more effort is required to implement the program. One of the
most grave disadvantages of machine code is that very little
error checking is made available to the programmer. A well
designed assembler will help the programmer, but once the
machine code program is running the only error checking is
that which is provided within the program itself.

At first glance it may appear that there is little to be gained
from writing a machine code program. The principal
advantage is that of speed. Whilst assigning a value to a
variable in BASIC will take about 1 millisecond, in machine
code assigning a similar value will only take 10 microseconds.
This is why fast moving arcade games have to be written in
machine code. Some of the facilities available on the BBC
Microcomputer can only be used when programming in
machine code. For example, a user printer driver can only be
implemented in machine code.

Of no less importance than the design of the hardware or the
choice of microprocessor in the machine is the operating
system. This is a large, and highly complex machine code
program which governs the machine. The operating system
consists of a large number of routines which perform
operations such as scanning the keyboard, updating the
screen, performing analogue-to-digital conversions (for the
joysticks), and controlling the sound generator. All these
functions are performed by the operating system and are
made available to other machine code programs. A machine
code program with which all users will be familiar is BASIC.
This program, which provides the user with an easier way of
using the microprocessor’s computing power, constantly uses
the operating system routines to get input from the keyboard
and to reflect that input on the screen. BASIC recognises
words of text and when it wants to use a hardware facility it
calls a machine code routine within the operating system. The

9

great advantage of this independence of the language
program from the direct use of hardware is that the same
facilities can be offered to different languages.

Writing a machine code program requires the programmer to
place the appropriate values into successive memory locations
corresponding to the opcodes and operands. This would be a
very tedious business if it had to be done by looking up the
opcode values in tables and poking in the values by hand. It is
much faster, easier and more efficient to get the computer to
do most of the work. A program which analyses text input
representing opcode symbols, converts these to opcode values
and inserts these values into memory is called an assembler.
The text input consists of opcode mnemonics (three-letter
words which specify the opcode type) followed by numbers,
variable names or expressions which give the values of the
operand to be used by the opcode. Like BASIC the assembler
requires the program to be written in a defined way according
to a syntax. The language that an assembler understands is
called assembler or assembly language. In the BBC
Microcomputer an assembler is available as part of the BASIC
language and a description of how this assembler can be used
is contained in the chapter on the BASIC assembler.

Many of the following sections include descriptions of the
various operating system routines and facilities which are
available to the machine code programmer.

10

11

2 Operating System
commands
The command-line interpreter resident within the operating
system will recognise a number of commands and act
appropriately upon receiving them. These commands are most
often used from the keyboard or in BASIC programs using the
‘*’ prefix. Commands may also be passed to the command-line
interpreter using the OSCLI call (&FFF7) from machine code
(see section 7.12 for details of OSCLI).

Any command offered to the command-line interpreter but
not recognised as a command resident in the command table
is offered to paged ROMs for possible action. If it is not
claimed by a paged service ROM it is presented to the
currently selected filing system ROM. The filing system may
recognise the command as one of its internal file commands or
may attempt to load and execute a file specified by the
command name (the cassette and ROM filing systems
excepted), i.e. it is equivalent to ‘*RUN <command name>’.

Each command name may be abbreviated by using enough
letters to identify the command terminated by a full stop. The
minimum abbreviations for each command are noted below
with the description of each command.

The command-line interpreter does not distinguish between
upper and lower case characters in the command name (‘*cat’
has the same effect as ‘*CAT’).

Where a string or filename is specified as a parameter the text
need not be enclosed within paired quotation marks but must
be separated from the command name by at least one space.

Several of the operating system commands invoke OSBYTE
calls and so their action mimics these calls. Where there is an
equivalent OSBYTE call this has been indicated.

12

A number of commands are filing system dependent. Any
command which creates or uses files is described for the ROM
and cassette filing systems only.

2.1 *|

An operating system command-line with a ‘|’, string escape
character, as its first non-blank character will be ignored by the
operating system. This could be used to put comment lines
into a series of operating system commands placed in an
EXEC file for example.

2.2 *.

This command is directly equivalent to the *CAT command.

2.3 */<file name>

This command is treated exactly the same as typing *RUN
<file name> or *<file name>. The file name is offered
directly to the filing system and will not be interpreted as a
command.

2.4 *BASIC (*B.)

While the operating system is independent of any particular
language and only serves to provide an interface between
languages or utility software and the machine hardware,
BASIC has been accorded special status. The *BASIC
command is resident in the operating system command table
and it enables the operating system to select a language in
paged ROM not possessing a service entry point (for further
details about paged ROMs see chapter 15). The operating
system scans the paged ROMs and keeps a record of which
paged ROM contains BASIC (see OSBYTE &BB/187). If a
BASIC ROM is not present this command is offered to other
paged ROMs.

13

2.5 *CAT (*.)

This command displays a catalogue of files from the selected
filing system. When the cassette or ROM filing systems are
selected the name of each file encountered is printed on the
screen along with the block number of the last block read.
When the last block is reached further information is printed
out. If the default messages are selected then the length of the
file will be added to the block number.

FILENAME 09 0904

If extended messages have been selected then the catalogue
printout after the final block has been reached will look like
this:–

FILENAME 09 0904 FFFF0E00 FFFF801F

This file is a BASIC (level 1) program SAVEed from BASIC
with PAGE=&E00 and the program is &904 bytes long. The
fourth field in the catalogue printout is the start address of the
file and the file will *LOAD to this address by default. The
fifth field is the execution address. When using level 2 BASIC
the execution address will be 8023. When an attempt is made
to *RUN a file the processor jumps (using JSR) to this address.
The two most-significant bytes of the four-byte fourth and
fifth fields are set to the machine high order address (see
OSBYTE &82/130).

For details about selecting extended messages see *OPT.

2.6 *CODEx,y (*CO.) OSBYTE with A=&88 (136)

This command enables the user to incorporate his own
command into the operating system command table. *CODE
executes machine code indirected through the user vector
(USERV) at locations &200,&201 (low-byte, high-byte). The
default contents of the user vector produce the ‘Bad
Command’ message. The machine code at USERV is entered
with A=0, X=x and Y=y.

14

For example:

 10 DIM MC% 100
 20 OSASCI=&FFE3
 30 USERV=&200
 40 FOR opt%=0 TO 3 STEP3
 50 P%=MC%
 60 [
 70 OPT opt%
 80 .write
 90 CMP #0 \ is this *CODE ?
100 BEQ code \ if *CODE call act upon it
110 BRK \ anything else, print error message
120]
130 ?P%=255 : P%=P%+1 : REM error number
140 $P%="*CODE only please"
150 P%=P%+LEN$P%
160 [
170 OPT opt% \ reset OPT
180 BRK \ op code value=0
190 .code TXA \ transfer contents of X reg. to Acc.
200 JSR OSASCI \ print ASCII character
210 RTS \ return to BASIC
220]
230 NEXT
240 ?USERV=write MOD 256
250 ?(USERV+1)=write DIV 256

This example prints out the ASCII character corresponding to
the value of the first parameter given to the *CODE
command. After this program has been run typing in ‘*CODE
65’ or ‘*FX 136,65’ will cause a letter ‘A’ to be printed. The
second parameter (stored in Y) if included, is ignored.

See also *LINE

2.7 *EXEC <filename> (*E.)

Text files from the currently selected filing system can be used
as if they were keyboard input using this command. A typical
application might involve the setting up of a user’s favourite
soft key definitions which are *EXECed in at the beginning of
a programming session.

See also *SPOOL and OSBYTE &C6/198.

15

2.8 *FXa,x,y (*F.)

OSBYTE calls may be performed directly from the keyboard
using this command. A, X and Y are loaded by the operating
system from the command-line parameters. Any OSBYTE call
may be made using the *FX command but it is not always
appropriate to make an OSBYTE call using this direct method
e.g. OSBYTE calls that return values in any of the registers.
The *FX command is a useful way of making those OSBYTE
calls which have a direct effect from a BASIC program or from
the command-line interpreter. For further information on
specific *FX/OSBYTE calls refer to chapter 8.

2.9 *HELP (*H.)

Typed in on a machine containing only the operating system
and BASIC ROMs this command causes the version number
of the operating system to be printed out i.e.

OS 1.20

Each *HELP call is offered to any paged ROMs that are
resident and these may be able to respond to further
command-line parameters. e.g.

*HELP VIEW
*HELP UTILS

For more information about *HELP handling in paged ROMs
see section 15.1.1 (service call 9).

2.10 *KEYn<string> (*K.)

The ten red-topped function keys, the BREAK key, the COPY
key and the four cursor control keys may be set up using this
command. Using *KEYn with n in the range 0 to 9 sets up the
function keys. *KEY10 can be used to program the BREAK
key. Before the remaining programmable keys can be used a
*FX4,2 must be performed. This disables cursor editing and
enables the following soft keys:–

*KEY 11 COPY

16

*KEY 12 left cursor
*KEY 13 right cursor
*KEY 14 down cursor
*KEY 15 up cursor

Each time a soft key is pressed a soft key character is inserted
into the keyboard buffer. The soft key characters may be
calculated by adding the soft key number to &80 (128). (A soft
break actually places a character of value &CA in the input
buffer but this behaves identically to character &8A.)

See OSBYTEs &DD/221 to &E4/228 for more information
about the function keys.

Control codes may be introduced into the string by using an
‘escape’ character, ‘|’. This acts in a similar way to the CTRL
key and so ‘|G’ gives a bell sound as the CTRL and G keys
would if pressed simultaneously; ‘|G’ actually places a
character of value 7 into the soft key buffer. The ‘|’ character
may be inserted using the sequence ‘||’ and a quotation mark
(") may be represented by preceding the quotation mark with
the ‘escape’ character (‘|"’). The delete character (ASCII &7F/
127) may be introduced using the ‘escape’ character followed
by a question mark. Characters of value greater than 127 may
be inserted by using the escape sequence ‘|!’; this sequence
will add 128 to the value of the next character in the string.

e.g. ‘|!A’ 128+65=193
 ‘|!|A’ 128+1=129

This method of including non-printable characters into a
string may be used in any string which is processed using the
operating system routines GSINIT and GSREAD (see section
7.9) and is not restricted to use of the *KEY command.

2.11 *LINE <text> (*LI.)

This command executes machine code at the location pointed
to by the contents of the user vector (USERV) at locations
&200,&201 (low-byte,high-byte). The command enters this
code with the A=1, X=least significant byte of string address
and Y=most significant byte of string address. *LINE provides

17

an easy method of incorporating a user function into the
operating system command table.

 10 DIM MC% 100
 20 OSASCI=&FFE3
 30 USERV=&200
 40 FOR opt%=0 TO 3 STEP3
 50 P%=MC%
 60 [
 70 OPT opt%
 80 .write
 90 CMP #1 \ is this *LINE?
100 BEQ code \ execute machine code if *LINE
110 BRK \ otherwise print out error message
120]
130 ?P%=255 : P%=P%+1 : REM error number
140 $P%="*LINE only please"
150 P%=P%+LEN$P%
160 [
170 OPT opt% \ reset OPT
180 BRK \ op code value 0
190 .code STX &70 \ *LINE code entry point and store
200 STY &71 \ string address; low-byte,high-byte
210 LDY #0 \ set up Y register for indexing
220 .loop LDA (&70),Y \ Post-Indexed Indirect addressing
230 JSR OSASCI \ print out character
240 INY \ increment index
250 CMP #&0D \ test for end of string
260 BNE loop \ if not last character go round again
270 RTS \ finished
280]
290 NEXT
300 ?USERV=write MOD 256
310 ?(USERV+1)=write DIV 256

This example program sets up the user vector to point to some
machine code which prints out the string pointed to by X and
Y. After this program has been run typing in

‘*LINE THIS IS SOME TEXT’

results in ‘THIS IS SOME TEXT’ being printed out.

See also *CODE

18

2.12 *LOAD<filename><address> (*L.)

A file may be loaded into memory from the selected filing
system using the *LOAD command. If the load address is not
specified in the command line then the file will load at its start
address (this is usually the address from which it was saved).

2.13 *MOTORn (*M.) OSBYTE with A=&89 (137)

This command executed with n=0 opens the cassette relay (i.e.
switches the motor off) and with n=1 closes the cassette relay
(i.e. motor on).

2.14 *OPTx,y (*O.) OSBYTE with A=&8B (139)

This command is highly filing-system specific and although
the general protocol of the cassette filing system is usually
adhered to, other filing systems may interpret this command
differently and expand upon it.

For the cassette and ROM filing systems:–

*OPT 0,0 restore *OPT default values
*OPT 1,0 turn off filing system messages
*OPT 1,1 turn on filing system messages (non-extended)
*OPT 1,2 turn on extended messages
*OPT 2,0 errors ignored though messages may be given
*OPT 2,1 on error, prompt for re-try
*OPT 2,2 on error, abort
*OPT 3,n set interblock gaps to n/10 seconds

(only relevent to cassette SAVE operations)

When extended messages have been selected the following
information is printed on the screen on completion of the
filing system operation:

file name – block no. – file length – start adr. – execution adr.

All numeric values are printed in hexadecimal.

See also *CAT

19

2.15 *ROM (RO.) OSBYTE with A=&8D (141)

The *ROM filing system is initialised using this command.
The *ROM filing system is able to use paged ROMs or serially
accessed ROMs associated with the speech processor. These
ROMs must contain data in a block format similar to that used
in the cassette filing system. With the ROM filing system
initialised all other filing systems are disabled.

For further details see section 16.11 in the filing systems
chapter.

2.16 *RUN <file name> (*R.)

This command causes a file to be loaded into memory at its
start address and then the microprocessor jumps (using JSR)
to the execution address. This is a method of loading and
running machine code programs. Any text following the file
name is available to pass parameters to the program.
Parameter passing is not implemented for the cassette or
ROM filing systems (see filing systems chapter 16).

2.17 *SAVE <file name> <start addr> <end addr>
<exec.addr> <reload addr> (*S.)

The contents of memory may be saved to a file on the
currently selected filing system using *SAVE. Only the start
address and the end address are mandatory. If omitted the
execution address will default to the start address. The reload
address allows the start address stored with the file to be
different to the actual start address used when saving. The
end address may be in the form

+length

where the second field is preceded by a ‘+’ and the size of
memory to be saved is specified in hexadecimal.

20

2.18 *SPOOL <filename> (*SP.)

The *SPOOL command causes all screen output to be
repeated into a file. The file is opened by *SPOOL <file name>
and closed by repeating this command or by typing *SPOOL
alone.

See OSBYTEs &03 and &C7/199 for more information.

2.19 *TAPEn (*T.) OSBYTE with A=&8C (140)

*TAPE without any number selects cassette filing system and
sets the default baud rate (1200). *TAPE3 selects tape with 300
baud and *TAPE12 selects 1200 baud.

2.20 *TVx,y (no abbreviation) OSBYTE with A=&90 (144)

The *TV command allows the vertical position of the screen to
be altered and interlace to be switched on or off. The first
parameter causes the vertical position to be altered; a value of
0 causes no change, a value of 1 would cause the screen to be
moved up one line and a value of 255 would cause the screen
to be moved down one line. The second parameter should be
0 or 1, a value of 0 causes interlace to be enabled and a value
of 1 causes interlace to be switched off. Any change of
interlace or screen position will only come into effect at the
next mode change and will remain until a further *TV
command or a hard reset. Interlace cannot be turned off in
mode 7.

(It is possible to switch off interlace in mode 7 but the
character set stored in the SAA 5050 is designed to be used
with interlace on. Type in,
VDU23,0,8,&90;0;0;0,23,0,9,&09;0;0;0 and you will see why the
operating system disallows this. See chapter 18 for more
information about programming the 6845 video controller
chip.)

21

3 The BASIC Assembler
One of the many attractive features of BBC BASIC is the
incorporation of a mnemonic assembler within the language
itself. This provides a powerful environment for the assembler
and allows machine code to be easily incorporated within
BASIC programs. Hybrid BASIC/machine code programs may
often lead to the use of the best features of each language, the
speed of machine code when it is required, coupled with the
increased power of BASIC when speed is not of paramount
importance.

The assembler facilities available to users are dependent on
the version of BASIC that is resident in the machine. To
ascertain which version of BASIC is present type ‘REPORT’
following a BREAK. If the copyright message is dated 1981
then this is ‘old BASIC’ which will henceforth be referred to as
Level 1 BASIC, and if the message is dated 1982 then this is
‘new BASIC’ which will be referred to as Level 2 BASIC.

Below is an example of a simple machine code program
written using the BASIC assembler.

 10 OSWRCH=&FFEE
 20 DIM MC% 100
 25 DIM data &20
 30 FOR opt%=0 TO 3 STEP 3
 40 P%=MC%
 50 [
 60 OPT opt%
 70 .entry LDX #0 \ set index count (in X reg.) to 0
 75 LDA data \ load first item in accumulator
 80 .loop JSR OSWRCH \ perform VDU command
 90 INX \ increment index count
100 LDA data,X \ load next VDU parameter
110 CPX #&20 \ has count reached 32 (&20) ?
120 BNE loop \ if not then go round again
130 RTS \ back to BASIC
140]
150 NEXT opt%
160 !data=&04190516
170 data!4=&00C800C8
180 data!8=&00000119
190 data!&C=&01190064
200 data!&10=&000000C8
210 data!&14=&00000119
220 data!&18=&0119FF9C
230 data!&1C=&0000FF38
240 CALL entry

22

This program performs some simple graphics using the
BASIC VDU method to select the screen MODE and perform
PLOTting. All the VDU codes are contained within the block
of memory labelled ‘data’. Using the operator does not make
it immediately obvious what is going on. Four bytes are
inserted into memory with each ! operator. The least
significant byte being inserted at the address specified. Each
subsequent byte is inserted into the next byte of memory.

i.e.

!data=&04190416
data!4=&00C800C8

will result in an equivalent to, VDU
&16,&04,&19,&04,&C8,&00,&C8,&00 or, to separate it into its
two components,

VDU &16,&04
VDU &19,&04,&00C8;&00C8;

or

VDU 22,4 select MODE 4
VDU 25,4,200;200; PLOT 4,200,200 – move absolute X,Y

Any program which can be written in BASIC may also be
implemented in machine code although it is not always
sensible to do so.

There now follows a detailed description of using the BASIC
mnemonic assembler.

3.1 The assembler delimiters ‘[’ and ‘]’.

All the assembler statements should be enclosed within a pair
of square brackets. When the BASIC program is RUN, the
assembler statements contained between the square brackets
are assembled into machine code. This code is inserted
directly into memory at the address specified by P% and P%
is incremented by the number of bytes in each instruction or
directive.

23

Within the assembler delimiters the text of the assembly
language program may be written. The assembly language
program will consist of a number of assembler statements
separated by new lines or colons (as in BASIC).

Each assembler statement should consist of an optional label
followed by an instruction (this will be a three letter assembler
mnemonic or an assembler directive) and an operand (or
address). If a label is included it should be separated from the
instruction by at least one space. The operand need not be
separated from the instruction. Any character following the
operand and separated by at least one space from it will be
totally ignored by the assembler which will move onto the
next colon or line for the next statement. A comment may be
placed after the operand field and should be preceded by an
backslash (\). Any text following a backslash in an assembly
statement will be ignored by the assembler up to the next
colon or end-of-line.

N.B. In level 1 BASIC colons cannot be included in
expressions. Missing out a colon in a multi-statement line will
result in the statement after the intended colon being ignored
by the assembler. This error is often difficult to spot in a
program which assembles without error but then fails to
function as the programmer had anticipated.

During assembly of the example program above the following
printout is produced (with PAGE=&1900):

>RUN
1BEA
1BEA
1BEA OPT opt%
1BEA A2 00 .entry LDX #0 \set index count (in X reg.) to 0
1BEC 00 5A 1C .loop LDA data,X \ load next VDU parameter
1BEF 20 E3 FF JSR OSASCI \ perform VDU command
1BF2 E8 INX \ increment index count
1BF3 EQ 20 CPX #&20 \ has count reached 32 (&20) ?
1BF5 00 F5 BNE loop \ if not then go round again
1BP7 60 RTS \ back to BASIC

location label/mnemonic/address
 op.code/data \ comment

24

3.2 OPT, assembler option selection

OPT is an assembler directive or non-assembling statement
which can be included within an assembly program to select a
number of different assembler options.

The OPT command should be followed by a number to make
the option selection. The assembler options are selected on the
state of the least significant 2 or 3 bits of the OPT parameter.

bit 0 if set, assembly listing enabled.
bit 1 if set, assembler errors enabled.
bit 2 if set, assembled code placed in memory at O%
 (Implemented in Level 2 BASIC only)

In the example program above OPT is set up using the
FOR…NEXT loop variable, opt%. On the first pass of the
assembler OPT 0 is used, listing is suppressed and assembler
errors are not enabled. For the second pass an OPT 3 is used
which switches on assembly listing and enables assembler
errors. BASIC errors will be flagged as normal. The assembler
errors which are suppressed are the ‘Branch out of range’
error and the ‘No such variable’ error. These will normally be
generated during the first pass when the assembler is
resolving forward references (see section 3.5).

Bit 2 allows a program to be assembled into one region of
memory while being set up to run at a different address. P%,
the program counter (see below) should be set up as usual to
provide the source of label values. If bit 2 is set then O%
should be set up at the same time as P% to point to the start of
memory into which the machine code is to be assembled. This
facility is useful for assembling machine code where it is
impossible to use the memory in which the program is
eventually going to reside (e.g. Assembling programs which
are going to be blown into EPROM for paged ROMs). This
option is only available in Level 2 BASIC.

Each time the assembler is entered the OPT value is initialised
to 3. This means that a second chunk of assembler in the same
BASIC program must perform its own OPT selection.

25

3.3 The Location Counter P%

When the assembler is creating the machine code program the
code produced is placed in memory starting from the address
in P% (one of the resident integer variables) unless remote
assembly has been selected using OPT (see section 3.2).

The programmer must set P% to a meaningful value before
the assembly begins. The usual method for short programs is
to DIMension a block of memory and to set P% to this value
at the beginning of each pass of the assembler (as in the
example above). A classic problem is sometimes encountered
when a programmer adds more code to a short program
which has been allocated space by this method. If the code
created overflows the space DIMensioned for it and is
over-written by BASIC, it will fail to operate as expected
when tested; alternatively the code may over-write the BASIC
dynamic storage and a ‘No such variable’ error will be
flagged during the second pass of the assembler.

The assembler updates P% as it is assembling and when it
reaches the end of a pass the value of P% represents the
address of the first ‘free’ byte of memory after the machine
code program.

3.4 Labels

Any BASIC numerically assignable item may be used as a
label with the assembler (such as a variable or an array
element). A label is defined by preceding the variable name
with a full stop. The full stop prefix causes the assembler to
set up a BASIC variable containing the current value of P%.
Once set up this variable is available for use by any other part
of the assembler or BASIC program.

3.5 Forward Referencing and Two Pass Assembly

In the construction of a machine code program using the
BASIC assembler a large number of labels may be generated.
It is often the case that one part of the program needs to jump
forward over another part of the program. Labels provide a
convenient way of marking that point in the program to

26

which the processor is to jump. When assembling the
machine code, the assembler works sequentially through the
program and in the case of a forward reference the assembler
will encounter the reference before the label. In the normal
course of events an error will be flagged (No such variable).
In order to resolve forward references, two passes of the
assembler are required. The first pass should be performed
with error trapping switched off and during this pass all the
labels will be initialised. A second pass will provide all the
correct values required for forward referencing. During this
second pass error trapping should be enabled to pick up any
genuine programming mistakes.

The most convenient way of performing the two passes is to
use a FOR…NEXT loop. The programmer should make sure
that P% is reinitialised at the beginning of the second pass. It
is often convenient to set up the pseudo-operation OPT using
the FOR loop variable (errors and listing disabled for the first
pass, errors enabled and listing as required for the second).

3.6 The EQUate Facility in Level 2 BASIC

One of the improvements made to Level 2 BASIC was the
incorporation of some EQU pseudo-operation commands.
These allow the incorporation of data by reserving memory
within the body of the assembly language program.

The EQUate operations available are:–

EQUB equate byte reserves 1 byte of memory
EQUW equate word reserves 2 bytes of memory
EQUD equate double word reserves 4 bytes of memory
EQUS equate string reserves memory as
 required

These operations initialise the reserved memory to the values
specified by the address field. The address field may contain a
string, in double quotes, or string variable for the EQUS
operation or a number or numeric variable for the other EQU
operations. The assembler will use the least significant part of
the value if too large a value is specified.

27

The example program, written in Level 2 BASIC, could have
been written with lines 30 and 170 to 240 replaced with:–

141 .data EQUD &04190516
142 EQUD &00C800C8
143 EQUD &00000119
144 EQUD &01190064
145 EQUD &000000C8
146 EQUD &00000119
147 EQUD &0119FF9C
148 EQUD &0000FF38

In Level 1 BASIC one way to reserve space for data within the
body of a machine code program is to leave the assembler
using a right-hand square bracket and insert the data using
the address contained in P%. P% should then be incremented
by the appropriate amount before entering the assembler.

e.g. to incorporate a string into a machine code program.

 10 DIM MC% 100
 20 OSRDCH=&FFE0
 30 OSASCI=&FFE3
 40 FOR opt%=0 TO 3 STEP3
 50 P%=MC%
 60 [
 70 OPT opt%
 80 .entry LDY #0 \ zero loop index
 90 .loop LDA string,Y \ load accumulator with Y?string
100 JSR OSASCI \ write the character
110 INY \ increment loop index
120 CMP #&0D \ is the current character a CR
130 BNE loop \ if not get the next character
140 JSR OSRDCH \ get character from keyboard
150 CMP #9 \ is it the TAB key
160 BNE error \ if not flag an error
170 RTS \ return to BASIC
180 .string
190]
200 $P%="Please press the TAB key"
210 P%=P%+LEN($P%)+1
220 [
230 OPT opt%
240 .error BRK \ cause an error
250]
260 NEXT opt%
270 ?P%=&FF
280 P%=P%+1
290 $P%="Wrong key pressed"
300 ?(P%+LEN($P%))=0
310 CALL entry

This program prompts the user to press the TAB key by
printing out a message. If the wrong key is pressed an error is
flagged.

28

3.7 Handling errors with BRK

In the example program above the BRK instruction is used to
generate an error. The BRK instruction forces an interrupt
which is interpreted by the operating system as an error. As
part of the error handling in BASIC the programmer can
incorporate an error number and an error message into his
code to identify the error. The byte in memory following the
BRK instruction should contain the error number. The error
message string should follow the error number and must be
terminated by a zero byte.

The following lines set this up:–

240 .error BRK \ cause an error

270 ?P%=&FF Error number 255
280 P%=P%+1
290 $P%"Wrong key pressed" Error message
300 ?(P%+LEN($P%))=0 Terminating byte

When a BRK is encountered in a machine code program called
from BASIC the error message is printed out together with the
line number from which the machine code was called. Typing
‘REPORT’ or printing ERR will reproduce the message and
error number as with any BASIC error.

The user can provide his own BRK handling routine which
may be useful when using machine code away from the
BASIC environment (see section 10.2 for more information
about the BRK vector).

3.8 Entering machine code from BASIC – CALL and USR

Machine code routines can be entered from a BASIC program
using either the CALL statement or the USR function. On
entry to the machine code program using these instructions,
the accumulator, the X register, the Y register and the carry
flag are set to the least significant bytes (or bit) of the resident
integer variables A%, X%, Y% and C%. A number of
parameters may be passed to the machine code routine if the

29

CALL statement is used, the addresses and data types of
these parameters being available to the machine code in a
parameter block at location &600. The USR function allows the
machine code routine to return a value to the BASIC program
made up from the register contents. For more details of CALL
and USR refer to the ‘USER GUIDE’.

3.9 Conditional Assembly and Macros

Working within the BASIC environment it is possible to use
BASIC functions to implement these higher level assembly
language structures.

Conditional assembly is a method of varying the code
assembled according to a test. All the facilities of BASIC are
available for setting up the test criteria. Typical applications
for conditional assembly include the conditional incorporation
of debugging routines and selecting different hardware
specific sub-routines from a number of alternatives.

A macro is a group of assembler statements which may be
inserted into the assembler program when called. A macro
may be thought of as being a type of sub-routine which is
used to include a portion of assembler used more than once
within a program. A number of statements which are likely to
be used more than once can be enclosed within assembler
delimiters and placed within either a sub-routine (called using
GOSUB and terminated by RETURN), or a function definition
or a procedure definition. Using a procedure or a function is
the best way to implement macros because the programmer is
then able to pass parameters to the macro and the procedure/
function name serves to identify the macro.

e.g.

 10 DIM MC% 100
 20 FOR opt%=0 TO 3 STEP 3
 30 P%=MC%
 40 [
 50 OPT opt%
 60 .add CLC \ clear carry
 70 LDA &80 \ A=?&80
 80 ADC &81 \ A=A+?&81+carry
 90 STA &81 \ ?&81=A
100 OPT FNdebug(TRUE)
110]
120 NEXT
130 ?&80=1

30

140 ?&81=2
150 CALL add
160 PRINT'"Result of addition : ";?&81
170 PRINT'"A=&";~?&70,"X=&";~?&71,"Y=&";~?&72
180 END
190 DEF FNdebug(switch)
200 IF switch [OPT opt%:STA &70:STX &71:STY &72 \ save registers:]
210 [OPT opt%:RTS:]
220 =opt%

This highly contrived program adds two bytes together. It
uses a macro within which conditional assembly occurs.
Hanging a function on the end of an OPT command enables
the programmer to call the macro in a tidy manner. If
FNdebug is called with the value TRUE then some code which
saves the registers in zero page is inserted into the program
otherwise an RTS instruction is inserted. The function returns
with the value to which OPT was set in the first place. This
example indicates how the close inter-relation of the
mnemonic assembler with BASIC results in a very powerful
assembler. The programmer should always remember that
BASIC is always available as an aid when using the BASIC
assembler.

3.10 User Zero Page

32 bytes of zero page locations are reserved by BASIC for the
users machine code programs. These locations are from &70
to &8F (inclusive). These are the only zero page locations that
a user program (resident in RAM) should use if the program
is to be made commercially available or run on a variety of
other BBC Microcomputers.

The locations from &0 to &6F which are part of BASIC’s zero
page workspace are available to the machine code program if
BASIC is not required while the code is running.

Depending on the nature of the machine code program other
zero page locations may be available. See chapter 11, memory
usage, for more details.

31

4 Machine Code Arithmetic
4.1 2’s Complement

The 6502 microprocessor normally performs all arithmetic
using the 2’s complement method of representing numbers.
In 2’s complement representation the most significant bit of
the value is a sign bit. If the most significant bit is clear then
the number is positive. The remaining bits represent the
binary value of the positive number. Negative values are
represented by the complement of the positive value plus 1.
The complement of any binary value is made by ‘flipping’
each bit (i.e. changing each 1 to a 0 and each 0 to a 1). When
negative values are represented by the complement of the
positive value this is called 1’s complement. The disadvantage
with 1’s complement is that there are two ways of
representing 0, a positive 0 (all bits clear) and a negative 0 (all
bits set). By adding one to the complemented value (2’s
complement) there is only one way of representing 0 (all bits
clear).

e.g. Using 8 bits to store a value

5 = 00000101, −5 = 11111010+1 = 111111011

and −5 + 5

11111011 −5
00000101 +5

00000000 =0 (ignore the carry from the last bit)

Numbers in the range −128 (10000000) to +127 (01111111) can
be represented using 8 bit 2’s complement values.

Using 2’s complement arithmetic the same addition and
subtraction operations work identically on negative and
positive numbers. Negative numbers can always be
recognised by the state of the most significant bit; this is
always set for negative numbers.

32

The 6502 microprocessor can only perform its arithmetic
operations using 8 bit values. This limitation can lead to errors
when a carry is generated on the most significant bit so that
the result cannot be stored in 8 bits. The sign bit may also be
wrongly changed when a carry occurs into it. Two flags in the
status register are set when certain conditions occur. These
flags are the carry flag and the overflow flag.

The carry flag is set when a carry is generated during an
addition operation if a carry is generated from bit 7 (i.e. the
carry flag is a ninth bit of the result). The carry flag is cleared
if a borrow occurred into bit 7 during a subtraction. The
addition and subtraction instructions on the 6502 include the
carry bit in the operation. Using the carry bit makes it possible
to perform multi-byte arithmetic. The examples for ADC and
SBC in the mnemonics section illustrate how the carry flag
may be used.

The overflow flag is set when the sign of the result is incorrect
following an arithmetic operation. During additions overflow
will occur in two situations :–

(a) When a carry occurs from bit 6 into bit 7 without the
generation of an external carry.

(b) When an external carry is generated without a carry
occurring from bit 6 into bit 7.

During subtractions the carry flag is used as a borrow source.
The overflow flag will be set in the analogous situations where
borrows occur rather than carries. When the overflow flag is
set it indicates that the 2’s complement 8 bit result of an
arithmetic operation is incorrect.

It is often more convenient to think of bytes as always
containing positive values. The eight bits of the byte can
represent a maximum binary value of 255 (&FF). This is no
problem because the microprocessor performs exactly the
same arithmetic operations regardless of the sign of the values
involved. When the result of any arithmetic operation has bit
7 set then a negative flag is set in the status register. The
programmer can test this flag if the program must react to

33

negative values. The overflow and carry flags will also be set
as described above.

4.2 Binary Coded Decimal

A binary coded decimal arithmetic mode may be selected by
setting the decimal flag in the status register. The binary
coded decimal form of representing numbers uses each byte
to store a two digit decimal value. Each digit is stored as a
binary value in 4 bits (1 nibble). Normally 4 bits can be used
to represent numbers in the range 0 to 15. In BCD arithmetic 6
of the values that could be represented in 4 bits are not used.
Adding 1 to 9 in BCD will cause the low-nibble to be set to 0
and the high nibble to be set to 1. The carry flag is used to
store the carry from the high-nibble.

This is an example of a program which uses BCD arithmetic.

 10 DIM MC% 100
 20 OSWRCH=&FFEE
 30 OSRDCH=&FFE0
 40 OSNEWL=&FFE7
 50 FORopt%=0 TO 3 STEP3
 60 P%=MC%
 70 [
 80 OPT opt%
 90 .start SED \ set flag for BCD arithmetic
100 CLC \ clear carry flag
110 LDA &80 \ A=?&80
120 ADC #1 \ A=A+1+C
130 STA &80 \ replace value
140 LDA &81 \ A=?&81
150 ADC #0 \ A=A+0+C
160 STA &81 \ replace value
170 CLD \ clear flag, no more BCD
180 CLC \ clear carry flag
190 LDX #2 \ set loop index
200 .loop DEX \ decrement index
210 LDA #&F0 \ mask for high-nibble
220 AND &80,X \ A=A AND X?&80
230 LSR A:LSR A:LSR A:LSR A
240 \ move high-nibble to low nibble
250 ADC #&30 \ add value to ASC"0"
260 JSR OSWRCH \ print value
270 LDA #&F \ mask for low-nibble
280 AND &80,X \ A=A AND X?&80
290 ADC #&30 \ add value to ASC"0"
300 JSR OSWRCH \ print number
310 CPX #0 \ has index reached 0
320 BNE loop \ if not, go round again
330 LDA #&D \ A=carriage return value
340 JSR OSWRCH \ perform carriage return (no LF)
350 JSR OSRDCH \ A=GET
360 CMP #&0D \ was it RETURN
370 BNE start \ if not, back to the start
380 JSR OSNEWL \ carriage return and line feed
390 RTS \ back to BASIC

34

400]
410 NEXT
420 !&80=0
430 PRINT''"Binary Coded Decimal"''
440 PRINT"press key to add 1"
450 PRINT"press RETURN to exit"''
460 CALL start

This program could be altered to subtract 1 each time a key is
pressed by changing line 100 to SEC and changing the ADC
instructions in lines 120 and 150 to SBC instructions.

The decimal flag must always be cleared before using
operating system routines.

There is no standard representation of negative numbers
using BCD. In order to implement more complex arithmetic
including floating point applications the programmer must
define his own conventions and number formats.

35

5 Addressing Modes
When an assembly language instruction needs some data or
an address to work on this must be provided in the operand
field of the assembler statement. Although there are a limited
number of different machine code instructions which can be
used with the 6502, the power of the instruction set is
enhanced by a number of different addressing modes by
which the data or addresses used by each instruction may be
provided. The addressing mode used by the assembler
depends on the syntax of the assembly language statement.
The following text describes how the different addressing
modes work and the assembler syntax which is necessary.

N.B. Not all addressing modes are available for all
instructions. Details of which addressing modes can be used
with which instructions are contained in the Assembler
Mnemonics section 6.2.

5.1 Implicit addressing

Many instructions do not require any addressing mode to be
specified in the operand field. In such cases the addressing is
implicit in the instruction itself. For example an RTS
instruction will always cause the processor to jump to the
location addressed by the top two bytes of the stack.

5.2 Accumulator addressing

Some instructions may operate on either a memory location
or the accumulator. The accumulator is specified by putting a
capital A in the operand field.

e.g.

ASL A \ shift accumulator contents one bit left
ROR A \ rotate accumulator contents one bit right

(Note that the variable A cannot therefore be used as an
operand.)

36

5.3 Immediate addressing – using a data constant

If, at the time of programming, the data required for a
machine code instruction is known then immediate
addressing may be used. Immediate addressing is indicated to
the assembler by preceding the operand with a ‘#’ character.
The assembler uses the least significant byte of the value
given to define the operand. The machine code instruction
actually uses the byte of memory immediately following the
instruction in program memory.

e.g.

LDA #&FF \ load the accumulator with value &FF
LDX *count \ load X with value of the constant 'count'

5.4 Absolute addressing – using a fixed address

When the address required for an instruction is known at the
time of assembly then absolute addressing may be used.
Absolute addressing is the default addressing mode used by
the assembler. If a number or variable is placed in the operand
field of the assembler it will be treated as a 16 bit effective
address.

e.g.

CMP &1900 \ compare A with contents of location &1900
JMP label \ goto address specified by 'label'

5.5 Zero page addressing – using a fixed zero page address

This mode is the same as absolute addressing except that an 8
bit address is specified. This 8 bit addressing limits use to the
first &100 bytes of memory (zero page). The assembler will
automatically select zero page addressing when the operand
value is less than 256 (&100).

e.g.

CPY &80 \ compare y with contents of location &80
ASL &81 \ shift left contents of location &81 one bit

37

5.6 Indirect addressing – using an address stored in memory

Using this addressing mode an instruction can use an address
which is actually computed when the program runs. The JMP
instruction may use this addressing mode. The address used
for the jump is taken from the two bytes in memory starting at
the address specified in the operand field (low byte first, high
byte second). Indirect addressing is indicated to the assembler
by enclosing the address within brackets.

e.g.
LDA #&40 \ load accumulator with &40
STA &1900 \ store low byte of indirection
LDA #&28 \ load accumulator with &28
STA &1901 \ store high byte of indirection
JMP (&1900) \ goto address in 61900 and &1901

N.B. A JMP &2840 instruction would have been more sensible
in this case.

There is a bug in the 6502. When the indirect address crosses a
page boundary the 6502 does not add the carry to calculate
the address of the high byte.

i.e. JMP (&19FF) will use the contents of &19FF and &1900 for
the JMP address.

Indexed Addressing

The following 5 addressing modes use the X or Y registers as
an offset which is used to modify another address specified in
the operand field. These addressing modes give the program
access to a table of memory locations specified in terms of a
base address to which is added the 8 bit offset value.

5.7 Absolute,X or Y addressing – using an absolute
address+X

These are the simplest indexed addressing modes. An
absolute 16 bit address is specified in the operand field. This
should be followed by a comma and either X or Y. The
address used by the instruction will be the 16 bit address +
the contents of the register specified.

38

The X and Y register contents are always taken as positive
values in the range 0 to 255 and so only forward offsets are
available (c.f. Relative addressing, below).

e.g.

LDA &2800,X \ load accumulator from &2800+X
ADC table,Y \ A=A+?(table+Y)

5.8 Zero page,X addressing – using zero page address+X

This mode is the same as the absolute X addressing mode
except that an 8 bit base address is used. The assembler
automatically uses this mode, where available, if a zero page
address is specified in the operand field.

If a variable is used to describe the address of the zero page
location it should be set up before the first pass of the
assembler. This is because the assembler will assume 16 bit
addressing on the first pass if the variable is unrecognised and
allocate two bytes for the address. On the second pass, the
zero-page opcode and one byte of address will be assembled,
causing all further label values to be wrong.

N.B. For the LDX instruction a zero page,Y addressing mode
is provided.

e.g.

LDX &72,Y \ load X with contents of (&72+Y)
LSR &80,X \ one bit right shift contents of (&80+X)

5.9 Pre-indexed indirect addressing – using a table of
indirect addresses in zero page

This addressing mode is designed for use with a table of
addresses in zero page locations. The operation is performed
on a memory location, the address of which is contained
within the zero page locations specified by an 8 bit base
address plus the contents of the X register.

39

N.B. The Y register cannot be used for this addressing mode.

e.g.

?&80=&00
?&81=&40
?&82=&00
?&83=&41

LDX #0 \ set X to 0
LDA (&80,X) \ A=?&4000, address in (&80+X),(&81+X)
INX \ X=X+1, i.e. 1
INX \ X=X+1
LDA (&80,X) \ A=?&4100, address in (&82),(&83)

5.10 Post-indexed indirect addressing – using an indirect
address in zero page plus offset in Y

This indexed indirect addressing mode uses a single address
held in zero page. The contents of the Y register are then
added to that address held in zero page to give the effective
address used.

N.B. The X register cannot be used for this addressing mode.

e.g.

Set 256 bytes of memory to 0 starting at the address contained
in locations &80 (low byte) and &81 (high byte).

 ?&80=&40
 ?&81=&72

 LDY #0 \ set loop index to 0
 TYA \ A=0
.loop STA (&80),Y \ ?(&7240+Y)=0, base addr. in &80 and &81
 INY \ Y=Y+1
 CPY #0 \ Y-0 comparison (not needed after INY)
 BNE loop \ if Y<>0 goto loop

40

5.11 Relative addressing

The 6502 instruction set contains 8 branch instructions which
cause a jump if a certain condition is met. In the example
above a BNE instruction is used to cause the loop to be
executed again if the loop index (Y register) does not equal 0.
These branch instructions can only be used with relative
addressing. If the condition of the branch is satisfied the byte
following the branch instruction is added to the program
counter as an 8 bit two’s complement number. This method of
relative addressing allows a branch forward 127 bytes or back
128 bytes from the program counter value after the branch
instruction has been executed. The calculation of the relative
branch value is normally quite transparent to the programmer
using the BASIC assembler. When writing in assembly
language the programmer follows the branch instruction with
a label or absolute address and the assembler performs the
necessary calculations. The use of relative addressing will only
become apparent when a label or absolute address is specified
outside the relative addressing range. When this occurs the
assembler will flag an ‘Out of range’ error to the user. OPT 0 is
used to suppress this error from forward references on the
first assembler pass.

41

6 The 6502 Instruction Set
6.1 The 6502 registers and abbreviations

Accumulator – A

An 8 bit general purpose register used for all the arithmetic
and logical operations.

X Index Register – X

An 8 bit register used as the offset in indexed and pre-indexed
indirect addressing modes, or as a counter.

Y Index Register – Y

An 8 bit register used as the offset in indexed and
post-indexed indirect addressing modes, or as a counter.

Status Register

An 8 bit register containing various status flags and an
interrupt mask. These are:–

Carry flag – C

Bit 0, Set if a carry occurs during an add operation and cleared
if a borrow occurs during subtraction. Used as a 9th bit in
rotate and shift operations.

Zero flag – Z

Bit 1, Set if the result of an operation is zero, otherwise
cleared.

Interrupt disable – I

Bit 2, When set, IRQ interrupts are disabled. Set by the
processor during interrupts.

42

Decimal mode flag – D

Bit 3, When set the add and subtract instructions work in
binary coded decimal arithmetic. When clear these operations
are performed using binary arithmetic.

Break flag – B

Bit 4, This flag is set by the processor during a BRK interrupt.
Otherwise this flag is clear.

Unused flag

Bit 5, Unused by the processor.

Overflow flag – V

Bit 6, If, during an operation, there is a carry from bit 6 to bit 7
and no external carry then the overflow flag is set. This flag is
also set if there is no carry from bit 6 to bit 7 but there is an
external carry.

Negative flag – N

Bit 7, Set if bit 7 of a result is set, otherwise cleared.

Stack Pointer – SP

An 8 bit register which forms the low order byte of the
address of the next free stack location (the high order byte of
this address is always &1).

Program Counter – PC (PCL,PCH low-byte,high-byte)

A 16 bit register which always contains the address of the
next instruction to be executed.

43

6.2 The Assembler Mnemonics

The following section contains a detailed description of each
of the operation codes (or instructions) in the 6502 instruction
set. The assembler recognises three letter mnemonics which it
translates into the 8 bit values which the microprocessor
actually takes as its instructions.

Each assembler mnemonic is described on a new page. At
the head of the page is the three letter mnemonic which the
assembler recognises.

Beneath the heading there is a short phrase indicating the
function of the instruction and the derivation of the
mnemonic.

A short hand ‘BASIC like’ description of the operation is given
on the top right of the page. The registers and flags are
denoted by the abbreviations given on the previous two pages.
The initial ‘M’ represents the data byte obtained using the
selected addressing mode.

A brief description of the instruction and its operation is given
beneath the headings.

Any changes to the status register are noted in a list of the
status register flags.

All the available addressing modes are listed together with the
number of bytes of memory which the instruction and its data
will occupy when this mode is used. The number of
instruction cycles taken for the execution of the instruction in
each addressing mode is also given (1 instruction cycle = 0.5
microseconds).

A short example of the use of the instruction within an
assembly language routine is given at the bottom of each
page.

44

ADC
Add with carry A,C=A+M+C

This instruction adds the contents of a memory location to the
accumulator together with the carry bit. If overflow occurs the
carry bit is set, this enables multiple byte addition to be
performed.

Processor Status after use

C (carry flag): set if overflow in bit 7
Z (zero flag): set if A=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): set if sign bit is incorrect
N (negative flag): set if bit 7 set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect,X) 2 6
(indirect),Y 2 5 (+1 if page crossed)

Example: Add 1 to a 2 byte value in locations &80 and &81

CLC \ clear carry flag
LDA #1 \ load accumulator with 1
ADC &80 \ A=A+?&80, carry set if overflow occurs
STA &81 \ place result of addition in 680
LDA #0 \ set accumulator to 0 (carry unchanged)
ADC &81 \ A=A+?&81+C, add 1 if carry set
STA &81 \ store result back in &81

45

AND
Logical AND A=A AND M

A logical AND is performed, bit by bit, on the accumulator
contents using the contents of a byte of memory. The truth
table for the logical AND is:–

Acc. Mem. Result
bit bit bit

0 0 0
0 1 0
1 0 0
1 1 1

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if A=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect,X) 2 6
(indirect),Y 2 5 (+1 if page crossed)

Example: Clear the bottom 4 bits of location &80

LDA &80 \ load value to be ANDed into A
AND #&F0 \ perform AND, (mask=11110000)
STA &80 \ load memory with the modified value

46

ASL
Arithmetic shift left M=M*2, C=M7 (or accumulator)

This operation shifts all the bits of the accumulator or memory
contents one bit left. Bit 0 is set to 0 and bit 7 is placed in the
carry flag. The effect of this operation is to multiply the
memory contents by 2 (ignoring 2’s complement
considerations), setting the carry if the result will not fit in 8
bits.

C f 7 6 5 4 3 2 1 0 f 0

Processor Status after use

C (carry flag): set to old contents of bit 7
Z (zero flag): set if result=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of the result is set

Addressing mode bytes used cycles

accumulator 1 2
zero page 2 5
zero page,X 2 6
absolute 3 6
absolute,X 3 7

Example: Rapid multiplication of memory contents by 4

ASL data \ ?data=?data*2
ASL data \ ?data=?data*2, gross effect *4.

47

BCC
Branch on carry clear Branch if C=0

This instruction causes a relative jump if the carry flag is clear.
The address to which the branch is directed must be within
relative addressing range otherwise the assembler will throw
up an ‘Out of range’ message.

Used after a CMP instruction this branch occurs when
A<DATA.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1 if branch
 succeeds +2 if to new
 page)

Example: Branch if contents of &80 < 100

LDA #100 \ load accumulator with data
CMP &80 \ A-data (comparison)
BCC finish \ goto finish if ?&80<100

48

BCS
Branch on carry set Branch if C=1

A relative branch will occur if the carry flag is set. The branch
address given to the assembler must be within relative
addressing range.

Used after a CMP instruction this branch occurs when
A>=data.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1 if branch
 succeeds +2 if to new
 page)

Example: Branch if contents of X register are greater than or
equal to 5

CPX #5 \ X-5, compare
BCS label \ branch to label if X>=5

49

BEQ
Branch on result zero Branch if Z=1

This instruction causes a relative branch if the zero flag is set
when the instruction is executed. The assembler automatically
calculates the relative address from the address given and will
cause an error if the address is out of range.

Used after a CMP instruction this branch occurs if A=data.
Used after an LDA instruction this branch occurs if A=0.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1 if branch
 succeeds +2 if to new
 page)

Example: Subroutine not used when A=3

 CMP #3 \ A-3, comparison
 BEQ over \ if A=3 goto over
 JSR anything \ subroutine to be missed if A=0
.over

50

BIT
Test memory bits with accumulator A AND M, N=M7,
V=M6

This instruction can be used to test whether one or more
specified bits are set. The zero flag is set if the result is 0
otherwise the zero flag is cleared. Bits 7 and 6 of the memory
location are transferred to the status register. The BIT
instruction performs an AND operation without storing the
result but setting the status flags.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if the result=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): set to bit 6 of memory
N (negative flag): set to bit 7 of memory

Addressing mode bytes used cycles

zero page 2 3
absolute 3 4

Examples: Test bit 7 of location &8F

BIT &8F \ if bit 7=1 then N=1
BMI flag_set \ action to be performed if bit 7 set

Test bit 1 of location ‘flags’

LDA #&02 \ load mask into accumulator (000000l0)
BIT flags \ A AND flags, if bit 1=1 then Z=0
BNE flag_set \ action to be performed if bit 1 set

51

BMI
Branch if negative flag set Branch if N=1

This relative branch is performed if the result of a previous
operation was negative. Relative branch calculations are made
by the assembler which will flag an error if an address is given
outside the relative addressing range.

Branch occurs after a result which sets bit 7 of the
accumulator. (All 8 bit 2’s complement negative numbers have
this bit set.)

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1 if branch
 succeeds +2 if to new
 page)

Example: Branching if a byte of memory contains a negative
number

LDA &3010 \ load accumulator from memory, N set if -ve
BMI negative \ branch if ?&3010 is negative

52

BNE
Branch on result not zero Branch if Z=0

This instruction causes a relative branch if the zero flag is clear
when the instruction is executed. The assembler automatically
calculates the relative address from the address given and will
cause an error if the address is out of range.

Used after a CMP instruction this branch occurs if A<>data.
Used after an LDA instruction this branch occurs if A<>0.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1 if branch
 succeeds +2 if to new
 page)

Example: Memory location to be written to if it contains zero
(i.e. IF ?&84=0 then ?&84=&7F)

 LDA &84 \ load memory into A to set flags
 BNE round \ if not zero skip the next bit
 LDA #&7F \ load A with value to be written
 STA &84 \ write to location &84
.round \ rest of program

53

BPL
Branch on positive result Branch if N=0

Depending on the state of the negative flag a relative branch
will be made. The relative address is calculated by the
assembler from an address provided by the programmer. This
address must be within the relative addressing range.

Branch occurs after a result which sets accumulator bit 7 to 0.
Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1 if branch
 succeeds +2 if to new
 page)

Example: A loop which shifts A left until bit 7 is set

.loop ASL A \ shift accumulator 1 bit left
 BPL loop \ if bit 7 not set then go round again

N.B. This will be an endless loop if A=0 on entry.

54

BRK
Forced interrupt PC and P pushed on stack
PCL=?&FFFE, PCH=?&FFFF

This instruction forces an interrupt to occur. The processor
jumps to the location stored at &FFFE. The program counter is
pushed onto the stack followed by the status register. A BRK
instruction usually represents an error condition and the BRK
handling code is usually an error handling routine. Using
machine code in a BASIC environment it is possible to use
BASIC’s error handling facilities, see section 3.7. A user BRK
handling routine may be implemented, see Vectors section,
section 10.2.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected (set in P pushed on stack)
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 7

N.B. A BRK instruction cannot be disabled by setting the
interrupt disable flag.

Example: Cause an error if A is greater than 4

 CMP #5 \ A-5, comparison
 BCC noerr \ if A<5 then branch round error
 BRK \ cause error
.noerr \ rest of program (or error message)

55

BVC
Branch if overflow clear Branch if V=0

A relative branch is made if the overflow flag is clear. The
relative address calculation is performed by the assembler
which will flag an error if given an address out of relative
addressing range.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1 if branch
 succeeds +2 if to new
 page)

Example: Branching on overflow when carry is deliberately
set

ADC &80 \ A=A+?&80+C
SEC \ set carry flag
BVC somewhere \ goto somewhere if no overflow

56

BVS
Branch if overflow set Branch if V=1

Branch to a relative address if the overflow flag is set.
Overflow is generally set when the carry flag is set except
when a subtraction is performed. In this case overflow is set
when the carry flag is cleared. The address specified in the
operand field of the assembler statement must be within the
relative addressing range otherwise an assembly error will be
flagged.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1 if branch
 succeeds +2 if to new
 page)

Example: Branching if overflow occurs during subtraction

SEC \ set the carry flag
LDA #8 \ load A with the value 8
SBC &86 \ A=A-M (-carry if required)
BVS help \ if overflow has occurred goto help
STA &86 \ otherwise put new value in &86

N.B. A BCC instruction would have performed the same
purpose in this instance.

57

CLC
Clear carry flag C=0

This instruction clears the carry flag. This is often a sensible
operation to perform before using an ADC instruction if there
is any doubt as to the status of the carry flag.

Processor Status after use

C (carry flag): cleared
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 2

Example: Clearing the carry flag before an 8 bit addition

CLC \ clear carry flag
LDA counter \ load first low order byte
ADC increment \ add second low order to it
STA counter \ place new value in counter

58

CLD
Clear decimal flag D=0

This flag is used to place the 6502 into decimal mode. This
instruction returns the processor into non-decimal mode.

See machine code arithmetic, chapter 4.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): cleared
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 2

Example: Turn decimal mode off

CLD \ No more BCD arithmetic

59

CLI
Clear interrupt disable flag I=0

This instruction is used to re-enable interrupts after they have
been disabled by setting the interrupt flag. In a machine
where the operating system relies heavily on interrupts it is
unwise to play around with the interrupt flag without good
reason. For information about interrupts see chapter 13.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): cleared
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 2

Example: Re-enabled interrupts

CLI \ interrupts responded to now

60

CLV
Clear overflow flag V=0

This instruction forces the overflow flag to be cleared.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): cleared
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 2

Example: Explicitly clear the overflow flag

CLV \ overflow now clear

61

CMP
Compare memory and accumulator A–M

This is a very useful instruction for comparing the
accumulator contents to the contents of a memory location.
The status register flags are set according to the result of a
subtraction of the memory contents from the accumulator.
The accumulator contents are preserved but the status register
flags may be used to cause branches depending on the values
which were compared.

Processor Status after use

C (carry flag): set if A greater than or equal to M
Z (zero flag): set if A=M
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of the result is set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect,X) 2 6
(indirect),Y 2 5 (+1 if page crossed)

Examples: Branching on the result of a comparison

The test which if true
is to cause the branch. Code.

A>M or M<A BEQ over (or BEQ P%+4, no label)
 BCS somewhere
 .over

62

A>=M or M<=A BCS somewhere

A=M or M=A BEQ somewhere

A<=M or M>=A BCC somehwere
 BEQ somewhere

A<M or M>A BCC somewhere

63

CPX
Compare memory with X register X–M

This instruction performs a subtraction of the contents of the
memory location from the contents of the X register, the
memory location and the register remain intact but the status
register flags are set on the result.

Processor Status after use

C (carry flag): set if X greater than or equal to M
Z (zero flag): set if X=M
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of the result is set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
absolute 3 4

Example: Clearing an area of memory (max &100 bytes). The
number of bytes to be cleared is stored in ‘count’.

 LDA #0 \ set accumulator to 0
 TAX \ set loop index to 0
.loop STA page,X \ write 0 to byte page+X
 INX \ increment loop index
 CPX count \ X-?count, comparison
 BNE loop \ if not equal go round again

64

CPY
Compare memory with Y register Y–M

This instruction performs a subtraction from the Y register of
the specified memory location contents. The memory location
and the register remain intact but the status register flags are
set on the result.

Processor Status after use

C (carry flag): set if Y greater than or equal to M
Z (zero flag): set if Y=M
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of the result is set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
absolute 3 4

Example: Branch if Y=&0D

CPY #&0D \ compare Y with &0D/13
BEQ cr \ if Y=13 goto cr

65

DEC
Decrement memory by one M=M–1

This instruction decrements the value contained in the
specified memory location.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if memory contents become 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of the result is set

Addressing mode bytes used cycles

zero page 2 5
zero page,X 2 6
absolute 3 6
absolute,X 3 7

Example: Decrement location &2900

DEC &2900 \ ?&2900=?&2900-1

66

DEX
Decrement X register by one X=X–1

This instruction decrements the contents of the X register by
one.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if X becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of X becomes set

Addressing mode bytes used cycles

implied 1 2

Example: Decrement X register

DEX \ X=X-1

67

DEY
Decrement Y register by one Y=Y–1

This instruction decrements the contents of the Y register by
one.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if Y becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of Y becomes set

Addressing mode bytes used cycles

implied 1 2

Example: Decrement Y register

DEY \ Y=Y-1

68

EOR
Exclusive OR memory with accumulator A=A EOR M

This instruction performs a bit by bit Exclusive OR of the
specified memory location contents with the contents of the
accumulator leaving the result in the accumulator. The truth
table for the logical EOR operation is:–

Acc. Mem. Result
bit bit bit

0 0 0
0 1 1
1 0 1
1 1 0

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if A becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of A becomes set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect,X) 2 6
(indirect),Y 2 5 (+1 if page crossed)

Example: EOR contents of memory with &FF

LDA #&FF \ load accumulator with &FF
EOR temp \ A=A EOR (?temp)
STA temp \ reload memory

69

INC
Increment memory by one M=M+1

This instruction increments the value contained in the
specified memory location.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if memory contents become 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of memory becomes set

Addressing mode bytes used cycles

zero page 2 5
zero page,X 2 6
absolute 3 6
absolute,X 3 7

Example: Increment location &80

INC &80 \ ?&80=?&80+1

70

INX
Increment X register by one X=X+1

This instruction increments the contents of the X register by
one.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if X becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of X becomes set

Addressing mode bytes used cycles

implied 1 2

Example: Increment X register

INX \ X=X+1

71

INY
Increment Y register by one Y=Y+1

This instruction increments the contents of the Y register by
one.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if Y becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of Y becomes set

Addressing mode bytes used cycles

implied 1 2

Example: Increment Y register

INY \ Y=Y+1

72

JMP
Jump to new location PC=new address

This instruction is the machine code equivalent of a GOTO
statement in BASIC. An indirect addressing mode is available
where the address for the JMP is contained in memory
specified by the address in the operand field (see examples
below).

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

absolute 3 3
indirect 3 5

Examples: A direct jump

JMP entry \ goto entry

An indirect jump (a contrived example)

LDA #&00 \ A=0
STA &2800 \ ?&2800=A (address low byte)
LDA #&40 \ A=&40
STA &2801 \ ?&2801=A (address high byte)
JMP (&2800) \ jump to &4000

73

JSR
Jump to subroutine Push current PC onto stack;
PC=new address

This instruction causes a jump but also saves the current
program counter on the stack. The subroutine which is called
returns to the part of the program that called it by pulling the
saved address and jumping back to it. A subroutine must
always be terminated by an RTS instruction which performs
the return to the location from which the subroutine was
called.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing Mode bytes used cycles

absolute 3 6

Example: Using an OS call

LDA #ASC"X"
JSR OSWRCH \ print 'X' on screen

74

LDA
Load accumulator from memory A=M

This instruction is used to set the contents of the accumulator
to that contained in a specified byte of memory.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if A=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of A set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect,X) 2 6
(indirect),Y 2 5 (+1 if page crossed)

Example: Load accumulator with ASCII value for ‘A’

LDA #ASC"A" \ A=65

75

LDX
Load X register from memory X=M

This instruction is used to set the contents of the X register to
that contained in a specified byte of memory.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if X=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of X set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,Y 2 4
absolute 3 4
absolute,Y 3 4 (+1 if page crossed)

Example: Load X register with contents of location &80

LDX &80 \ X=?&80

76

LDY
Load Y register from memory Y=M

This instruction is used to set the contents of the Y register to
that contained in a specified byte of memory.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if Y=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of Y set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 4 (+1 if page crossed)

Example: Load Y register with contents of location labelled
‘data’ with an offset in X

LDY data,X \ Y=?(data+X)

77

LSR
Logical shift right by one bit M=M/2 (or accumulator)

This instruction causes each bit in the memory location or
accumulator to shift one bit left. Bit 7 is set to 0 and the carry
flag will be set to the old contents of bit 0. The arithmetic
effect of this is to divide the value by 2.

0 g 7 6 5 4 3 2 1 0 g C

Processor Status after use

C (carry flag): set to bit 0 of operand
Z (zero flag): set if result=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): cleared

Addressing mode bytes used cycles

accumulator 1 2
zero page 2 5
zero page,X 2 6
absolute 3 6
absolute,X 3 7

Example: Shift accumulator contents right one bit

LSR A \ C=bit 0, A=A/2

78

NOP
No operation

This is a dummy instruction which has no effect on any
memory or register contents except to increment the program
counter by one.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing Mode bytes used cycles

implied 1 2

Example: A NOP instruction

NOP \ this instruction does nothing

79

ORA
OR memory with accumulator A=A OR M

This instruction performs a bit by bit logical OR operation
between the contents of the accumulator and the contents of
the specified memory and places the result in the
accumulator. The truth table for logical OR is:–

Acc. Mem. Result
bit bit bit

0 0 0
0 1 1
1 0 1
1 1 1

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if A=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of A set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect,X) 2 6
(indirect), Y 2 5 (+1 if page crossed)

Example: Set the top 4 bits of the accumulator

ORA #&F0 \ mask is 11110000, 1 OR anything=1

80

PHA
Push accumulator onto stack Push A

This instruction places the value held in the accumulator onto
the stack. This value is accessible using the instruction PLA
(pull A from stack).

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing Mode bytes used cycles

implied 1 3

Example: Save registers at the beginning of a routine

.entry PHP \ save status register (see below)
 PHA \ save accumulator contents
 TXA \ A=X
 PHA \ save X register contents
 TYA \ A=Y
 PHA \ save Y register contents
 \ rest of program

81

PHP
Push status register onto stack Push P

This instruction places the value held in the status register
onto the stack. This value is accessible using the instruction
PLP (pull P from stack).

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing Mode bytes used cycles

implied 1 3

Example: See the example given for PHA above.

82

PLA
Pull accumulator off stack Pull A

This instruction loads the accumulator with a value which is
pulled from the stack. This is usually a previous accumulator
value which has been saved on the stack using a PHA
instruction.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if A=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of A set

Addressing Mode bytes used cycles

implied 1 4

Example: Restore registers at the end of a routine

PLA \ pull Y value from stack
TAY \ put it back in Y
PLA \ pull X value from stack
TAX \ put it back in X
PLA \ pull A value from stack
PLP \ restore status register
RTS \ back to calling routine

83

PLP
Pull status register off stack Pull P

This instruction loads the status register with a value which is
pulled from the stack. This is usually a previous status register
value which has been saved on the stack using a PHP
instruction.

Processor Status after use

C (carry flag): bit 0 from stack
Z (zero flag): bit 1 from stack
I (interrupt disable): bit 2 from stack
D (decimal mode flag): bit 3 from stack
B (break command): bit 4 from stack
V (overflow flag): bit 6 from stack
N (negative flag): bit 7 from stack

Addressing Mode bytes used cycles

implied 1 4

Example: See the example for PLA above.

84

ROL
Rotate one bit left M=M*2, M0=C, C=M7 (A or M)

This instruction causes a shift left one bit. The bit shifted out
of the byte, bit 7, is placed in the carry flag. The contents of
the carry flag are placed in bit 0.

7 6 5 4 3 2 1 0 f C f

Processor Status after use

C (carry flag): set to old value of bit 7
Z (zero flag): set if result=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of the result is set

Addressing Mode bytes used cycles

accumulator 1 2
zero page 2 5
zero page,X 2 6
absolute 3 6
absolute,X 3 7

Example: Rotate accumulator contents one bit left

ROL A \ A=A rotated left

N.B. The carry flag state should be known before this
operation is performed.

85

ROR
Rotate one bit right M=M/2, M7=C, C=M0 (A or M)

This instruction causes a shift right one bit. The bit shifted out
of the location, bit 0 is placed in the carry flag. The contents of
the carry flag are placed in bit 7.

g 7 6 5 4 3 2 1 0 g C

Processor Status after use

C (carry flag): set to old value of bit 0
Z (zero flag): set if result=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of the result is set

Addressing Mode bytes used cycles

accumulator 1 2
zero page 2 5
zero page,X 2 6
absolute 3 6
absolute,X 3 7

Example: Reverse the order of bits in a byte

.start STA &80 \ store byte in &80
 LDX #8 \ set loop count to 8
.loop ROL &80 \ bit 7 of &80 to carry
 ROR A \ carry to bit 8 of A
 DEX \ decrement loop count
 BNE loop \ if not 0 goto loop
 RTS \ exit with A reversed

86

RTI
Return from interrupt Status register and PC pulled
 from stack

This instruction is used to return from an interrupt handling
routine. When an interrupt occurs the current program
counter and status register are pushed onto the stack. These
are restored by the RTI instruction.

Processor Status after use

C (carry flag): bit 0 from stack
Z (zero flag): bit 1 from stack
I (interrupt disable): bit 2 from stack
D (decimal mode flag): bit 3 from stack
B (break command): bit 4 from stack
V (overflow flag): bit 6 from stack
N (negative flag): bit 7 from stack

Addressing Mode Bytes used cycles

implied 1 6

Example: Instruction at the end of an interrupt handling
routine

.... \ code dealing with the interrupt
RTI \ back to what we were doing before ...

87

RTS
Return from subroutine Pull PC from stack

The RTS instruction is used to terminate the execution of a
subroutine. Any routine terminated in this way should be
called using a JSR instruction which places a return address
on the stack. The top two stack values are placed in the
program counter and execution is resumed at the point in the
program after the JSR instruction. During a subroutine the
same number of items pushed on the stack must be removed
before the RTS instruction is reached if the subroutine is to
return to the correct address.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing Mode Bytes used Cycles

implied 1 6

Example: Last instruction in a subroutine

.... \ body of subroutine
RTS \ return to calling routine

88

SBC
Subtract memory from accumulator with carry
A,C=A–M–(1–C)

This instruction subtracts the contents of the specified
memory from the accumulator contents leaving the result in
the accumulator. If the carry flag is used as a ‘borrow’ source
and if clear then an extra unit is subtracted from the
accumulator. This enables the ‘borrow’ to be carried over in
multi-byte subtractions (see example below).

Processor Status after use

C (carry flag): cleared if a borrow occurs
Z (zero flag): set if result=0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): set if the sign of the result is wrong
N (negative flag): set if bit 7 of the result is set

Addressing mode bytes used cycles

immediate 2 2
zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect,X) 2 6
(indirect), Y 2 5 (+1 if page crossed)

Example: 16 bit value at locations &80 and &81 subtracted
from 16 bit value at locations &82 and &83, result at locations
&82 and &83.

SEC \ ready for any 'borrow'
LDA &80 \ low order byte of first value
SBC &82 \ A=A-?&82 (borrow may occur)
STA &82 \ place result in &82
LDA &81 \ high order byte of first value
SBC &83 \ A=A-&83(1-C)
STA &83 \ place result in &83

89

SEC
Set carry flag C=1

This instruction is used to set the carry flag. This instruction
should be used to set the carry flag prior to a subtraction
unless the carry flag has been deliberately left as a ‘borrow’
from a previous subtraction.

Processor Status after use

C (carry flag): set
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 2

Example: Explicit setting of the carry flag

SEC \ C=1

90

SED
Set decimal mode D=1

This instruction is used to place the 6502 in decimal mode.
This causes arithmetic operations to be performed in BCD
mode

See machine code arithmetic, chapter 4.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): set
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 2

Example: Set decimal mode for arithmetic

SED \ BCD from now on

91

SEI
Set interrupt disable flag I=1

This instruction is used to set the interrupt disable flag. When
this flag is set maskable interrupts cannot occur. See
interrupts chapter 13.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): set
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 2

Example: Disable interrupts

SEI \ No maskable interrupts

92

STA
Store accumulator contents in memory M=A

This instruction is used to copy the contents of the
accumulator into a memory location specified in the operand
field.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

zero page 2 3
zero page,X 2 4
absolute 3 4
absolute,X 3 5
absolute,Y 3 5
(indirect,X) 2 6
(indirect),Y 2 6

Example: Store accumulator in location ‘save’ + Y offset

STA save,y \ ?(save+Y)=A

93

STX
Store X contents in memory M=X

This instruction is used to copy the contents of the X register
into a memory location.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

zero page 2 3
zero page,Y 2 4
absolute 3 4

Example: Store X in location &80

STX &80 \ ?&80=X

94

STY
Store Y contents in memory M=Y

This instruction is used to copy the contents of the Y register
into a memory location.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

zero page 2 3
zero page,X 2 4
absolute 3 4

Example: Store Y in location &5FF0

STY &5FF0 \ ?&5FF0=Y

95

TAX
Transfer A to X X=A

This instruction is used to copy the contents of the
accumulator to the X register.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if X becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of X is set

Addressing mode bytes used cycles

implied 1 2

Example: Transfer contents of A to X

TAX \ X=A

96

TAY
Transfer A to Y Y=A

This instruction is used to copy the contents of the
accumulator to the Y register.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if Y becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of Y is set

Addressing mode bytes used cycles

implied 1 2

Example: Transfer contents of A to Y

TAY \ Y=A

97

TSX
Transfer S to X X=S

This instruction is used to copy the contents of the stack
pointer to the X register.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if X becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of X is set

Addressing mode bytes used cycles

implied 1 2

Example: Transfer contents of S to X

TSX \ X=S

98

TXA
Transfer X to A A=X

This instruction is used to copy the contents of the X register
to the accumulator.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if A becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of A is set

Addressing mode bytes used cycles

implied 1 2

example: Transfer contents of X to A

TXA \ A=X

99

TXS
Transfer X to S S=X

This instruction is used to copy the contents of the X register
to the stack pointer.

Processor Status after use

C (carry flag): not affected
Z (zero flag): not affected
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): not affected

Addressing mode bytes used cycles

implied 1 2

Example: Transfer contents of X to S

TXS \ S=X

100

TYA
Transfer Y to A A=Y

This instruction is used to copy the contents of the Y register
to the accumulator.

Processor Status after use

C (carry flag): not affected
Z (zero flag): set if A becomes 0
I (interrupt disable): not affected
D (decimal mode flag): not affected
B (break command): not affected
V (overflow flag): not affected
N (negative flag): set if bit 7 of A is set

Addressing mode bytes used cycles

implied 1 2

Example: Transfer contents of Y to A

TYA \ A=Y

101

7 Operating System calls
Input/Output

The input device from which characters may be fetched can be
selected using the OSBYTE call with A=2 (*FX 2). Input may
be selected from the keyboard and/or RS423.

Output may be channelled to any combination of the
following destinations: Screen, Printer, RS423 or Spooled file.
Selection of destination is achieved using OSBYTE call with
A=3 (*FX 3).

See the OSBYTE call section (chapter 8) for a full description
of these OSBYTE calls.

7.1 OSWRCH Write character to currently selected
output stream.

Call address &FFEE
Indirected through &20E

This routine writes the character given in the accumulator to
the currently selected output stream or streams.

N.B. Unrecognised VDU commands are passed to a vector at
location &226. See Vectors section, 10.8.

After an OSWRCH call,
A, X and Y are preserved.
C, N, V and Z are undefined.
The interrupt status is preserved (though it may be
enabled during a call).

102

7.2 Non-Vectored OSWRCH

Call address &FFCB

This routine is normally used by OSWRCH and the call
address is contained in the OSWRCH vector on reset. The
non-vectored OSWRCH routine is believed to be used by the
Tube system. This routine has not been documented by Acorn
and should be used with caution.

7.3 OSRDCH Read character from currently selected
input stream.

Call address &FFE0
Indirected through &210

This routine reads a character from the currently selected
input stream and returns the character read in the
accumulator.

After an OSRDCH call,

C=0 indicates that a valid character has been read.
C=1 flags an error condition, A contains an error
number.

If an escape condition occurs then A=&1B (27) and C=1;
if detected an escape condition must be acknowledged
using an OSBYTE call with A=&7E (126).

X and Y are preserved.
N, V and Z are undefined.
The interrupt status is preserved (though interrupts may
be enabled during a call).

103

7.4 Non vectored OSRDCH

Call address &FFC8

This routine is normally used by OSRDCH and the call
address is placed in the OSRDCH vector on reset. The
non-vectored OSRDCH is believed to be used by the Tube
system. This call has not been documented by Acorn and
should be used with caution.

7.5 OSNEWL Write a newline to selected output stream.

Call address &FFE7
Not indirected

This routine uses OSWRCH to write a linefeed (ASCII &0A/
10) followed by a carriage-return (ASCII &0D/13) to the
currently selected output stream(s).

After an OSNEWL call,
A=&0D (13)
X and Y are preserved.
C, N, V and Z are undefined.
Interrupt status is preserved (though it may be enabled
during a call).

104

7.6 OSASCI Write character routine where OSNEWL is
called when A=&0D (13).

Call address &FFE3
Not indirected

This routine performs an OSWRCH call with the accumulator
contents unless called with accumulator contents of &0D (13)
when an OSNEWL call is performed.

After an OSASCI call,
A, X and Y are preserved.
C, N, V and Z are undefined.
Interrupt status is preserved (though interrupts may be
enabled during a call).

7.7 Main VDU character output entry point

Call address &FFBC

This is the entry point for raw VDU character processing. On
entry the accumulator contains the character to be written to
the VDU drivers. Any settings of OSBYTE &3/*FX 3 are totally
ignored and no output will go to any other destination (except
characters preceded by VDU 1 which will be sent to the
printer if the printer has previously been enabled with a VDU
2). This call has not been documented by Acorn. There will
normally be no need to use this routine as OSWRCH with the
appropriate *FX3 call can be used to the same effect.

105

7.8 GSINIT General string input initialise routine.

Call address &FFC2

The GSINIT and GSREAD routines are used by the operating
system to process strings used for commands such as *KEY
and *LOAD The advantage of using this system for reading
strings is that an escape sequence can be used to introduce
control characters which would otherwise be difficult to type
in directly from the keyboard (the escape character is |, see
section 2.10 for details of its use.).

This routine should be used to initialise a string which is to be
used for input using the GSREAD routine (see below). The
routine requires locations &F2 and &F3 plus a Y register offset
to specify the string address. The string need not be enclosed
by quotation marks. GSINIT must be used not only to strip off
leading spaces but also to set up an information byte in zero
page which indicates the termination character and if the
string is surrounded by quotation marks.

If the carry flag is clear on entry then the first space or carriage
return or second quotation mark will be considered as the
terminating character for the string.

If the carry flag is set then only a carriage return or a second
quotation mark will be considered as the terminal character.

On exit,
Y contains the offset of the first non-blank character from
the address contained in &F2 and &F3.

A contains the first non-blank character (as returned by
the first call of GSINIT.

Z flag is set if the string is a null string (e.g. a BEQ
instruction will cause a branch).

This routine has not been documented by Acorn but has been
used in applications software.

106

7.9 GSREAD Read character from string input.

Call address &FFC5

This routine should only be used following a GSINIT call.
GSREAD should be entered with Y set to either the Y value
following a GSINIT call or following a previous GSREAD call.
Locations &F2 and &F3 should contain the address of the start
of the string (i.e. should not have been altered since the last
GSINIT call).

On exit,
A contains the character read from the string.
Y contains the index for the next character to be read.
Carry flag is set if the end of string is reached.
X is preserved.

This routine has not been documented by Acorn but has been
used in applications software.

7.10 OSRDRM Read byte in paged ROM.

Call address &FFB9

On entry,
Y=ROM number.
Locations &F6 and &F7 should contain the address of the
byte to be read.

On exit,
A contains the value of the byte read.

This routine has not been documented by Acorn but has been
used in applications software.

107

7.11 OSEVEN Generate an event.

Call address &FFBF

This call generates or causes an event. The event number
should be placed in the Y register when this routine is called.
The accumulator contents are transferred to the Y register and
the event number is placed in the accumulator when the event
handling routine is entered. See Events, chapter 12, for more
information about events.

This routine has not been documented by Acorn and should
be used with caution.

The Command Line Interpreter

For details of which commands are recognised by the
command line interpreter see chapter 2 (Operating System
Commands).

7.12 OSCLI Passes line of text to the CLI.

Call address &FFF7
Indirected through &208

This routine passes a line of text to the command line
interpreter which decodes and executes any command
recognised.

On entry,
X and Y should point to a line of text
(X= low-byte, Y= high-byte).
The line of text should be terminated by a carriage return
character (ASCII &0D/13)

After an OSCLI call,
A, X, Y, C, N, V and Z are undefined.
Interrupt status is preserved but interrupts may be
enabled during a call.

108

109

8 *FX and OSBYTE calls
The OSBYTE call to the operating system is a powerful and
flexible way of invoking many of the available operating
system facilities. The *FX command can be used to make
OSBYTE calls from BASIC programs or directly from the
keyboard (see section 2.8).

OSBYTE – OS call specified by the contents of A taking
parameters in X and Y

Call address &FFF4
Indirected through &20A

On entry,
A selects an OSBYTE routine
X contains an OSBYTE parameter
Y contains an OSBYTE parameter

Any OSBYTE calls which are not recognised by the operating
system will be offered to paged ROMs (see section 15.1.1,
service call 4). If the unrecognised OSBYTE is not claimed by a
paged ROM then a ‘Bad command’ error will be issued (error
number 254).

All the OSBYTE calls recognised by the operating system are
described in detail in the following pages. Each OSBYTE call
or group of related OSBYTE calls is assigned a separate page.
The description for each call includes details of the entry
parameters required and the state of the registers on exit. All
OSBYTE calls may be made using the *FX command, but it is
not always appropriate to do so (i.e. those calls returning
values in the X and Y registers). Where it is appropriate to use
a *FX command this has been indicated. Preceding the full
OSBYTE descriptions is a complete summary of the OSBYTE
calls in a list.

110

OSBYTE calls &A6/166 to &FF/255 can be used to read or write
operating system status flags or variables. In OS 1.20 these
memory locations extend from &236 to &28F. The action of
these calls is to replace the contents of the specified location
with

‘(<old value> AND Y) EOR X’.

To read a location set X=0, Y=&FF.
To write a location set X=value, Y=0.

On exit,
X=old value, Y=value of next location

Many of these calls repeat the function of lower value
OSBYTEs (N.B. These equivalent calls are not guaranteed to
have an identical effect when used to set flags or OS variables,
and other calls are of no practical use, these are included for
completeness).

111

OSBYTE/*FX Call Summary
dec. hex. Function

0 0 Print operating system version
1 1 User OSBYTE call, read/write location &281
2 2 Select input stream
3 3 Select output stream
4 4 Enable/disable cursor editing
5 5 Select printer destination
6 6 Set character ignored by printer
7 7 Set RS423 baud rate for receiving data
8 8 Set RS423 baud rate for data transmission
9 9 Set flashing colour mark state duration
10 A Set flashing colour space state duration
11 B Set keyboard auto-repeat delay interval
12 C Set keyboard auto-repeat rate
13 D Disable events
14 E Enable events
15 F Flush selected buffer class
16 10 Select ADC channels to be sampled
17 11 Force an ADC conversion
18 12 Reset soft keys
19 13 Wait for vertical sync
20 14 Explode soft character RAM allocation
21 15 Flush specific buffer

OSBYTE/*FX calls 22 (&15) to 116 (&74) are not used by OS
1.20

117 75 Read VDU status
118 76 Reflect keyboard status in LEDs
119 77 Close any SPOOL or EXEC files
120 78 Write current keys pressed information
121 79 Perform keyboard scan
122 7A Perform keyboard scan from 16 (&10)
123 7B Inform OS, printer driver going dormant
124 7C Clear ESCAPE condition
125 7D Set ESCAPE condition
126 7E Acknowledge detection of ESCAPE condition
127 7F Check for EOF on an open file

112

128 80 Read ADC channel or get buffer status
129 81 Read key with time limit
130 82 Read machine high order address
131 83 Read top of OS RAM address (OSHWM)
132 84 Read bottom of display RAM address (HIMEM)
133 85 Read bottom of display address for a given
 MODE
134 86 Read text cursor position (POS and VPOS)
135 87 Read character at cursor position
136 88 Perform *CODE
137 89 Perform *MOTOR
138 8A Insert value into buffer
139 8B Perform *OPT
140 8C Perform *TAPE
141 8D Perform *ROM
142 8E Enter language ROM
143 8F Issue paged ROM service request
144 90 Perform *TV
145 91 Get character from buffer
146 92 Read from FRED, 1 MHz bus
147 93 Write to FRED, 1 MHz bus
148 94 Read from JIM, 1 MHz bus
149 95 Write to JIM, 1 MHz bus
150 96 Read from SHEILA, mapped I/O
151 97 Write to SHEILA, mapped I/O
152 98 Examine buffer status
153 99 Insert character into input buffer
154 9A Write to video ULA control register and copy
155 9B Write to video ULA palette register and copy
156 9C Read/write 6850 control register and copy
157 9D Fast Tube BPUT
158 9E Read from speech processor
159 9F Write to speech processor
160 A0 Read VDU variable value

OSBYTE/*FX calls 161 (&A1) to 165 (&A5) are not used by OS
1.20

166 A6 Read start address of OS variables (low byte)
167 A7 Read start address of OS variables (high byte)
168 A8 Read address of ROM pointer table (low byte)
169 A9 Read address of ROM pointer table (high byte)

113

170 AA Read address of ROM information table (low
 byte)
171 AB Read address of ROM information table (high
 byte)
172 AC Read address of key translation table (low byte)
173 AD Read address of key translation table (high
 byte)
174 AE Read start address of OS VDU variables (low
 byte)
175 AF Read start address of OS VDU variables (high
 byte)
176 B0 Read/write CFS timeout counter
177 B1 Read/write input source
178 B2 Read/write keyboard semaphore
179 B3 Read/write primary OSHWM
180 B4 Read/write current OSHWM
181 B5 Read/write RS423 mode
182 B6 Read character definition explosion state
183 B7 Read/write cassette/ROM filing system switch
184 B8 Read RAM copy of video ULA control register
185 B9 Read RAM copy of video ULA palette register
186 BA Read/write ROM number active at last BRK
 (error)
187 BB Read/write number of ROM socket containing
 BASIC
188 BC Read current ADC channel
189 BD Read/write maximum ADC channel number
190 BE Read/write ADC conversion type
191 BF Read/write RS423 use flag
192 C0 Read RS423 control flag
193 C1 Read/write flash counter
194 C2 Read/write mark period count
195 C3 Read/write space period count
196 C4 Read/write keyboard auto-repeat delay
197 C5 Read/write keyboard auto-repeat period
198 C6 Read/write *EXEC file handle
199 C7 Read/write *SPOOL file handle
200 C8 Read/write ESCAPE, BREAK effect
201 C9 Read/write Econet keyboard disable
202 CA Read/write keyboard status byte
203 CB Read/write RS423 handshake extent
204 CC Read/write RS423 input suppression flag

114

205 CD Read/write cassette/RS423 selection flag
206 CE Read/write Econet OS call interception status
207 CF Read/write Econet OSRDCH interception status
208 D0 Read/write Econet OSWRCH interception status
209 D1 Read/write speech suppression status
210 D2 Read/write sound suppression status
211 D3 Read/write BELL channel
212 D4 Read/write BELL envelope number/amplitude
213 D5 Read/write BELL frequency
214 D6 Read/write BELL duration
215 D7 Read/write startup message and !BOOT options
216 D8 Read/write length of soft key string
217 D9 Read/write number of lines printed since last
 page
218 DA Read/write number of items in VDU queue
219 DB Read/write TAB character value
220 DC Read/write ESCAPE character value
221 DD Read/write character &C0 to &CF status
222 DE Read/write character &D0 to &DF status
223 DF Read/write character &E0 to &EF status
224 E0 Read/write character &F0 to &FF status
225 E1 Read/write function key status
226 E2 Read/write SHIFT+function key status
227 E3 Read/write CTRL+function key status
228 E4 Read/write CTRL+SHIFT+function key status
229 E5 Read/write ESCAPE key status
230 E6 Read/write flags determining ESCAPE effects
231 E7 Read/write IRQ bit mask for user 6522
232 E8 Read/write IRQ bit mask for 6850
233 E9 Read/write IRQ bit mask for system 6522
234 EA Read flag indicating Tube presence
235 EB Read flag indicating speech processor presence
236 EC Read/write write character destination status
237 ED Read/write cursor editing status
238 EE Read/write location &27E, not used by OS 1.20
239 EF Read/write location &27F, not used by OS 1.20
240 F0 Read/write location &280, not used by OS 1.20
241 F1 Read/write location &281, used by *FX 1
242 F2 Read RAM copy of serial processor ULA
243 F3 Read/write timer switch state
244 F4 Read/write soft key consistency flag
245 F5 Read/write printer destination flag

115

246 F6 Read/write character ignored by printer
247 F7 Read/write first byte of BREAK intercept code
248 F8 Read/write second byte of BREAK intercept
 code
249 F9 Read/write third byte of BREAK intercept code
250 FA Read/write location &28A, not used by OS 1.20
251 FB Read/write location &28B, not used by OS 1.20
252 FC Read/write current language ROM number
253 FD Read/write last BREAK type
254 FE Read/write available RAM
255 FF Read/write start up options

116

OSBYTE &00 (0) *FX 0

Identify Operating System version

Entry parameters:
X=0 Execute BRK with a message giving the O.S. type
X<>0 RTS with O.S. type returned in X

On exit,
X=0, OS 1.00
X=1, OS 1.20
A and Y are preserved
C is undefined

117

OSBYTE &01 (1) *FX 1

Read/write the user flag

Entry parameters: The user flag is replaced by

(<old value> AND Y) EOR X

i.e. Y=0 for write, Y=&FF for read

On exit,
X=old value

This call uses OSBYTE call with A=&F1 (241). This OSBYTE
call is left free for user applications and is not used by the
operating system. The user flag is stored in location &281 and
its default value is 0.

118

OSBYTE &02 (2) *FX 2

Select input stream

Entry parameters: X determines input device(s)

*FX 2,0 X=0 keyboard selected, RS423
 disabled
*FX 2,1 X=1 RS423 selected and enabled,
 keyboard disabled
*FX 2,2 X=2 keyboard selected, RS423 enabled

Default: *FX 2,0

On exit,
X=0 if previous input was from the keyboard
X=1 if previous input was from RS423

After call,
A is preserved
Y and C are undefined

119

OSBYTE &03 (3) *FX 3

Select output stream

Entry parameters: X determines output device(s), Y=0

BIT 0 – Enables RS423 driver
BIT 1 – Disables VDU driver
BIT 2 – Disables printer driver
BIT 3 – Enables printer, independent of CTRL B or C
BIT 4 – Disables spooled output
BIT 5 – Not used
BIT 6 – Disables printer driver unless the character is
preceded by a VDU 1 (or equivalent)
BIT 7 – Not used

*FX 3,0 selects the default output options which are:
RS423 disabled
VDU enabled
Printer enabled (if selected by VDU 2)
Spooled output enabled (if selected by *SPOOL)

This OSBYTE call uses OSBYTE call with A=&EC (236). It is
thus possible to set Y as a bit mask and only change those bits
which are required.

After call,
A is preserved
X contains the old *FX 3 status
Y and C are undefined

120

OSBYTE &04 (4) *FX 4

Enable/disable cursor editing

Entry parameters: X determines editing keys’ status, Y=0

*FX 4,0 X=0 Enable cursor editing (default
 setting)
*FX 4,1 X=1 Disable cursor editing
 The cursor control keys will
 return the following codes:

 COPY &87 (135)
 LEFT &88 (136)
 RIGHT &89 (137)
 DOWN &8A (138)
 UP &8B (139)

*FX 4,2 X=2 Disable cursor editing and make
 the keys act as soft keys with the
 following soft key association
 numbers:

 COPY 11
 LEFT 12
 RIGHT 13
 DOWN 14
 UP 15

After call,
A is preserved
X contains the previous *FX 4 setting
Y and C are undefined

121

OSBYTE &05 (5) *FX 5

Select printer destination

Entry parameters: X determines print destination

*FX 5,0 X=0 Printer sink (printer output
 ignored)
*FX 5,1 X=1 Parallel output (default setting)
*FX 5,2 X=2 RS423 output (will act as sink if
 RS423 is enabled using OSBYTE
 with A=3)
*FX 5,3 X=3 User printer routine (see Vectors,
 10.6)
*FX 5,4 X=4 Net printer (see Vectors, 10.7)
*FX 5,5-255 X=5-255 User printer routine (see Vectors,
 10.6)

After call,
A is preserved
X contains the previous *FX 5 setting
Y and C are undefined
Interrupts are enabled by this call
This call is not reset to default by a soft break

122

OSBYTE &06 (6) *FX 6

Set character ignored by printer

Entry parameters: X contains the character value to be ignored

*FX 6,10 X=10 This prevents LINE FEED
 characters being sent to the
 printer, unless preceded by VDU
 1 (this is the default setting)

After call,
A is preserved
X contains the previous *FX 6 setting
Y and C are undefined

123

OSBYTE &07 (7) *FX 7

Set RS423 baud rate for receiving data

Entry parameters: X determines transmission rate

*FX 7,0 X=0 9600 baud transmit
*FX 7,1 X=1 75 baud transmit
*FX 7,2 X=2 150 baud transmit
*FX 7,3 X=3 300 baud transmit
*FX 7,4 X=4 1200 baud transmit
*FX 7,5 X=5 2400 baud transmit
*FX 7,6 X=6 4800 baud transmit
*FX 7,7 X=7 9600 baud transmit
*FX 7,8 X=8 19200 baud transmit

After call,
A is preserved
X and Y contain the old serial ULA register contents
C is undefined

124

OSBYTE &08 (8) *FX 8

Set RS423 baud rate for data transmission

Entry parameters: X determines transmission rate

*FX 8,0 X=0 9600 baud transmit
*FX 8,1 X=1 75 baud transmit
*FX 8,2 X=2 150 baud transmit
*FX 8,3 X=3 300 baud transmit
*FX 8,4 X=4 1200 baud transmit
*FX 8,5 X=5 2400 baud transmit
*FX 8,6 X=6 4800 baud transmit
*FX 8,7 X=7 9600 baud transmit
*FX 8,8 X=8 19200 baud transmit

After call,
A is preserved
X and Y contain the old serial ULA register contents
C is undefined

125

OSBYTE &09 (9) *FX 9

Set duration of the mark state of flashing colours (Duration
of first named colour)

Entry parameters: X determines length of duration, Y=0

*FX 9,0 X=0 Sets mark duration to infinity.
 Forces mark state if space is set to
 0
*FX 9,n X=n Sets mark duration to n vsync
 units (fiftieths of a second)
 (n=25 is the default setting)

After call,
A and X are preserved
Y contains the old mark duration
C is undefined

126

OSBYTE &0A (10) *FX 10

Set duration of the space state of flashing colours (Duration
of second named colour)

Entry parameters: X determines length of duration, Y=0

*FX 10,0 X=0 Sets space duration to infinity
 Forces space state if mark is set to
 0
*FX 10,n X=n Sets space duration to n vsync
 units (fiftieths of a second)
 (n=25 is the default setting)

After call,
A and X are preserved
Y contains the old space duration
C is undefined

127

OSBYTE &0B (11) *FX 11

Set keyboard auto-repeat delay

Entry parameters: X determines delay before repeating starts,
Y=0

*FX 11,0 X=0 Disables auto-repeat facility
*FX 11,n X=n Sets delay to n centiseconds
 (n=50 is the default setting)

After call,
A is preserved
X contains the old setting
Y and C are undefined

128

OSBYTE &0C (12) *FX 12

Set keyboard auto-repeat rate

Entry parameters: X determines auto-repeat periodic interval,
Y=0

*FX 12,0 X=0 Resets delay and repeat to
 default values
*FX 12,n X=n Sets repeat interval to n
 centiseconds
 (n=8 is the default value)

After call
A is preserved
X contains the old *FX 12 setting
Y and C are undefined

129

OSBYTE &0D (13) *FX 13

Disable events

Entry parameters: X contains the event code, Y=0

*FX 13,0 X=0 Disable output buffer empty
 event
*FX 13,1 X=1 Disable input buffer full event
*FX 13,2 X=2 Disable character entering buffer
 event
*FX 13,3 X=3 Disable ADC conversion
 complete event
*FX 13,4 X=4 Disable start of vertical sync
 event
*FX 13,5 X=5 Disable interval timer crossing 0
 event
*FX 13,6 X=6 Disable ESCAPE pressed event
*FX 13,7 X=7 Disable RS423 error event
*FX 13,8 X=8 Disable network error event
*FX 13,9 X=9 Disable user event

For more information about events see chapter 12.

After call,
A is preserved
X and Y contain the old enable state (0=disabled)
C is undefined

130

OSBYTE &0E (14) *FX 14

Enable events

Entry parameters: X contains the event code, Y not important

*FX 14,0 X=0 Enable output buffer empty
 event
*FX 14,1 X=1 Enable input buffer full event
*FX 14,2 X=2 Enable character entering buffer
 event
*FX 14,3 X=3 Enable ADC conversion
 complete event
*FX 14,4 X=4 Enable start of vertical sync
 event
*FX 14,5 X=5 Enable interval timer crossing 0
 event
*FX 14,6 X=6 Enable ESCAPE pressed event
*FX 14,7 X=7 Enable RS423 error event
*FX 14,8 X=8 Enable network error event
*FX 14,9 X=9 Enable user event

For more information about events see chapter 12.

After call,
A is preserved
X and Y contain the old enable state (>0=enabled)
C is undefined

131

OSBYTE &0F (15) *FX 15

Flush selected buffer class

Entry parameters: X value selects class of buffer

 X=0 All buffers flushed
 X<>0 Input buffer flushed only

See OSBYTE call &15/*FX 21

After call,
Buffer contents are discarded
A is preserved
X, Y and C are undefined

132

OSBYTE &10 (16) *FX 16

Select ADC channels which are to be sampled

Entry parameters: X value selects number of channels
sampled

*FX 16,0 X=0 Sampling disabled
*FX 16,n X=n Number of channels to be
 sampled
 (n must be in the range 0 to 4, if
 greater then set to 4)

After call,
A is preserved
X contains the old *FX 16 value

133

OSBYTE &11 (17) *FX 17

Force an ADC conversion

Entry parameters: X value specifies ADC channel

*FX 17,n X=n Force ADC conversion on
 channel n
 (if n>4 then n=4)

See OSBYTE with A=&80 (128) also.

After call,
A is preserved
X is preserved if it is in the range 0 to 4 otherwise it is
returned containing the value 4
Y and C are undefined

134

OSBYTE &12 (18) *FX 18

Reset soft keys

No parameters

This call clears the soft key buffer so the character strings are
no longer available

After call,
A and Y are preserved
X and C are undefined

135

OSBYTE &13 (19) *FX 19

Wait for vertical sync

No parameters

This call forces the machine to wait until the start of the next
frame of the display. This occurs 50 times per second on the
UK BBC Microcomputer and can be used for timing or
animation.

N.B. User trapping of IRQ1 may stop this call from working.

After call,
A is preserved
X, Y and C are undefined

136

OSBYTE &14 (20) *FX 20

Explode soft character RAM allocation

Entry parameters: X value explodes/implodes memory
allocation

In the default state 32 characters may be user defined using
the VDU 23 statement from BASIC (or the OSWRCH call in
machine code). These characters use memory from &C00 to
&CFF. Printing ASCII codes in the range 128 (&80) to 159
(&9F) will cause these user defined characters to be printed up
(these characters will also be printed out for characters in the
range &A0–&BF, &C0–&DF, &E0–&FF). In this state the
character definitions are said to be IMPLODED.

If the character definitions are EXPLODED then ASCII
characters 128 (&80) to 159 (&9F) can be defined as before
using VDU 23 and memory at &C00. Exploding the character
set definitions enables the user to uniquely define characters
32 (&20) to 255 (&FF) in steps of 32 extra characters at a time.
The operating system must allocate memory for this which it
does using memory starting at the ‘operating system
high-water mark’ (OSHWM). This is the value to which the
BASIC variable PAGE is usually set and so if a totally
exploded character set is to be used in BASIC then PAGE
must be reset to OSHWM+&600 (i.e. PAGE=PAGE+&600).

ASCII characters 32 (&20) to 127 (&7F) are defined by memory
within the operating system ROM when the character
definitions are imploded.

See OSBYTE &83 (131) for details about reading OSHWM
from machine code.

The memory allocation for ASCII codes in the expanded state
is as follows:–

137

 ASCII code Memory allocation

*FX 20,0 X=0 &80–&9F &C00–&CFF (imploded)
*FX 20,1 X=1 &A0–&BF OSHWM–OSHWM+&FF
 (+above)
*FX 20,2 X=2 &C0–&DF OSHWM+&100–
 OSHWM+&1FF (+above)
*FX 20,3 X=3 &E0–&FF OSHWM+&200–
 OSHWM+&2FF (+above)
*FX 20,4 X=4 &20–&3F OSHWM+&300–
 OSHWM+&3FF (+above)
*FX 20,5 X=5 &40–&5F OSHWM+&400–
 OSHWM+&4FF (+above)
*FX 20,6 X=6 &60–&7F OSHWM+&500–
 OSHWM+&5FF (+above)

See also OSBYTE call with A=&B6 (182).

after call,
A is preserved
X contains the new OSHWM (high byte)
Y and C are undefined

138

OSBYTE &15 (21) *FX 21

Flush specific buffer

Entry parameters: X determines the buffer to be cleared

*FX 21,0 X=0 Keyboard buffer emptied
*FX 21,1 X=1 RS423 input buffer emptied
*FX 21,2 X=2 RS423 output buffer emptied
*FX 21,3 X=3 Printer buffer emptied
*FX 21,4 X=4 Sound channel 0 buffer emptied
*FX 21,5 X=5 Sound channel 1 buffer emptied
*FX 21,6 X=6 Sound channel 2 buffer emptied
*FX 21,7 X=7 Sound channel 3 buffer emptied
*FX 21,8 X=8 Speech buffer emptied

See also OSBYTE calls with A=&0F (*FX15) and A=&80 (128)

After call,
A and X are preserved
Y and C are undefined

139

OSBYTE &75 (117)

Read VDU status

No entry parameters

On exit the X register contains the VDU status. Information is
conveyed in the following bits:

Bit 0 Printer output enabled by a VDU 2
Bit 1 Scrolling disabled
Bit 2 Paged scrolling selected
Bit 3 Software scrolling selected i.e. text window
Bit 4 not used
Bit 5 Printing at the graphics cursor enabled by VDU 5
Bit 6 Set when input and output cursors are separated
 (i.e. cursor editing mode).
Bit 7 Set if VDU is disabled by a VDU 21

After call,
A and Y are preserved
C is undefined

140

OSBYTE &76 (118)

Reflect keyboard status in keyboard LEDs

This call reflects the keyboard status in the state of the
keyboard LEDs, and is normally used after the status has been
changed by OSBYTE &CA/202.

On exit,
A is preserved
X has bit 7 set if CTRL is pressed
Y is undefined

141

OSBYTE &77 (119) *FX 119

Close any SPOOL or EXEC files

This call closes any open files being used as *SPOOLed output
or *EXECed input to be closed. This call also performs a paged
ROM call with A=&10 (16). See paged ROM section, 15.1.1.

On exit,
A is preserved
X, Y and C are undefined

142

OSBYTE &78 (120) *FX 120

Write current keys pressed information

The operating system operates a two key roll-over for
keyboard input (recognising a second key press even when
the first key is still pressed). There are two zero page locations
which contain the values of the two key-presses which may
be recognised at any one time. If no keys are pressed, location
&EC contains 0 and location &ED contains 0. If one key is
pressed, location &EC contains the internal key number+128
(see table below for internal key numbers) and location &ED
contains 0. If a second key is pressed while the original key
held down, location &EC contains the internal key
number+128 of the most recent key pressed and location &ED
contains the internal key number+128 of the first key pressed.

Internal Key Numbers

hex. dec. key hex. dec. key

&00 0 SHIFT &40 64 CAPS LOCK
&01 1 CTRL &41 65 A
&02 2 bit 7 &42 66 X
&03 3 bit 6 &43 67 F
&04 4 bit 5 &44 68 Y
&05 5 bit 4 &45 69 J
&06 6 bit 3 &46 70 K
&07 7 bit 2 &47 71 @
&08 8 bit 1 &48 72 :
&09 9 bit 0 &49 73 RETURN
&10 16 Q &50 80 SHIFT LOCK
&11 17 3 &51 81 S
&12 18 4 &52 82 C
&13 19 5 &53 83 G
&14 20 f4 &54 84 H
&15 21 8 &55 85 N
&16 22 f7 &56 86 L
&17 23 – &57 87 ;
&18 24 ^ &58 88]
&19 25 LEFT CURSOR &59 89 DELETE

143

&20 32 f0 &60 96 TAB
&21 33 W &61 97 Z
&22 34 E &62 98 SPACE
&23 35 T &63 99 V
&24 36 7 &64 100 B
&25 37 I &65 101 M
&26 38 9 &66 102 ,
&27 39 0 &67 103 .
&28 40 _ &68 104 /
&29 41 DOWN CURSOR &69 105 COPY
&30 48 1 &70 112 ESCAPE
&31 49 2 &71 113 f1
&32 50 D &72 114 f2
&33 51 R &73 115 f3
&34 52 6 &74 116 f5
&35 53 U &75 117 f6
&36 54 O &76 118 f8
&37 55 P &77 119 f9
&38 56 [&78 120 \
&39 57 UP CURSOR &79 121 RIGHT CURSOR

Bits 0 to 7 refer to the links at the front of the keyboard circuit
board on the right-hand side. See OSBYTE &FF/255 for
further information about these links.

To convert these internal key numbers to the INKEY numbers
they should be EOR (Exclusive ORed) with &FF (255).

Entry parameters: X and Y contain values to be written

Value in X is stored in &ED (old key) Value in Y is stored in
&EC (new key)

See also OSBYTE calls with A=&AC/172 and A=&AD/173.

After call,
A, X and Y are preserved
C is undefined

144

OSBYTE &79 (121)

Keyboard scan

Entry parameters: X determines the key to be detected and
also determines the range of keys to be scanned.

Key numbers refer to internal key numbers in the table above.

To scan a particular key:
X=key number EOR &80, on exit X<0 if the key is pressed

To scan the matrix starting from a particular key number:
X=key number, on exit X=key number of any key pressed or
&FF if no key pressed

During the keyboard scan the key whose value is stored in
location &EE is ignored. The contents of this location are set
to 0 by the operating system on reset.

After call,
A is preserved
Y and C are undefined

145

OSBYTE &7A (122)

Keyboard scan from 16 decimal

No entry parameters

Internal key number (see table above) of the key pressed is
returned in X.

This call is directly equivalent to an OSBYTE call with
A=&79/121 and X=16.

After call,
A is preserved
Y and C are undefined

146

OSBYTE &7B (123)

Inform operating system of printer driver going dormant

Entry parameters: X should contain the value 3 (print buffer
i.d.)

This OSBYTE call should be used by user printer drivers when
they go dormant. The operating system will need to wake up
the printer driver if more characters are placed in the printer
buffer.

See Vectors Section (user printer drivers), 10.6.

After call,
A, X and Y are preserved
C is undefined

147

OSBYTE &7C (124) *FX 124

Clear ESCAPE condition

No entry parameters

This call clears any ESCAPE condition without any further
action. The Tube is informed if active.

The ESCAPE flag is stored as the top bit of location &FF and
should never be interfered with directly.

After call,
A, X and Y are preserved
C is undefined

148

OSBYTE &7D (125) *FX 125

Set Escape condition

No entry parameters

This call partially simulates the ESCAPE key being pressed.
The Tube is informed (if active). An ESCAPE event is not
generated.

After call,
A, X and Y are preserved
C is undefined

149

OSBYTE &7E (126) *FX 126

Acknowledge detection of an ESCAPE condition

No entry parameters

This call attempts to clear the ESCAPE condition. All active
buffers will be flushed, any open EXEC files closed, the VDU
paging counter will be reset, the VDU queue will be reset,
any soft key expansion will be cancelled and any sound will
be terminated.

On exit,
X=&FF if the ESCAPE condition cleared
X=0 if the ESCAPE condition not cleared

After call,
A is preserved
Y and C are undefined

150

OSBYTE &7F (127)

Check for end-of-file on an opened file

Entry parameters: X contains file handle

On exit,
X<>0 if end-of-file has been reached
X=0 if end-of-file has not been reached

See filing system section 16.8.

After call,
A and Y are preserved
C is undefined

151

OSBYTE &80 (128)

Read ADC channel (ADVAL) or get buffer status

Entry parameters: X determines action and buffer or channel
no

On entry On exit

X=0 Y contains channel number (range 1 to 4) showing
which channel was last used for ADC conversion.
Note that OSBYTE calls with A=&10 (16) and
A=&11 (17) set this value to 0. A value of 0
indicates that no conversion has been completed.
Bits 0 and 1 of X indicate the status of the two ‘fire
buttons’.

X=1 to 4 X and Y contain the 16 bit value (X–low, Y–high)
read from channel specified by X.

X<0 If X contains a negative value (in 2’s complement
Y=&FF notation) then this call will return information

about various buffers.

X=255 keyboard buffer
 (&FF)
X=254 RS423 input buffer
 (&FE)
X=253 RS423 output buffer
 (&FD)
X=252 printer buffer
 (&FC)
X=251 sound channel 0
 (&FB)
X=250 sound channel 1
 (&FA)
X=249 sound channel 2
 (&F9)
X=248 sound channel 3
 (&F8)
X=247 speech buffer
 (&F7)

152

For input buffers X contains the number of
characters in the buffer and for output buffers the
number of spaces remaining.

After call,
A is preserved
C is undefined

OSBYTE &81 (129)

Read machine type (INKEY −256)

Entry parameters: X=0, Y=&FF.

On exit,
X=0 BBC Microcomputer OS 0.10
X=1 Acorn Electron OS 1.00
X=&FF BBC Microcomputer OS 1.00 or 1.20
X=&FE BBC Microcomputer OS A1.0 (USA)
X=&FD Master 128 OS 3.20 or 3.50
X=&FC BBC Microcomputer OS 1.20 (West Germany)
X=&FB BBC B+ OS 2.00
X=&FA Acorn Business Computer OS 1.00 or 2.00
X=&F7 Master Econet Terminal OS 4.00
X=&F5 Master Compact OS 5.10

Y=&FF if X=&FF, Y=0 otherwise

After call,
A is preserved
C is undefined

153

OSBYTE &81 (129)

Read key with time limit (INKEY)

Entry parameters: X and Y specify time limit in centiseconds

If a time limit of n centiseconds is required,

X=n AND &FF (LSB)
Y=n DIV &100 (MSB)

Maximum time limit is &7FFF centiseconds (5.5 minutes
approx.)

On exit,
If a character is detected, X=ASCII value of key pressed,
Y=0 and C=0.
If a character is not detected within timeout then Y=&FF
and C=1.
If Escape is pressed then Y=&1B (27) and C=1.

If called with Y=&FF and a negative INKEY value in X (see
appendix C) this call performs a keyboard scan.

On exit, X and Y contain &FF if the key being scanned is
pressed.

If called with Y=&FF and X=0 this call returns the machine
type (see previous page).

154

OSBYTE &82 (130)

Read machine high order address

No entry parameters

This call provides a 16 bit high order address for filing system
addresses which require 32 bits. As the BBC microcomputer
uses 16 bit addresses internally a padding value must be
provided which associates a given address to that machine.

On exit, X and Y contain the padding address (X–high, Y–low)
(This address is &FFFF for the BBC microcomputer I/O
processor)

After call,
A is preserved
C is undefined

155

OSBYTE &83 (131)

Read top of operating system RAM address (OSHWM)

No entry parameters

On exit, X and Y contain the OSHWM address (X=low-byte,
Y=high-byte)

This call is used by BASIC to initialise the value of PAGE.

After call,
A is preserved
C is undefined

156

OSBYTE &84 (132)

Read bottom of display RAM address (HIMEM)

No entry parameters

On exit, X and Y contain the HIMEM address (X–low,Y–high)

A is preserved
C is undefined

157

OSBYTE &85 (133)

Read bottom of display RAM address for a specified mode

Entry parameters: X determines mode number

On exit, X and Y contain the address (X–low byte, Y–high
byte)

This call may be used to investigate the consequences of a
particular mode’s selection.

After call,
A is preserved
C is undefined

158

OSBYTE &86 (134)

Read text cursor position (POS and VPOS)

No entry parameters

On exit,
X contains horizontal position of the cursor (POS)
Y contains vertical position of the cursor (VPOS)

After call,
A is preserved
C is undefined

159

OSBYTE &87 (135)

Read character at text cursor position

No entry parameters

On exit,
X contains character value (0 if char. not recognised)
Y contains graphics MODE number

After call,
A is preserved
C is undefined

160

OSBYTE &88 (136) *FX 136

Execute code indirected via USERV (*CODE equivalent)

This call JSRs to the address contained in the user vector
(USERV &200). The X and Y registers are passed on to the
user routine.

See *CODE section 2.6.

161

OSBYTE &89 (137) *FX 137

Switch cassette relay (*MOTOR equivalent)

Entry parameters:
X=0 relay off
X=1 relay on

The cassette motor LED will reflect the relay state.

The cassette filing system calls this routine with Y=0 for write
operations and Y=1 for read operations.

After call,
A is preserved
X, Y and C are undefined

162

OSBYTE &8A (138) *FX 138

Insert value into buffer

Entry parameters:
X identifies the buffer (See OSBYTE call with
A=&15/*FX21 for buffer numbers)
Y contains the value to be inserted into buffer

On exit,
C=0 if value successfully inserted
C=1 if value not inserted e.g. if buffer full

After call,
A is preserved

163

OSBYTE &8B (139) *FX 139

Select file options (*OPT equivalent)

Entry parameters:
X contains the option number
Y contains the option value required

See *OPT section 2.14.

After call,
A is preserved
C is undefined

164

OSBYTE &8C (140) *FX 140

Select tape filing system (*TAPE equivalent)

Entry parameters:
X=0 default baud rate (1200)
X=3 300 baud
X=12 1200 baud

See *TAPE section 2.19.

After call,
A and Y are preserved
X and C are undefined

165

OSBYTE &8D (141) *FX 141

Select ROM filing system (*ROM equivalent)

No entry parameters

See *ROM section 2.15.

After call,
A is preserved
X, Y and C are undefined

166

OSBYTE &8E (142) *FX 142

Enter language ROM

Entry parameters: X determines which language ROM is
entered

The selected language will be re-entered after a soft BREAK.
The action of this call is to print out the language name and
enter the selected language ROM at &8000 with A=1.
Locations &FD and &FE in zero page point to the copyright
message in the ROM. When a Tube is present this call will
copy the language across to the second processor.

167

OSBYTE &8F (143) *FX 143

Issue paged ROM service request

Entry parameters:
X=service type
Y=argument for service

On exit,
Y may contain return argument (if appropriate)
X=0 if a paged ROM claimed the service request

See Paged ROM section 15.1.1.

After call,
A is preserved
C is undefined

168

OSBYTE &90 (144) *FX 144

Alter display parameters (*TV equivalent)

Entry parameters:
X=vertical screen shift in lines
Y=0 interlace on
Y=1 interlace off

On exit, X and Y contain the previous settings of the
respective parameters

After call,
A and C are preserved

169

OSBYTE &91 (145)

Get character from buffer

Entry parameters:
X contains buffer number (see OSBYTE with A=&15/*FX
21 for buffer numbers)

On exit,
Y contains the extracted character.
If the buffer was empty then C=1 otherwise C=0.

After call,
A is preserved

170

OSBYTEs &92 to &97 (146 to 151) *FX 146 to 151

Read or Write to mapped I/O

Entry parameters:
X contains offset within page
Y contains byte to be written (if write)

OSBYTE call Memory addressed Name
read write

&92 (146) &93 (147) &FC00 to &FCFF FRED
&94 (148) &95 (149) &FD00 to &FDFF JIM
&96 (150) &97 (151) &FE00 to &FEFF SHEILA

Refer to the hardware section for details about these 1 MHz
buses.

On exit,
Read operations return with the value read in the Y
register

After call,
A is preserved
C is undefined

171

OSBYTE &98 (152)

Examine Buffer status

Entry parameters: X contains buffer number

For buffer numbers see OSBYTE call with A=&15/*FX 21.

On exit,
If the buffer is not empty

Y=pointer to next character to be read from the buffer
indexed from zero page locations &FA and &FB.
C=0

If the buffer is empty
Y is preserved
C=1

After using this call to examine the next character to be read
from a non-empty buffer the instructions ‘LDA (&FA),Y’ will
be required. Interrupts should be disabled while the OSBYTE
call is made and the buffer examined to prevent any interrupt
changing the buffer.

After call,
A and X are preserved

(This appears to be at variance with an ACORN press release
which said that Y was returned containing the value of the
character itself.)

172

OSBYTE &99 (153) *FX 153

Insert character into input buffer, checking for ESCAPE

Entry parameters:
X contains buffer number (0 or 1) and
Y contains the character value

X=0 keyboard buffer
X=1 RS423 input

If RS423 input is enabled and X=1 then RS423 ESCAPEs are
suppressed (this is the default state plus OSBYTE call with
A=&B5 and X=1/*FX181,1), this is identical to OSBYTE call
with A=&8A (*FX 138).

Otherwise if the character to be inserted is not the ESCAPE
character (set by OSBYTE &DC/*FX 220) or if ESCAPE
characters are to be treated as normal characters (following
OSBYTE with A=&E5/*FX 229), then an input event (even if
input is from RS423) is caused and the character is inserted
into the buffer.

If the character is an ESCAPE character and ESCAPEs are not
protected (using OSBYTE &C8/*FX 200) then an ESCAPE
event is generated instead of the keyboard event.

After call,
A is preserved
X, Y and C are undefined

173

OSBYTE &9A (154) *FX 154

Write to video ULA control register and OS copy

Entry parameters: X contains value to be written

This call writes to register 0 of the video ULA and also writes
the value in location &248 of the operating system’s
workspace. For details of the effects of writing to this register
see Video Hardware chapter 19.

This call also sets the flash counter (stored in location &251) to
the mark value (stored in &252).

After call,
A, X, Y and C are preserved

174

OSBYTE &9B (155) *FX 155

Write to video ULA palette register and OS copy

Entry parameters: X contains value to be written

This call writes to register 1 of the video ULA and also stores a
copy of this value at location &249. The actual value written to
the register and the internal copy is X EOR 7. See chapter 19,
The Video ULA, for further details.

After call,
A, X, Y and C are preserved

175

OSBYTE &9C (156) *FX 156

Read/update 6850 ACIA control register and OS copy

Entry parameters: X and Y determine action

(<register contents> AND Y) EOR X are written to the
register

i.e. if Y=&FF and X=0 then no change is made

N.B. Using this call has no effect on the cassette interface
operation and so this is the best way of implementing
non-standard RS423 formats.

See serial interface hardware chapter 20.

On exit, X=old register contents

After call,
A and Y are preserved
C is undefined

176

OSBYTE &9D (157) *FX 157

Fast Tube BPUT

Entry parameters: X=byte to be output, Y=file handle

In OS 1.2 this is channelled through the standard BPUT
routine. A fast BPUT routine may be implemented in other
software.

After call,
A is preserved
X, Y and C are undefined

177

OSBYTE &9E (158)

Read from speech processor

No entry parameters

This call may be used to read data from the serial speech ROM
or to read the status register of the speech processor. In order
to read from the speech ROM a read byte command must have
previously been sent to the speech processor using OSBYTE
call with A=&9F/*FX 159. If the speech processor has not been
primed in this way then a copy of the speech processor’s
status register is returned in the Y register.

After call,
A is preserved
X and C are undefined

178

OSBYTE &9F (159) *FX 159

Write to speech processor

Entry parameters: Data/command in Y

This call enables the user to pass opcodes (commands) or
bytes of data to the speech processor.

After call,
A is preserved
X, Y and C are undefined

179

OSBYTE &A0 (160)

Read VDU variable value

Entry parameters: X contains the number of the VDU variable
to be read

On exit, X contains low byte of variable value and Y contains
the high byte

This call reads locations &300,X and &301,X. See memory
usage section 11.4.

After call,
A is preserved
C is undefined

180

OSBYTEs &A6 (166) and &A7 (167)

Read start address of OS variables

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call returns the start address of the memory used by the
operating system to store its internal variables.

These values are never written by the operating system except
at BREAK and are not read by it either.

After call,
A is preserved
X=&90 and Y=&01
C is undefined

181

OSBYTEs &A8 (168) and &A9 (169)

Read address of ROM pointer table

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This table of extended vectors consists of 3 byte vectors in the
form Location (2 bytes), ROM no. (1 byte). See Paged ROM
section 15.1.3 for a complete description of extended vectors.

On exit,
X=&9F (low byte)
Y=&0D (high byte)
i.e. address returned is &0D9F for OS 1.2

After call,
A is preserved
C is undefined

182

OSBYTEs &AA (170) and &AB (171)

Read address of ROM information table

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. the contents of the next
location are returned in Y.

This call returns the origin of a 16 byte table, containing one
byte per paged ROM. This byte contains the ROM type byte
contained in location &8006 of the ROM or contains 0 if a valid
ROM is not present. See Paged ROMs chapter 15.

On exit,
X=&A1
Y=&02
i.e. origin address, &02A1 for OS 1.20

After call,
A is preserved
C is undefined

183

OSBYTEs &AC (172) and &AD (173)

Read address of keyboard translation table

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call returns the address of a table which contains the
ASCII values of each key where the offset into the table is the
internal key number (see OSBYTE with A=&78/*FX 120).

Values returned for non-ASCII keys are:–

f0 128 (&80) COPY 139 (&8B)
f1 129 (&81) LEFT CURSOR 140 (&8C)
f2 130 (&82) RIGHT CURSOR 141 (&8D)
f3 131 (&83) DOWN CURSOR 142 (&8E)
f4 132 (&84) UP CURSOR 143 (&8F)
f5 133 (&85)
f6 134 (&86) TAB 0
f7 135 (&87) CAPS LOCK 1
f8 136 (&88) SHIFT LOCK 2
f9 137 (&89)
 ESCAPE 27 (&1B)

Non-valid key numbers and SHIFT or CTRL return values
with no significance.

On exit,
X=&2B
Y=&F0
i.e. address is &F02B for OS 1.20

184

OSBYTEs &AE (174) and &AF (175)

Read VDU variables origin

NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call returns with the address of the table of internal VDU
variables. See memory section, 11.4, for list of these.

On exit,
X=&00
Y=&03
i.e. address is &300 for OS 1.20

185

OSBYTE &B0 (176)

Read/write CFS timeout counter

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This counter is decremented once every vertical sync pulse (50
times per second) which is also used for OSBYTE &13/*FX 19.
The timeout counter is used to time interblock gaps and
leader tones.

186

OSBYTE &B1 (177) *FX 177

Read/write input source (equivalent to OSBYTE with A=2)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location should contain 0 for keyboard input and 1 for
RS423 input (i.e. contains buffer no.)

187

OSBYTE &B2 (178) *FX 178

Read/write keyboard semaphore

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains 0 then keyboard interrupts are
ignored. Keyboard interrupts are enabled if it contains &FF.

188

OSBYTE &B3 (179) *FX 179

Read/write primary OSHWM (for imploded font)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the OSHWM page value for an
imploded font (even when character definition RAM
explosion has been selected). See OSBYTE &B4/180 and
OSBYTE &14/20.

189

OSBYTE &B4 (180) *FX 180

Read/write OSHWM (equivalent to OSBYTE &83 (131) on
read)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location is updated by any character definition RAM
explosion which may have been selected and returns with the
high byte of the OSHWM address (the low byte always being
0). See OSBYTE &14/20.

190

OSBYTE &B5 (181) *FX 181

Read/write RS423 mode

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains 0 then RS423 input is treated exactly
the same as keyboard input i.e. ESCAPEs are recognised, soft
keys are expanded and each character entering the input
buffer causes a keyboard event.

If this location contains 1 (the usual situation) then ESCAPEs
are ignored, soft keys are not expanded and no events are
caused.

191

OSBYTE &B6 (182)

Read character definition explosion state

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the state of font explosion as set by
OSBYTE call with A=&14/*FX 20.

192

OSBYTE &B7 (183) *FX 183

Read/write cassette/ROM filing system switch

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains 0 for *TAPE selection and 2 for *ROM
selection. Other values are meaningless.

193

OSBYTEs &B8 (184) and &B9 (185)

Read video processor ULA registers (OS copies only)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

See OSBYTE calls with A=&9A and A=&9B and the Video
Hardware chapter 19.

The last value written to the ULA registers can be read using
this method.

These calls should not be used to write to these locations
because to do so would make the internal operating system
copy of the registers inconsistent with the actual register
contents.

194

OSBYTE &BA (186)

Read ROM number active at last BRK (error)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the ROM number of the paged ROM
that was in use at the last BRK.

195

OSBYTE &BB (187)

Read number of ROM socket containing BASIC

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

BASIC is recognised by the fact that it is a language ROM
which does not possess a service entry. This ROM is then
selected by the *BASIC command (see section 2.4). If no
BASIC ROM is present then this location contains &FF.
See Paged ROMs chapter 15.

196

OSBYTE &BC (188)

Read current ADC channel

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the number of the ADC channel
currently being converted. This call should not be used to
force ADC conversions, use OSBYTE &11/*FX 17.

197

OSBYTE &BD (189)

Read maximum ADC channel number

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

The maximum channel number to be used for ADC
conversions in the range 0 to 4. Set by OSBYTE &10/*FX 16.

198

OSBYTE &BE (190)

Read/write ADC conversion type, 12 or 8 bits

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

Set to &00, default (12 bit) conversion
Set to &08, 8 bit conversion
Set to &0C, 12 bit conversion

Other values have undefined effects. 8 bit conversion creates
values in the same range (0 to &FFFF) but with less precision
and two to three times as fast.

199

OSBYTE &BF (191) *FX 191

Read/write RS423 use flag

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

bit 7 set – RS423 free
bit 7 clear – RS423 busy
bits 0 to 6 – undefined

200

OSBYTE &C0 (192)

Read RS423 control flag

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call is equivalent to OSBYTE &9C/*FX 156 except that it
does not update the 6850 chip. This call should not be used to
write the control flag as it would cause the operating system
RAM copy to become inconsistent with the 6850 register
contents.

201

OSBYTE &C1 (193) *FX 193

Read/write flash counter

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the number of 1/50th sec. units until
the next change of colour for flashing colours.

OSBYTE &C2 (194) *FX 194

Read/write mark period count

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

Equivalent to OSBYTE &09/*FX 9.

OSBYTE &C3 (195) *FX 195

Read/write space period count

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

Equivalent to OSBYTE &0A/*FX 10.

202

OSBYTE &C4 (196) *FX 196

Read/write keyboard auto-repeat delay

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call is used by OSBYTE &0B/*FX 11.

OSBYTE &C5 (197) *FX 197

Read/write keyboard auto-repeat period (rate)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call is used by OSBYTE &0C/*FX 12.

203

OSBYTE &C6 (198) *FX 198

Read/write *EXEC file handle

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains zero if no file handle has been allocated
by the operating system.

204

OSBYTE &C7 (199) *FX 199

Read/write *SPOOL file handle

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the file handle of the current SPOOL
file or zero if not currently spooling.

205

OSBYTE &C8 (200) *FX 200

Read/write ESCAPE, BREAK effect

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

bit 0=0 Normal ESCAPE action
bit 0=1 ESCAPE disabled unless caused by OSBYTE &7D/125
bit 1=0 Normal BREAK action
bit 1=1 Memory cleared on BREAK

e.g. A value 0000001x (binary) will cause memory to be
cleared on BREAK.

206

OSBYTE &C9 (201) *FX 201

Read/write keyboard disable

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains 0 then the keyboard is scanned
normally otherwise lock keyboard (all keys ignored except
BREAK).

This call is used by the *REMOTE Econet facility.

207

OSBYTE &CA (202) *FX 202

Read/write keyboard status byte

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

bit 3 – 1 if SHIFT is pressed.
bit 4 – 0 if CAPS LOCK is engaged.
bit 5 – 0 if SHIFT LOCK is engaged.
bit 6 – 1 if CTRL is pressed.
bit 7 – 1 SHIFT enabled, if a LOCK key is engaged then SHIFT
reverses the LOCK.

SHIFT enable (bit 7) may be set by holding SHIFT down as the
CAPS LOCK key is engaged which enables lower-case letters
to be typed when capitals are selected by pressing the
required key plus SHIFT. The only way to set SHIFT enable
for the SHIFT LOCK key is to use *FX202,144 (or OSBYTE
&CA).

See also OSBYTE with A=&76 (118).

208

OSBYTE &CB (203) *FX 203

Read/write RS423 handshake extent

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location determines the space remaining in the RS423
input buffer when RS423 input is halted by the operating
system entering a buffer full state (which sets the RTS line
high). The default value is 9. The free space remaining in the
buffer allows some manipulation of the buffer contents to be
carried out before being passed on. The value selected should
reflect the response time at the transmission end and the time
taken for the operating system to act upon the buffer full
situation.

209

OSBYTE &CC (204) *FX 204

Read/write RS423 input suppression flag

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains 0 then RS423 input is accepted
otherwise RS423 input is ignored (RS423 receive errors will
still cause an event).

210

OSBYTE &CD (205) *FX 205

Read/write cassette/RS423 selection flag

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains 0 then RS423 data is channelled to the
RS423 hardware.

If this location contains &40 then RS423 data is channelled to
the cassette hardware.

This location is only checked, and so any change will only
come into effect, when a baud rate selection is made using
*FX 7 or 8.

211

OSBYTE &CE (206) *FX 206

Read/write Econet OS call interception status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If bit 7 of this location is set then all OSBYTE and OSWORD
calls (except those sent to paged ROMs) are indirected
through the Econet vector (&224) to the Econet. Bits 0 to 6 are
ignored.

OSBYTE &CF (207) *FX 207

Read/write Econet read character interception status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If bit 7 of this location is set then input is pulled from the
Econet vector.

OSBYTE &D0 (208) *FX 208

Read/write Econet write character interception status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If bit 7 of this location is set then output is directed to the
Econet. Output may go through the normal write character
on return from the Econet code.

See expansion vectors section 10.7.

212

OSBYTE &D1 (209) *FX 209

Read/write speech suppression status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the value sent to the speech processor
when speech is output. A value of &50 represents the SPEAK
op. code and is the default value (speech enabled). Writing
&20 (NOP) to this location will disable speech.

213

OSBYTE &D2 (210) *FX 210

Read/write sound suppression status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains any value other than 0 then sound
output is disabled.

214

OSBYTE &D3 (211) *FX 211

Read/write BELL (CTRL G) channel

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the channel number to be used for the
BELL sound.

Default value 3.

215

OSBYTE &D4 (212) *FX 212

Read/write BELL (CTRL G) SOUND information

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains a byte which determines either the
amplitude or the ENVELOPE number to be used by the BELL
sound. If an ENVELOPE is specified then the value should be
set to (ENVELOPE no.−1)*8. Similarly an amplitude in the
range −15 to 0 must be translated by subtracting 1 and
multiplying by 8.

The least significant three bits of this location contain the H
and S parameters of the SOUND command (see User Guide).

e.g. Try *FX 212,216 for a softer BELL sound (amplitude −4).

Default value 144 (&90), amplitude −13.

216

OSBYTE &D5 (213) *FX 213

Read/write bell (CTRL G) frequency

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This value contains the pitch parameter (as used by SOUND
command third parameter) used for the BELL sound.

Default value 100 (&64).

217

OSBYTE &D6 (214) *FX 214

Read/write bell (CTRL G) duration

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This value contains the duration parameter (as for SOUND
command) used for the BELL sound.

Default value 6.

218

OSBYTE &D7 (215) *FX 215

Read/write start up message suppression and !BOOT option
status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

bit 7 If clear then ignore OS startup message.
 If set then print up OS startup message as normal.
bit 0 If set then if an error occurs in a !BOOT file in *ROM,
 carry on but if an error is encountered from a disc
 !BOOT file because no language has been initialised
 the machine locks up.

If clear then the opposite will occur, i.e. locks up if
 there is an error in *ROM

This can only be over-ridden by a paged ROM on
initialisation or by intercepting BREAK, see OSBYTE calls
&F7 to &F9.

219

OSBYTE &D8 (216) *FX 216

Read/write length of soft key string

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the number of characters yet to be read
from the soft key buffer of the current soft key. It may be
useful to set this value to 0 to cancel a soft key expansion
without clearing the input buffer. To clear input buffer use
*FX 15/OSBYTE &0F.

220

OSBYTE &D9 (217) *FX 217

Read/write number of lines since last halt in page mode

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the number of lines printed since the
last page halt.

221

OSBYTE &DA (218) *FX 218

Read/write number of items in the VDU queue

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This contains the 2’s complement negative number of bytes
still required for the execution of a VDU command.

Writing 0 to this location can be a useful way of abandoning a
VDU queue otherwise writing to this location is not
recommended.

222

OSBYTE &DB (219) *FX 219

Read/write character value returned by pressing TAB key

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the value to be returned by the TAB
key. It is possible to use the TAB key as a soft key by setting
this location to &80+n where n is the soft key number.

Default value is 9 (forward cursor 1 char.).

223

OSBYTE &DC (220) *FX 220

Read/write Escape character

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains the ASCII character (and key) which
will generate an ESCAPE.

e.g. *FX 220,32 will make the SPACE bar the ESCAPE key.

Default value &1B (27).

224

OSBYTEs &DD (221) to &E0 (224) *FX 221 to 224

Read/write input buffer code interpretation status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

These locations determine the effect of the character values
&C0 (192) to &FF (255) when placed in the input buffer. See
OSBYTEs &E1 (225) to &E4 (228) for details about the different
effects which may be selected. Note that these values cannot
be inserted into the input buffer from the keyboard. RS423
input or a user keyboard handling routine may place these
values into the input buffer.

OSBYTE &DD affects interpretation of values &C0 to &CF
OSBYTE &DE affects interpretation of values &D0 to &DF
OSBYTE &DF affects interpretation of values &E0 to &EF
OSBYTE &E0 affects interpretation of values &F0 to &FF

Default values &01,&D0,&E0 and &F0 (respectively)

225

OSBYTE &E1 (225) *FX 225

Read/write function key status (soft keys or codes)

Input buffer characters &80 to &8F.

OSBYTE &E2 (226) *FX 226

Read/write SHIFT+function key status (soft key or code)

Input buffer characters &90 to &9F.

OSBYTE &E3 (227) *FX 227

Read/write CTRL+function key status (soft key or code)

Input buffer characters &A0 to &AF.

OSBYTE &E4 (228) *FX 228

Read/write CTRL+SHIFT+function key status (soft key or
code)

Input buffer characters &B0 to &BF.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

These locations determine the action taken by the operating
system when a function key is pressed.

value 0 totally ignore key.
value 1 expand as normal soft key.
value 2 to &FF add n (base) to soft key number to provide
 ‘ASCII’ code.

226

The default settings are:–

fn keys alone &01 expand using soft key
 strings
fn keys+SHIFT &80 code &80+soft key
 number
fn keys+CTRL &90 code &90+soft key
 number
fn keys+SHIFT+CTRL 0 key has no effect

When the BREAK key is pressed a character of value &CA is
entered into the input buffer. The effect of this character may
be set independently of the other soft keys using OSBYTE
&DD (221). One of the other effects of pressing the BREAK
key is to reset this OSBYTE call and so the usefulness of this
facility is limited.

227

OSBYTE &E5 (229) *FX 229

Read/write status of ESCAPE key (escape action or ASCII
code)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains 0 then the ESCAPE key has its normal
action. Otherwise treat currently selected ESCAPE key as an
ASCII code.

228

OSBYTE &E6 (230) *FX 230

Read/write flags determining ESCAPE effects

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains 0 then when an ESCAPE is
acknowledged (using OSBYTE &7E/*FX 126) then:–

EXEC file is closed (if open)
Purge all buffers (including input buffer)
Reset VDU paging counter
Reset VDU queue
Any current soft key expansion is cleared
Any sound being produced is terminated.

If this location contains any value other than 0 then ESCAPE
causes none of these.

229

OSBYTE &E7 (231) *FX 231

Read/write IRQ bit mask for the user 6522

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

See User VIA chapter 24.

Default value &FF.

OSBYTE &E8 (232) *FX 232

Read/write IRQ bit mask for 6850 (RS423)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

See serial interface, chapter 20.

Default value &FF.

OSBYTE &E9 (233) *FX 233

Read/write interrupt bit mask for the system 6522

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

See system 6522 chapter 23.

Default value &FF.

For more information about interrupts see chapter 13.

230

OSBYTE &EA (234)

Read flag indicating Tube presence

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains 0 if a Tube system is not present and
&FF if Tube chips and software are installed. No other values
are meaningful or valid.

231

OSBYTE &EB (235)

Read flag indicating speech processor presence

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains 0 if the speech processor is not present
and &FF if it is.

232

OSBYTE &EC (236) *FX 236

Read/write write character destination status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call is used by OSBYTE &03/*FX 3.

233

OSBYTE &ED (237) *FX 237

Read/write cursor editing status

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call is used by OSBYTE &04/*FX 4.

234

OSBYTEs &EE (238), &EF (239) and &F0 (240)

Read/write location &27E, &27F and &280

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

These locations are not used by the operating system. Default
values 0.

235

OSBYTE &F1 (241) *FX 241

Read/write location &281

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call is not used by the operating system and is unlikely to
be used by later issues either. This location is reserved as a
user flag for use with *FX 1.

Default value 0.

236

OSBYTE &F2 (242)

Read copy of the serial processor ULA register

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

See serial interface chapter 20, for the significance of this
register. This call should not be used for writing as it would
place this copy of the register contents out of sync with the
register contents themselves.

All the serial ULA functions can be controlled with:–

OSBYTE with A=&89/*FX 137 motor control
OSBYTE with A=&CD/*FX 205 cassette/RS423 select
OSBYTE with A=&7,&8/*FX 7,8 RS423 baud rate control

237

OSBYTE &F3 (243)

Read timer switch state

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

The operating system maintains two internal clocks which are
updated alternately. As the operating system alternates
between the two clocks it toggles this location between values
of 5 and 10. These values represent offsets from &28D where
the clock values are stored.

238

OSBYTE &F4 (244) *FX 244

Read/write soft key consistency flag

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

If this location contains 0 then the soft key buffer is in a
consistent state. A value other than 0 indicates that the soft
key buffer is in an inconsistent state (the operating system
does this during soft key string entries and deletions). If the
soft keys are in an inconsistent state during a soft break then
the soft key buffer is cleared (otherwise it is preserved).

239

OSBYTE &F5 (245) *FX 245

Read/write printer destination flag

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call is used by OSBYTE &05/*FX 5. Using this call does
not check for the printer previously selected being inactive or
inform the user printer routine. See Expansion vectors,
section 10.6.

240

OSBYTE &F6 (246) *FX 246

Read/write character ignored by printer

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This call is used by OSBYTE &06/*FX 6.

241

OSBYTEs &F7 (247), &F8 (248) and &F9 (249)

Read/write BREAK intercept code

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

The contents of these locations must be a JMP instruction for
BREAKs to be intercepted (the operating system identifies the
presence of an intercept by testing location &287 contents
equal to &4C – JMP). This code is entered twice during each
break. On the first occasion C=0 and is performed before the
reset message is printed or the Tube initialised. The second
call is made with C=1 after the reset message has been printed
and the Tube initialised.

242

OSBYTEs &FA (250) and &FB (251) *FX 250 to 251

Read/write locations &28A and &28B

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

Not used by the operating system.

Default values 0.

243

OSBYTE &FC (252) *FX 252

Read/write current language ROM number

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location is set after use of OSBYTE &8E/*FX 142. This
ROM is entered following a soft BREAK or a BRK (error).

244

OSBYTE &FD (253)

Read hard/soft BREAK

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains a value indicating the type of the last
BREAK performed.

value 0 – soft BREAK
value 1 – power up reset
value 2 – hard BREAK

245

OSBYTE &FE (254) *FX 254

Read/write available RAM

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location contains a value indicating the available RAM.

value &40 – 16 K (usually model A)
value &80 – 32 K (usually model B)

246

OSBYTE &FF (255) *FX 255

Read/write start up options

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next
location are returned in Y.

This location is determined by the 8 links on the right hand
front corner of the keyboard PCB following a hard BREAK.

bits 0 to 2 screen MODE selected following reset.
 (MODE number = 3 bit value)
bit 3 if clear reverse action of SHIFT+BREAK.
bits 4 and 5 used to set disc drive timings (see below).
bit 6 not used by operating system.
 (reserved for future applications)
bit 7 used by DNFS to select default filing system
 (if clear select NFS, if set select DFS)

Disc drive timing links for 8271 controller:–

link link step settle head
3 4 time time load

1 1 4 16 0
1 0 6 16 0
0 1 6 50 32
0 0 24 20 64

Disc drive timing links for 1770/1772 controller:–

 1770 1770 1772 1772
link link step settle step settle
3 4 time time time time

1 1 6 30 6 15
1 0 12 30 12 15
0 1 20 30 2 15
0 0 30 30 3 15

247

9 OSWORD calls
The OSWORD routines are a similar concept to the OSBYTE
routines except that instead of the parameters being passed in
the X and Y registers parameters are placed in a parameter
block, the address of which is sent to the OSWORD routine in
the X (low byte) and Y (high byte) registers.

9.1 OSWORD OS call specified by contents of A taking
parameters in a parameter block.

Call address &FFF1
Indirected through &20C

On entry,
A selects an OSWORD routine.
X contains low byte of the parameter block address.
Y contains high byte of the parameter block address.

OSWORD calls which are called with accumulator values in
the range &E0 (224) to &FF (255) are passed to the USERV
(&200). The routine indirected through the USERV is entered
with the register contents unchanged from the original
OSWORD call. (See Vectors, section 10.1 and Operating
system commands, sections 2.6 and 2.11 for more information
about the user vector.)

Other unrecognised OSWORD calls are offered to the paged
ROMs (see Paged ROM section, section 15.1.1, reason code 8).

OSWORD summary

A=0 Read line from currently selected input into memory.
A=1 Read system clock.
A=2 Write system clock.
A=3 Read interval timer.
A=4 Write interval timer.
A=5 Read byte of I/O processor memory.
A=6 Write byte of I/O processor memory.
A=7 Perform a SOUND command.
A=8 Define an ENVELOPE.

248

A=9 Read pixel value.
A=&A Read character definition.
A=&B Read palette value for a given logical colour.
A=&C Write palette value for a given logical colour.
A=&D Read previous and current graphics cursor positions.

9.2 OSWORD call with A=&0 Read line from input

This routine takes a specified number of characters from the
currently selected input stream. Input is terminated following
a RETURN or an ESCAPE. DELETE (&7F/127) deletes the
previous character and CTRL U (&15/21) deletes the entire
line. If characters are presented after the maximum line length
has been reached the characters are ignored and a BEL (ASCII
7) character is output.

The parameter block:–

XY+ 0 Buffer address for input LSB
 1 MSB

 2 Maximum line length

 3 Minimum acceptable ASCII value
 4 Maximum acceptable ASCII value

Only characters greater or equal to XY+3 and lesser or equal
to XY+4 will be accepted.

On exit,
C=0 if a carriage return terminated input.
C=1 if an ESCAPE condition terminated input.
Y contains line length, including carriage return if used.

9.3 OSWORD call with A=&1 Read system clock

This routine may be used to read the system clock (used for
the TIME function in BASIC). The five byte clock value is
written to the address contained in the X and Y registers. This
clock is incremented every hundredth of a second and is set to
0 by a hard BREAK.

249

9.4 OSWORD call with A=&2 Write system clock

This routine may be used to set the system clock to a five byte
value contained in memory at the address contained in the X
and Y registers.

9.5 OSWORD call with A=&3 Read interval timer

This routine may be used to read the interval timer (Used for
events, see chapter 12). The five byte clock value is written to
the address contained in the X and Y registers.

9.6 OSWORD call with A=&4 Write interval timer

This routine may be used to set the interval timer to a five
byte value contained in memory at the address in the X and Y
registers.

9.7 OSWORD call with A=&5 Read I/O processor memory

A byte of I/O processor memory may be read across the Tube
using this call. A 32 bit address should be contained in
memory at the address contained in the X and Y registers.

XY+ 0 LSB of address to be read
 1
 2
 3 MSB of address to be read

If the I/O processor uses 16 bit memory addressing only least
significant two bytes need to be specified.

On exit,
The byte read will be contained in location XY+4.

9.8 OSWORD call with A=&6 Write I/O processor memory

This call permits I/O processor memory to be written across
the Tube. A 32 bit address is contained in the parameter block
addressed by the X and Y registers and the byte to be written
should be placed in XY+4.

250

9.9 OSWORD call with A=&7 SOUND command

This routine takes an 8 byte parameter block addressed by the
X and Y registers. The 8 bytes of the parameter block may be
considered as the four parameters used for the SOUND
command in BASIC.

e.g. To perform a SOUND 1,−15,200,20

XY+ 0 Channel LSB 1 &01
 1 MSB &00

 2 Amplitude LSB −15 &F1
 3 MSB &FF

 4 Pitch LSB 200 &C8
 5 MSB &00

 6 Duration LSB 20 &14
 7 MSB &00

This call has exactly the same effect as the SOUND command.

9.10 OSWORD call with A=&8 Define an ENVELOPE

The ENVELOPE parameter block should contain 14 bytes of
data which correspond to the 14 parameters described in the
ENVELOPE command. This call should be entered with the
parameter block address contained in the X and Y registers.

9.11 OSWORD call with A=&9 Read pixel value

This routine returns the status of a screen pixel at a given pair
of X and Y co-ordinates. A four byte parameter block is
required and result is contained in a fifth byte.

XY+ 0 LSB of the X co-ordinate
 1 MSB of the X co-ordinate

 2 LSB of the Y co-ordinate
 3 MSB of the Y co-ordinate

251

On exit,
XY+4 contains the logical colour at the point or &FF if the
point specified was off screen.

9.12 OSWORD call with A=&A Read character definition

The 8 bytes which define the 8 by 8 matrix of each character
which can be displayed on the screen may be read using this
call. The ASCII value of the character definition to be read
should be placed in memory at the address stored in the X
and Y registers. After the call the 8 byte definition is contained
in the following 8 bytes.

XY+ 0 Character required

 1 Top row of character definition
 2 Second row of character definition
 .
 .
 .
 8 Bottom row of character definition

9.13 OSWORD call with A=&B Read palette

The physical colour associated with each logical colour may
be read using this routine. On entry the logical colour is
placed in the location at XY and the call returns with 4 bytes
stored in the following four locations corresponding to a
VDU 19 statement.

e.g. Assuming that a VDU 19,1,3,0,0,0 had previously been
issued then OSWORD &B with 1 at XY would yield:–

XY+ 0 1 logical colour

 1 3 physical colour
 2 0 padding for future expansion
 3 0
 4 0

252

9.14 OSWORD call with A=&C Write palette

This call performs the same task as a VDU 19 command
(which can be used from machine code using OSWRCH). The
advantage of using this OSWORD call rather than the
conventional VDU route is that there is a significant saving in
time. Another advantage is that OSWORD calls can be used in
interrupt routines while VDU routines cannot. This call works
in the same way as OSWORD &B (see above); a parameter
block should be set up with the logical colour being defined at
XY, the physical colour being assigned to it in XY+1 and XY+2
to XY+4 containing padding 0s.

9.15 OSWORD call with A=&D Read last two graphics
cursor positions

The operating system keeps a record of the last two graphics
cursor positions in order to perform triangle filling if
requested. These cursor positions may be read using this call.
X and Y should provide the address of 8 bytes of memory into
which the data may be written.

XY+ 0 previous X co-ordinate, low byte
 1 previous X co-ordinate, high byte

 2 previous Y co-ordinate, low byte
 3 previous Y co-ordinate, high byte

 4 current X co-ordinate, low byte
 5 current X co-ordinate, high byte

 6 current Y co-ordinate, low byte
 7 current Y co-ordinate, high byte

253

10 Vectors
One of the features of the BBC microcomputer that greatly
enhances its power is the extensive use of VECTORS. A vector
is a word in memory containing the address of a service
routine. Many of the more important operating system
routines are indirected through vectors. The write character
routine, OSWRCH, uses a vector called WRCHV. Each time
OSWRCH is called it jumps to the routine whose address is
contained in WRCHV. All of the vectors used for operating
system routines are initialised on reset by the operating
system. Normally each vector contains the address of the
relevant routine in the operating system.

The advantage of using vectors is that standard operating
system routines can be intercepted by changing the address
contained in the vector. The user can replace the address in
the vector with the address of his own routine. This routine
may totally replace the operating system routine or it may
perform some function and then pass control to the routine
whose address was previously contained in the vector (when
changing the operating system vector the user would have to
save the old contents of the vector and store them in a vector
of his own in his routine).

Some of the internal operating system routines are also
indirected through vectors. This enables the user to alter the
function of the operating system in certain areas. For example,
the buffer management routines can be modified by
intercepting INSV and REMV which indirect the buffer
insertion and removal routines.

Vectors also provide a way of allowing the user to enter
routines for which there is no direct entry point such as the
Filing System Control vector.

When providing new routines for vectors, the programmer
should note that there are two basic strategies for returning
from vectored code, these are:

254

a) The routine provided completely replaces the standard
code. In this case, the routine should exit with an RTS
instruction (or an RTI if it is one of the interrupt or
break vectors).

b) The routine provided does not completely replace the
standard code. This is the more usual case, and
routines of this sort should exit with a JMP (oldvec),
where oldvec is the old vector contents. Routines
passing control on to further code should exit with the
registers preserved from the entry to the routine.

c) A combination of the above. This can occur with
vectors that provide more than one function (this is
most of them), and some of the functions are to be
completely replaced, and others passed on to the
standard routine. In this case, both of the above exit
strategies should be adopted.

The use of strategy (b) allows a whole series of routines to be
daisy chained together on one vector, each taking over one or
two functions of that vector. Wherever possible, this strategy
should be used, as it maximises the possible flexibility of the
system.

The main operating system vectors reside in page two of
memory. There is also an extended vector space in page &D
for use by paged ROMs (see the section on vector entry to
paged ROMs number 15.1.3 for details of the use of extended
vectors).

The operating system vectors are:–

&200,1 USERV. The user vector. This is used to take out
certain unrecognised operating system calls,
including instructions *CODE and *LINE.

&202,3 BRKV. The break vector. This is used to trap
errors within the system. This vector is normally
set by the current language.

255

&204,5 IRQ1V. The primary interrupt vector. All
interrupts are directed through this vector.

&206,7 IRQ2V. The secondary interrupt vector. All
interrupts unrecognised by the standard interrupt
processing routine, or which have been masked
out are passed through this vector.

&208,9 CLIV. The command line interpreter vector. All
operating system commands (*commands) are
passed through this vector.

&20A,B BYTEV. The OSBYTE indirection vector. All
OSBYTE calls are passed through this vector.

&20C,D WORDV. The OSWORD indirection vector. All
OSWORD calls are passed through this vector.

&20E,F WRCHV. Write character vector. All writes to the
screen and printer etc. are passed through this
vector.

&210,1 RDCHV. Read character vector. All reads from the
currently selected input stream are passed
through this vector.

&212,3 FILEV. Read/write a whole file. All file loads and
saves are passed through this vector.

&214,5 ARGSV. Read/write file arguments. All calls of
OSARGS pass through this vector.

&216,7 BGETV. Read one byte from a file. Used for
BASIC BGET and *EXEC commands.

&218,9 BPUTV. Put one byte to a file. Used for BASIC
BPUT and *SPOOL commands.

&21A,B GBPBV. Get/put a block of bytes from/to a file.

&21C,D FINDV. Open/close a file for
BPUT, BGET, GBPB, ARGS calls.

256

&21E,F FSCV. Various filing system control functions.

&220,1 EVENTV. Pointer to the event handling routine.

&222,3 UPTV. Pointer to user print routine.

&224,5 NETV. Used by Econet to take control of the
computer.

&226,7 VDUV. Used by the VDU driver to direct
unrecognised VDU 23 and PLOT commands.

&228,9 KEYV. Used by the operating system for all
keyboard access. Enables the use of external
keyboards.

&22A,B INSV. Insert into buffer vector.

&22C,D REMV. Remove from buffer vector.

&22E,F CNPV. Count/purge buffer vector.

&230,1 IND1V. Spare vector.

&232,3 IND2V. Spare vector.

&234,5 IND3V. Spare vector.

These vectors are now described in more detail:

10.1 The user vector, USERV &200,1

The user vector exists to allow the user some expansion
facilities without needing to take full control of one of the
main vectors. Two operating system commands, *CODE and
*LINE are passed through the user vector, as are 32 OSWORD
calls.

When a routine which is pointed to by the user vector is
entered, the contents of the accumulator describe the type of
entry required:

257

A=0 *CODE has been executed (or OSBYTE &88),
X and Y contain the two parameters.
See OS commands, section 2.6.

A=1 *LINE has been executed. X and Y point to the
rest of the command line.
See OS commands, section 2.11.

A=&E0…&FF OSWORD has been entered with the
accumulator in the range &E0…&FF.
Registers as on entry to OSWORD.

10.2 The break vector, BRKV &202,3

The break vector is primarily used to trap errors. On entry to
the break vector the following conditions prevail:

a) The registers A, X and Y are unchanged from when the
BRK instruction was executed.

b) The stack is prepared ready for an RTI instruction to
return to the instruction following the BRK instruction.
For this purpose, the BRK instruction is taken as a two
byte instruction, ie. the instruction pointed to is two
bytes after the BRK instruction. This is because many
of the 6502 instructions that might be replaced by a
BRK instruction are two bytes long.

c) Locations &FD and &FE contain the address of the
byte after the BRK instruction, which normally
contains the error number. See below.

Note that although a fully prepared exit from a BRK
instruction is possible, neither the operating system or BASIC
expect a return from this vector. Possibly fatal results may
occur if such a return is made as paged ROM software
typically stores the BRK, error number and message in page
one below the stack, returning there is very hazardous. The
exception to this is when using the BRK instruction as a
breakpoint in user supplied machine code, and is not used as
a standard error generating mechanism.

258

Note also that the break vector only refers to the BRK
assembler instruction, it should not be confused with the
‘BREAK’ key on the keyboard, which causes a hardware reset.
This vector is changed to its default state during the course of
processing such a reset.

The BBC microcomputer adopts a standard pattern of bytes
following a BRK instruction, this is:

A single byte error number
An error message
A zero byte to terminate the message

10.3 The interrupt vectors, IRQ1V and IRQ2V &204–7

For the entry conditions to these vectors, refer to the
interrupts chapter, number 13.

10.4 Main vector zone, vectors from &208–21F

Entry conditions for these vectors are covered in the
following sections:

‘OSBYTE calls’ (chapter 8) for BYTEV,
‘OSWORD calls’ (chapter 9) for WORDV,
‘Operating System calls’ (chapter 7) for WRCHV and RDCHV,
and ‘Filing systems’ (chapter 16) for FILEV to FSCV.

10.5 The event vector, EVNTV &220,1

For entry conditions to the event vector refer to the chapter on
events, number 12.

10.6 The user print vector, UPTV &222,3

This vector contains the address of the user provided printer
driver. The facility for providing a user print driver is
important, since not all printers have Centronics parallel, or
standard serial interfaces. Using this vector allows specialised
code for driving the hardware on a particular printer to be
inserted.

259

The user printer driver acts as an interface between the printer
buffer in memory and the printer hardware. The driver is
responsible for removing the characters from the printer
buffer when the printer is ready to accept them, and passing
them on to the printer hardware. The printer driver is
regularly entered, allowing it to poll its hardware and the
printer buffer, and informing it of relevant changes in printer
conditions.

The user printer driver should preserve all registers. On
entry, the X register contains the buffer number that should
be ‘tapped’ to claim bytes for output. The Y register contains
the printer type selected by *FX 5. The driver should recognise
calls to itself by checking the Y register against the printer
type it recognises. The normal number to recognise is 3, but it
is possible to design a printer driver that will run two types of
printer. The driver can also use any number from 5 to 255, 4
being reserved for the networked printer. If the user printer
driver recognises a call to itself, it should respond to the
following codes in the accumulator:

A=0 The operating system enters the user print routine on
interrupt once every 10 milliseconds, if it is not
dormant. The user print routine can poll the printer in
response to this call. This should eliminate the need
for the user printer hardware to generate interrupts.

A=1 The printer is to be activated because at least one
character is in the print buffer. This entry is only made
if the driver had previously marked itself as dormant
with OSBYTE &7B. The driver should take one
character from the designated buffer and send it to the
printer. It should exit with the carry flag clear if the
printer is going active. When the printer is active it is
no longer warned of characters entering the buffer, but
is expected to use the 10ms (A=0) entry to continually
poll the printer hardware and the designated buffer
until the last character in the buffer has been printed.

A=2 Warning that a VDU 2 has been received. Note that
characters can be printed without a VDU 2 occurring if
some options of *FX 3 are used.

260

A=3 Warning that a VDU 3 has been received.

A=5 Printer type change. The X register contains the new
printer type being selected. This call is made every
time an OSBYTE 5 is made, irrespective of the
currently selected printer type, or that being selected.

Printer drivers should declare themselves inactive (with
OSBYTE &7B) after they have finished printing the last
character in the buffer. This has the following effects:

a) The user is allowed to select a new printer type with
OSBYTE 5.

b) The operating system no longer offers interrupts to the
user print driver.

c) The printer driver will be warned with an entry code 1
when a new character is printed.

10.7 The Econet vector, NETV &224,5

The net vector is used for various network effects. In non
networked machines, this vector can be used for a variety of
purposes. The user can be entirely disconnected from the
operating system with this call, or have all his actions vetted.

This vector has rather more program protection applications
than main line uses. Usually other vectors which allow more
specific control of functions would be used.

The effects are specified by the value in the accumulator. The
net routine should preserve registers. The net effect codes are:

0,1,2,3,5 These codes are used to control the networked
printer. The printer is in every respect the same as
a user printer, see the previous section on the user
print driver. Printer type number 4 is nominally
allocated to the networked printer.

261

4 Write character attempted. This call to the net
vector is only made when enabled by OSBYTE
&D0. On entry Y is the character to be output. On
exit, if the carry flag is set the output of the
character is not passed on to the operating system.

6 Read character attempted. This call to the net
vector is only made when enabled by OSBYTE
&CF. The net system must provide a character for
processing on exit in the accumulator.

7 OSBYTE attempted. This call to the net vector is
only made if enabled with OSBYTE &CE. The
entry parameters of the OSBYTE call are held in
&EF, &F0, and &F1 for A, X and Y registers
respectively. If on exit the overflow flag is set, the
user is prevented from making the call.

8 OSWORD attempted. Exactly as call 7 (OSBYTE),
only an OSWORD call was attempted.

&0D A line has been entered with OSWORD 0, and is
now complete. This is a warning to the net system
that it can now take over the read character input
without too much mess.

10.8 The VDU extension vector, VDUV &226,7

This vector is used whenever an unrecognised VDU
command occurs. This happens in three situations:

(1) VDU 23,n has been issued with n in the range 2..31. The
vector is entered with the carry flag set. The accumulator
contains ‘n’. Locations &31C..&323 contain the eight
parameters always sent with the VDU 23 command.

(2) A plot command has been issued in a non-graphics mode.

(3) An unrecognised PLOT number has been used.

262

In cases (2) and (3), the vector is entered with the carry flag
clear. The accumulator contains the PLOT number. Locations
&320 to &323 contain the X and Y co-ordinates sent via the
PLOT command. If the command was issued within a
graphics mode, the co-ordinates are converted to internal
co-ordinates, with relative plots and the graphics origin taken
into account.

See the memory usage section number 11.4 for more
information on internal co-ordinates and VDU variables space
layout.

10.9 The keyboard control vector, KEYV &228,9

This vector is used whenever the keyboard is accessed. It has
the following entry conditions:

C=0,V=0: Test the SHIFT and CTRL keys, exit with
the N (minus) flag set if the CTRL key is pressed, and the
V flag (overflow) flag set if the SHIFT key is pressed.

C=1,V=0: Scan the keyboard. Exactly as OSBYTE call
&79. On exit, the accumulator is equal to the X register on
exit.

C=0,V=1: Key pressed interrupt entry. Each time a
key is pressed the system VIA generates an interrupt.
The operating system uses this interrupt to provide the
‘type ahead’ facility.

C=1,V=1: Timer interrupt entry. This entry is used for
most of the keyboard processing. Keyboard auto repeat
timing is performed during this call, as is the two key
rollover processing.

This vector can usefully be used as an entry point into the
operating system, as well as replacing the normal routine
provided. This entry can be used, for example, to test the
control and shift keys.

263

10.10 The buffer insert vector, INSV &22A,B

The routine indirected through this vector is used by the
operating system to enter a character into a buffer.

On entry,
A=character to be inserted.
X=buffer number. No range checking is done on this
number.

On exit,
A,X preserved.
Y is undefined.

C is set if the insertion failed due to the buffer being full.
It is the responsibility of the calling routine to attempt
retries, or abandon the insertion, if the insertion failed.

10.11 The buffer remove vector, REMV &22C,D

The routine indirected through this vector is used by the
operating system to remove a character from a buffer, or to
examine the buffer only.

On entry,
X=buffer number. No range checking is done on this
number.
The overflow flag is set if only an examination is needed.

If the buffer is only examined, the next character to be
withdrawn from the buffer is returned, but not removed,
hence no buffer empty event can be caused.

If the last character is removed, a buffer empty event will be
caused.

On exit,
A is the next character to be removed, for the examine
option, undefined otherwise.
X is preserved.
Y is the character removed for the remove option.
C is set if the buffer was empty on entry.

264

10.12 The buffer count/purge vector, CNPV &22E,F

The routine indirected through this vector is used by the
operating system to count the entries in a buffer or to purge
the contents of a buffer.

On entry,
X=buffer number. No range checking is done on this
number.
The overflow flag is set if the buffer is to be purged.
The overflow flag is clear if the buffer is to be counted.

For a count operation, if the carry flag is set, the amount
of space left in the buffer is returned, otherwise the
number of entries in the buffer is returned.

On exit,
For purge: X and Y are preserved.

For count: X=low byte of result Y=high byte of result

A is undefined.
V,C are preserved.

10.13 The spare vectors, IND1V…IND3V &230…235

These vectors are not used by OS 1.20. Future versions of the
operating system may use these vectors or Acorn may allocate
them for use by application software.

265

10.14 The default vector table

There exists within the operating system (OS 1.2 onwards), a
lookup table of the default vector contents. This table is useful
for restoring the vectors after changing them, or for software
protection (some people use events to get past software
protection). The information on the table is given thus:

Location:
&FFB6 length of lookup table in bytes.
&FFB7 low byte of the address of the table.
&FFB8 high byte of the address of the table.

266

267

11 Memory usage
This chapter describes how the memory in the BBC
microcomputer is allocated between the different contenders.
The area allocated to the operating system is described in
some detail, but that used by the language and user programs
is only outlined, as it varies from language to language.

Some of the information in this section is also to be found
elsewhere (see chapters on filing systems and paged ROMs
numbers 15 and 16). The majority of this information is
specific to OS 1.2, although most of it is correct on other series
1 operating systems, and the general overview is true for
operating system 0.1.

It should be noted that all locations described here are highly
‘unofficial’ and are not documented by Acorn. For
compatibility with future operating systems, users should not
use any of these locations directly unless it is totally
unavoidable. Access to these locations via OSBYTE calls
should remain fairly operating system independent. Acorn
have not documented OSBYTE &A0, so the VDU variable
locations should therefore not be relied upon to remain
constant. The locations listed here should prove of great use
to those disassembling the operating system ROM.

11.1 Zero page

The zero page on the 6502 is very valuable, as many
instructions and addressing modes need to work through
page zero. For this reason, areas of zero page are allocated to
each of the main memory contenders.

Zero page is allocated thus:

&00–&8F are allocated to the current language. BASIC
reserves locations &70–&8F for the user.

&90–&9F are allocated to the Econet system.

268

&A0–&A7 are allocated to the current NMI owner (see
section in paged ROMs number 15.3.2). This area is not used
on basic cassette machines. It is used extensively by the disc
and network filing systems.

&A8–&AF are allocated for use by operating system
commands during execution.

&B0–&BF are allocated as filing system scratch space, but are
not exclusively used by the currently active filing system.

&C0–&CF are allocated to the currently active filing system.
This area is nominally private, and will not be altered unless
the filing system is changed, or the absolute workspace is
claimed (see paged ROMs chapter 15).

&D0–&E1 are allocated to the VDU driver.

&D0 is the VDU status as returned by OSBYTE &75.

&D1 contains a byte mask for the current graphics point. This
byte indicates which bits in the screen memory byte
correspond to the point. For example, for the rightmost pixel
in a two colour mode, this byte would contain &01, and for a
sixteen colour mode, &55.

&D2 and &D3 are the text colour bytes to be ORed and
EORed into memory, respectively. When writing text to the
screen in modes 0 to 6, the pattern byte to be written to the
screen is first ORed with the contents of &D2, and then
EORed with the contents of &D3. The pattern byte contains a
bit set where the pixel is to be the foreground colour, and a bit
clear where the pixel is to be the background colour. In four
and sixteen colour modes, the pattern byte is expanded before
using these locations to take account of the extra bits per
pixel.

&D4 and &D5 are similar in function to locations &D2 and
&D3, only they are the graphics colour bytes. By performing
an OR operation, and then an EOR operation, all the GCOL
plotting operations can be taken into account by changing the

269

data in these two bytes. The graphics mask at location &D1 is
used to mask out the bits in these bytes when they are used.

&D6 and &D7 contain the address of the top line of the
current graphics character cell (eight bytes long). (See location
&31A)

&D8 and &D9 contain the address of the top scan line of the
current text character.

&DA–&DF are used as temporary workspace.

&E0 and &E1 are used as a pointer to the row multiplication
table, high bytes first. This table is used to calculate the offsets
of a character row within memory, thus as an eighty column
row takes 80*8=640 bytes, for eighty column modes this
points to a *640 table. This table is also used for the *320
operation needed by the 40 column modes, the results being
divided by two. A *40 table is pointed to when in teletext
mode. The tables consist of 32 or 24 sequential entries for the
*640 and *40 tables respectively. Each entry consists of two
bytes of the multiplied figure, the high byte being stored first.

&E2 is the cassette filing system status byte:

bit 0 Set if the input file is open.
bit 1 Set if the output file is open.
bit 2 Not used.
bit 3 Set if currently CATaloguing.
bit 4 Not used.
bit 5 Not used.
bit 6 Set if at end of file.
bit 7 Set if end of file warning given.

&E3 is the cassette filing system options byte, as set by the
*OPT command. The byte is organised as two nibbles, the top
four bits are used for load and save operations, and the
bottom four bits are used for sequential access. The format of
each nibble is:

Bits 0 and 1, the least significant bits of the nibble are used to
control what happens after a tape error. When accessing the

270

EXEC file the ‘retry’ and ‘ignore error’ options are ignored, so
the EXEC is always aborted. These bits have the following
meanings (note the higher bit is mentioned first:

00 Ignore errors
10 Retry after an error
01 Abort after an error

Bits 2 and 3, the most significant bits of the nibble are used to
control the printing of messages during access. These bits
have the following meanings (note the format given is high
bit, low bit):

00 No messages
10 Short messages
11 Long messages

&E4–&E6 are used as general operating system workspace.

&E7 is the auto repeat countdown timer. This is decremented
at 100Hz to zero, at which point the key is re-entered into the
buffer.

&E8 and &E9 are a pointer to the input buffer into which data
is entered by OSWORD &00.

&EA is the RS423 timeout counter, which can take the
following values:

=1 The cassette filing system is using 6850
=0 The RS423 system holds 6850, but has timed

out.
<0 The RS423 system holds 6850, but has not yet

timed out.

&EB is the ‘cassette critical’ flag. Bit 7 is set if the cassette
filing system is called whilst doing a BGET for EXEC or a
BPUT for SPOOL. It is used to ensure that no messages are
printed during the access.

&EC contains the internal key number of the most recently
pressed key, or zero if none is currently pressed. See the table
of internal key numbers in Appendix C.

271

&ED contains the internal key number of the first key pressed
of those still pressed, or zero if one or no keys are pressed.
This is used to implement two key rollover.

&EE contains the internal key number of the character to be
ignored when scanning the keyboard with OSBYTE &79. Note
that Acorn have allocated this location for a RAM copy of the
1MHz bus paging register (see section 28.2). When using the
1MHz memory, OSBYTE calls &79 and &7A should not be
used, as unpredictable results can occur.

&EF contains the accumulator value for the most recent
OSBYTE/OSWORD.

&F0 contains the X register value for the most recent
OSBYTE/OSWORD, or the stack pointer value at the last BRK
instruction.

&F1 contains the Y register value for the most recent
OSBYTE/OSWORD.

&F2 and &F3 are used as a text pointer for processing
operating system commands and filenames.

&F4 contains a RAM copy of the number of the currently
selected paged ROM. This location should always reflect the
contents of the paged ROM selection latch at location &FE30.

&F5 contains the current logical speech PHROM or ROM
filing system ROM number. For the ROM filing system, if it is
negative, it refers to a PHrase ROM, and if positive to a paged
ROM.

&F6 and &F7 are used as an address pointer into a paged
ROM or a speech PHrase ROM. These locations must be used
by any paged ROM service processors for service types &0D
and &0E. (see paged ROM section 15.1.1 and 15.4).

&F8 and &F9 are not used by OS 1.2.

&FA and &FB are used as general operating system
workspace.

272

&FC is used as an interrupt accumulator save register. This
location is only used temporarily at the very beginning of an
interrupt routine while it is setting up the stack.

&FD and &FE point to the byte after the last BRK instruction,
or to the language version string after a language has been
selected. See the section on the BRK vector, section 10.2 for
details of the standard layout of post-BRK data. See the paged
ROMs chapter 15 for details of language ROM version strings.

&FF is the escape flag. Bit 7 is set if an unserviced escape is
pending. Programs that could hang up, or take a very long
time, should poll this bit, and exit if it is set. The tidiest way
to perform such an exit is to execute a BRK with error number
&11, and the message ‘Escape’.

11.2 Page one, &100–&1FF

Page one is used by the 6502 stack. Locations &100 upwards
are also used by some service paged ROMs to save error
messages in.

11.3 Page two, &200–&2FF

Page two is the main work zone of the operating system. It
contains all of the main vectors and user accessible operating
system variables. Page two is laid out thus:

&200–&235 are the vectors. See the vectors chapter 10.

&236–&28F are the main system variables, accessed by
OSBYTE calls &A6 through &FF.

&290 is the VDU vertical adjust, as set by *TV (OSBYTE &90).

&291 is the interlace toggle flag, as set by *TV (OSBYTE &90).

&292–&296 and &297–&29B are the two stored values of the
system clock, as read by ‘TIME’. Two values are kept, so one
can be read while the other is being updated by the interrupt
routines.

273

&29C–&2A0 are the countdown interval timer value. This is
used to cause an event after a certain time has elapsed. See the
chapters on events, number 12, and on OSWORD, number 9,
for more details of using the countdown timer.

&2A1–&2B0 form the paged ROM type table, as pointed to by
value read by OSBYTEs &AA and &AB. Each byte contains
the ROM type of the corresponding ROM, or zero if there is
no ROM in that socket. For details of ROM types, see the
Paged ROMs chapter number 15.

&2B1 and &2B2 are the INKEY countdown timer. This is used
to time out an INKEY call.

&2B3–&2B5 are used as work locations by OSWORD 0.

&2B6–&2B9 are the low bytes of the most recent analogue
converter values. These are in the order channel 1,2,3 and 4.

&2BA–&2BD are the high bytes of the most recent analogue
converter values.

&2BE is the analogue system flag. This contains the number
of the last channel to finish conversion, or zero if no channels
have finished since this value was last read. This byte is read
by OSBYTE &80.

&2BF–&2C8 are the event enable flags. If zero, the event is
disabled, otherwise enabled. See the chapter on events,
number 12.

&2C9 is the soft key expansion pointer. The next byte to be
expanded in a soft key is to be found at &B01+?&2C9.

&2CA is the first auto repeat count. This is the next value to
go into the auto repeat counter at &E7. This location can be
considered a one byte queue for the counter.

&2CB–&2CD are used as workspace for two key rollover
processing.

274

&2CE is the sound semaphore. If it is zero it means that an
envelope interrupt is being processed, so another must be
ignored. If it is &FF it means that the envelope software is
free.

&2CF–&2D7 are buffer busy flags. Bit 7 of these bytes is set if
the matching buffer is empty. For a list of buffer numbers see
OSBYTE &15 (21).

&2D8–&2E0 are the buffer start indices. They contain the
offset of the next byte to be removed from each buffer. The
offsets are adjusted so that the highest location in the buffer
has the offset &FF for all buffers irrespective of size.

&2E1–&2E9 are the buffer end indices. They contain the offset
of the last byte to be entered into each buffer. If this value is
the same as the start offset, the buffer is empty. If this value is
less than the start offset, it means the buffer has wrapped
around to the start.

&2EA and &2EB contain the block size of currently resident
block of the open cassette input file.

&2EC contains the block flag of the currently resident block of
the open cassette input file. (see section 16.10 for the cassette
format and details of the flag byte).

&2ED contains the last character in currently resident block of
the open cassette input file.

&2EE–&2FF are used as an area to build OSFILE control
blocks for *LOAD and *SAVE

11.4 Page three, &300–&3FF

Page three is used for the VDU workspace, the cassette
system workspace and the keyboard buffer.

Locations &300–&37F provide the VDU workspace. In
examining these locations, it should be noted that there are
two forms of graphic co-ordinate, internal and external. The
external graphics co-ordinate is exactly that used by the PLOT

275

command in BASIC. The internal graphics co-ordinate is
derived from the external by taking into account the graphics
origin and scaling so that it is measured in pixels horizontally
and vertically. Graphics co-ordinates are stored in four bytes,
with the low byte of the X co-ordinate first.

VDU workspace is laid out thus:

&300–&307 contain the current graphics window in internal
co-ordinates.

&300,1 Left hand column in pixels.
&302,3 Bottom row in pixels.
&304,5 Right hand column in pixels.
&306,7 Top row in pixels.

&308–&30B contain the current text window in absolute
characters offset from the top left of the screen.

&308 Left hand column.
&309 Bottom row.
&30A Right hand column.
&30B Top row.

&30C–&30F contain the current graphics origin in external
co-ordinates.

&310–&313 contain the current graphics cursor in external
co-ordinates. This is used for calculating relative PLOTs.

&314–&317 contain the old graphics cursor in internal
co-ordinates. This is used for the generation of triangles.

&318 contains the current text cursor X co-ordinate.

&319 contains the current text cursor Y co-ordinate.

276

&31A contains the line within current graphics character of
the current graphics point. Because the BBC microcomputer
has a non linear address space for the graphics screen, it is
simpler to calculate the address of the byte at the top of the
character cell that contains a point, and then calculate the row
within the character. Thus the location of the byte containing
the current graphics point is ?&D6 + 256*?&D7 + ?&31A.

&31B–&31E is used either as graphics workspace or as the
first part of the VDU queue.

&31F–&323 is the VDU queue. The queue is organised so that
whatever the number of characters queued, the last byte
queued is always at &323.

&324–&327 contain the current graphics cursor in internal
co-ordinates.

&328–&349 is used as general graphics co-ordinate
workspace.

&34A and &34B contain the text cursor position as an address
as sent to 6845.

&34C and &34D contain the text window width in bytes, ie.
the number of characters wide * the number of horizontal
bytes per character * 8 for graphics modes or 1 for teletext.
This is used to control the number of bytes which are soft
scrolled for each line of scrolling.

&34E contains the high byte of the address of the bottom of
screen memory.

&34F contains the number of bytes of memory taken up by a
single character. This is 8 for 2 colour modes, 16 for 4 colour
modes, 32 for 16 colour modes, and 1 for teletext mode.

&350 and &351 contain the address of the top left hand corner
of the displayed screen, as is sent to the 6845.

277

&352 and &353 contain the number of bytes taken per
character row of the screen. This is 40 for teletext mode, 320
for 8K and 10K modes and 640 for 16K and 20K modes.

&354 contains the high byte of the size of the screen memory
in bytes.

&355 contains the current screen mode.

&356 contains the memory map type. The contents indicate
the size of the screen memory. It has the value 0 for 20K
modes, 1 for the 16K mode, 2 for 10K modes, 3 for the 8K
mode, and 4 for teletext. The bottom two bits of the number in
this location are sent to the addressable latch on the system
VIA to control the hardware wrap around on the display.

&357–&35A contain the current colours. These are stored as
the value that would be stored in a byte in screen memory to
completely colour that byte to the colour required. The
locations are:

&357 Foreground text colour.
&358 Background text colour.
&359 Foreground graphics colour.
&35A Background graphics colour.

&35B and &35C contain the graphics plot mode for the
foreground and background plotting respectively. These are
set by the GCOL first parameter.

&35D and &35E are used as a general jump vector. The vector
is used for decoding VDU control codes and PLOT numbers.

&35F contains a record of the last setting of the 6845 cursor
start register (even if changed through VDU 23,0) so that the
cursor can be turned off and back on tidily using VDU 23,1.

&360 contains the number of logical colours in the current
mode minus one.

&361 contains the number of pixels per byte minus one for
the current mode, or zero if text only mode.

278

&362 and &363 contain the left and right colour masks,
respectively. These bytes contain a bit set in each bit position
corresponding to the leftmost or rightmost pixel. For example
in a two colour mode, these bytes would contain &80 and
&01, and in a sixteen colour mode &AA and &55.

&364 and &365 contain the X and Y co-ordinates of the text
output cursor. The output cursor is the position to which
characters are COPYed.

&366 contains the character to be used as the output cursor in
teletext mode (this is normally the block character &FF).

&367 contains the font flag. This byte marks whether or not a
particular font zone is being taken from ROM or RAM. If a bit
is set it indicates that that zone is in RAM. See OSBYTE &14
(20) for more information on fonts.

bit 6 characters 32–63 (&20–&3F)
bit 5 characters 64–95 (&40–&5F)
bit 4 characters 96–127 (&60–&7F)
bit 3 characters 128–159 (&80–&9F)
bit 2 characters 160–191 (&A0–&BF)
bit 1 characters 192–223 (&C0–&DF)
bit 0 characters 224–255 (&E0–&FF)

&368–&36E are the font location bytes. These contain the
upper bytes of the addresses of the fonts for each of the 7
zones mentioned above.

&36F–&37E form the colour palette. One byte is used for each
logical colour. That byte contains the physical colour
corresponding to the logical colour. The bytes are stored in
numerical order of logical colour.

The area of page three from &380 to &3DF is used by the
cassette filing system as working storage.

&380–&39C is used to store the header block for the BPUT
file. See the section on the cassette filing system, number 16.10
for details of header block layout.

279

&39D contains the offset of the next byte to be output into the
BPUT buffer.

&39E contains the offset of the next byte to be read from the
BGET buffer.

&39F–&3A6 are not used in OS 1.2.

&3A7–&3B1 contain the filename of the file being BGETed.

&3B2–&3D0 contains the block header of the most recent
block read:

&3B2–&3BD Filename terminated by zero.
&3BE–&3C1 Load address of the file.
&3C2–&3C5 Execution address of the file.
&3C6–&3C7 Block number of the block.
&3C8–&3C9 Length of the block.
&3CA Block flag byte.
&3CB–&3CE Four spare bytes.
&3CF–&3D0 Checksum bytes.

&3D1 contains the sequential block gap as set by *OPT 3.

&3D2–&3DC contain the filename of the file being searched
for. Terminated by zero.

&3DD–&3DE contain the number of the next block expected
for BGET.

&3DF contains a copy of the block flags of the last block read.
This is used to control newlines whilst printing file
information during file searches.

&3E0–&3FF are used as the keyboard input buffer.

It should be noted that although OSBYTE &A0 is officially for
reading VDU variables, it may be used to read any of the
values in page three.

11.5 Pages four through seven, &400–&7FF

This memory is the main workspace for the currently active
language such as BASIC, FORTH, BCPL or VIEW.

280

11.6 Page eight, &800–&8FF

This page is primarily buffers, but does also contain the
sound processing workspace. This page is laid out thus:

&800–&83F Sound workspace.
&840–&84F Sound channel 0 buffer.
&850–&85F Sound channel 1 buffer.
&860–&86F Sound channel 2 buffer.
&870–&87F Sound channel 3 buffer.
&880–&8BF Printer buffer.
&8C0–&8FF Envelope storage area, envelopes 1–4.

11.7 Page nine, &900–&9FF

This page can be used in one of three basic ways:

a) As an extended envelope storage area:

&900–&9BF Envelope storage area, envelopes 5–16.
&9C0–&9FF Speech buffer.

b) As an RS423 output buffer:

&900–&9BF RS423 output buffer.
&9C0–&9FF Speech buffer.

c) As a cassette output buffer:

&900–&9FF Cassette output buffer.

Uses (b) and (c) are largely compatible apart from speech, as
the 6850 can only be used by either the cassette or the RS423
system at any one time, and the cassette system waits until
the RS423 output has timed out before taking control of the
6850. At time out, the RS423 output buffer is usually clear.

11.8 Page ten, &A00–&AFF

This page is used for either the cassette input buffer, or for the
RS423 input buffer.

281

11.9 Page eleven, &B00–&BFF

This page is the soft key buffer. The first seventeen bytes
define the start and end locations of the sixteen soft keys. The
rest of the page is allocated to the keys themselves. The start
offset of soft key string n is held at location &B00+n. The
address of the first character of the string is &B01+?(&B00+n).
The address of the last character of the string is
&B00+?(&B01+n).

11.10 Page twelve, &C00–&CFF

This page contains the font for characters 224–255. Each
character requires eight sequential bytes. The first byte
corresponds to the top line of the character, the second for the
line below, etc.

11.11 Page thirteen, &D00–&DFF

This page is used for three functions, it contains the NMI
processing routine, the expanded vector set, and the paged
ROM private workspace table.

&D00–&D9E NMI routine.
&D9F–&DEF Expanded vector set. See vectored entry

 to paged ROMs, section 15.1.3 for
 details.

&DF0–&DFF Paged ROM workspace storage
 locations. There is one byte per ROM,
 containing the upper byte of the address
 of the first location of its private
 workspace. See paged ROMs chapter,
 section 15.1.1 for more details on private
 workspace.

11.12 The remainder of RAM, &E00–&7FFF

Location &E00 is nominally the start of user workspace
(OSHWM), but OSHWM may be raised by font explosion, or
by paged ROMs taking workspace.

HIMEM is the location of the start of the screen memory, it
has the value &3000 for modes 0, 1, and 2; &4000 for mode 3;
&5800 for modes 4 and 5; &6000 for mode 6; and &7C00 for
mode 7 (teletext).

282

Memory is thus allocated:

OSHWM–HIMEM User programs.
HIMEM–&7FFF Screen memory.

11.13 The ROMs

The upper 32K of address space is allocated to the various
ROMs on the BBC microcomputer.

&8000–&BFFF is allocated to the paged ROMs, including the
BASIC and Disc Filing System ROMs.

&C000–&FFFF is allocated to the operating system ROM.
Locations &FC00–&FEFF are taken out to provide space for
the memory mapped peripherals.

There exist near the start of the operating system ROM some
tables which are used by the operating system to assist in high
resolution graphics processing. The user may be interested in
the existence of these tables when disassembling the
operating system. While it is possible to use these tables to
speed up graphics routines, it should be noted that these
tables are not Acorn supported, so a copy of the tables should
be taken, rather than use them directly. These tables have not
moved between operating systems 1.00 and 1.20, but there is
no guarantee that these locations will not move in a future
operating system version.

&C31F–&C32E is a lookup table of byte masks for four colour
modes. The table is normally used for writing characters to
the screen. The table is used thus:

Prepare a four bit binary number, with a bit set for each pixel
in a display byte to be changed. The leftmost pixel is the
highest bit. Index this table with the number generated to find
the mask. If this mask were stored directly in screen memory,
all the ‘changed’ pixels will be in colour 3, and all the
‘unchanged’ pixels in colour 0. By simple masking operations
with the AND, ORA, and EOR instructions the mask can be
used to only change those bits required, or to set a screen byte
to an appropriate mix of chosen foreground and background
colours.

283

&C32F–&C332 is a similar lookup table to that at
&C31F–&C32E, but is used for sixteen colour modes. The
table is only four entries long as only two pixels can be fitted
into a byte. The mask byte given in the table contains colour
15 for set bits in the index, and colour 0 for cleared bits.

&C333–&C374 contains an address table for decoding VDU
codes 0 through 31. This should not be used by the user as it is
even more prone to changes than the other tables.

&C375–&C3B4 this contains 32 entries of a *640 multiplication
table. The high byte of each entry is held first. This table can
be used to find the address of the first byte of the first
character on each screen row in the 20K and 16K modes, and
by dividing by 2, for 10K and 8K modes.

&C3B5–&C3E6 this contains 25 entries of a *40 multiplication
table. The high byte of each entry is held first. This table can
be used to find the address of the first character on each
screen row in the teletext mode.

&C3E7–&C3EE contain one byte per display mode, giving the
number of character rows displayed minus one.

&C3EF–&C3F6 contain one byte per display mode, giving the
number of character columns displayed minus one.

&C3F7–&C3FE contain one byte per display mode, giving the
value stored in the video ULA control register for that mode.

&C3FF–&C406 contain one byte per display mode, giving the
number of bytes storage taken per character. This is 1 for
teletext, 8 for two colour modes, 16 for 4 colour modes, and 32
for 16 colour modes.

&C407–&C408 contain the mask table for sixteen colour
modes. There are two entries, one per pixel in the byte. Each
mask contains the value that would be stored in screen
memory if the appropriate pixel were set to colour 15, and the
other to zero. The left pixel is stored in the first byte of the
table, and the right in the second.

284

&C409–&C40C contain the mask table for four colour modes.
There are four entries, one per pixel in the byte. Each mask
contains the value that would be stored in screen memory if
the appropriate pixel were set to colour 3, and all the others to
zero. The leftmost pixel is stored first byte in the table, and
the rightmost in the last.

&C40D–&C414 contain the mask table for two colour modes.
There are eight entries, one per pixel in the byte. Each mask
contains the value that would be stored in screen memory if
the appropriate pixel were set to colour 1, and all the others to
zero. The leftmost pixel is stored first byte in the table, and
the rightmost in the last.

&C414–&C41B Note that this table overlaps the last. This
table contains one byte per mode containing the number of
colours available minus one.

&C41B–&C425 Note that this table overlaps the last. This
table contains four five byte tables used to process the five
GCOL plotting options. These tables are highly overlapped.

&C424–&C439 are the colour tables. There is a colour table
for each of: 2 colours, 4 colours and 16 colours. Each table
contains one byte per colour, in ascending order of colour
number. The byte contains the value that would be stored in
screen memory to give a fully coloured byte of that colour.
These colour bytes are used in conjunction with the various
masks mentioned above.

&C424–&C425 The two colour table. &C426–&C429 The four
colour table. &C42A–&C439 The sixteen colour table.

&C43A–&C441 contain one byte per display mode, giving the
number of pixels per byte on the screen minus one. The value
stored is zero for non graphics modes.

&C440–&C447 contain one byte per display mode, giving the
memory map type for the mode. This is zero for 20K modes, 1
for the 16K mode, 2 for 10K modes, 3 for the 8K mode, and 4
for teletext. Note that this table overlaps the last.

285

&C447–&C458 contain various VDU section control numbers,
of no direct relation to any screen parameters. Note that this
zone overlaps the previous table.

&C459–&C45D contain one byte per memory map type (see
above) giving the most significant byte of the number of bytes
taken up by the screen. The least significant byte is always
zero.

&C45E–&C462 contain one byte per memory map type (see
above) giving the most significant byte of the address of the
first location used by the screen. The least significant byte is
always zero.

&C463–&C46D contain tables used by the VDU section to
index into the other tables.

&C46E–&C4A9 contain tables of values to be sent to the
various 6845 registers. There is one block of 12 bytes for each
of the five memory map types (see above).

&C46E–&C479 6845 registers 0–11 for memory map type 0
(modes 0–2).

&C47A–&C485 6845 registers 0–11 for memory map type 1
(mode 3).

&C486–&C491 6845 registers 0–11 for memory map type 2
(modes 4–5).

&C492–&C49D 6845 registers 0–11 for memory map type 3
(mode 6).

&C49E–&C4A9 6845 registers 0–11 for memory map type 4
(mode 7).

&C4AA–&C4B5 are used by the VDU driver as jump table
addresses into its internal plotting routines. They should not
be used by the user at all.

286

&C4B6–&C4B9 are a teletext conversion table. The teletext
character generator uses slightly different character codes to
the rest of the BBC microcomputer. This table contains four
bytes, an ASCII value followed by the byte to be stored in
screen memory, for three characters.

&23 (#) is translated to &5F
&5F (_) is translated to &60
&60 (£) is translated to &23

287

12 Events and Event
Handling
The concept of events and event handling provides the user
with an easy to use, pre-packaged interrupt. A routine may be
written to perform a second function while another program
is running. Because the microprocessor can only do one thing
at a time the second function will be executed by interrupting
the first program and then returning control to allow it to
continue from where it was interrupted.

The interrupt facility is provided by the designers of the
microprocessor and is a fairly primitive level of control. The
operating system uses interrupts extensively and also
provides the user with the ability to trap interrupts (see
Interrupts, chapter 13).

The operating system interrupts whatever is going on in the
foreground (e.g. the user program) every 10 milliseconds and
performs any tasks which are required. This background work
includes controlling the sound chip, storing key strokes in the
input buffer and keeping up with ADC conversions. In the
process of performing the background processing, the
operating system may generate a number of events which
hand the processor over to an event handling routine
provided by the user. Thus the user is able to append some
code of his own to the operating system’s interrupt handling
routine.

The events available are:

event number cause of event

0 Output buffer becomes empty
1 Input buffer becomes full
2 Character entering input buffer
3 ADC conversion complete
4 Start of vertical sync
5 Interval timer crossing zero
6 ESCAPE condition detected

288

7 RS423 error detected
8 Econet generated event
9 User event

12.1 OSBYTE calls &0D/*FX 13 and &0E/*FX 14

Disable/enable event

These calls are used to switch particular events on and off. On
entry both these calls require the event to be specified by its
event number in X. OSBYTE &0D/*FX 13 can be used to
disable a particular event and OSBYTE &0E/*FX 14 can be
used to enable each event. Even though events continue to be
generated when disabled they will not be passed on to the
event handling routine.

12.2 The Event Vector (EVNTV)

Address &220

When any event is enabled the operating system jumps (using
JSR) to the address contained in EVNTV. To interface the
user’s event handling routine the entry address of the routine
must be placed in the EVNTV.

12.3 Event handling routines

The user’s event handling routine is entered with the
accumulator containing the event number. Other information
may also be passed to the event handling routine in X or Y;
this is specific for each event (see below).

The event handling routine should preserve all registers.

The event handling routine is entered with interrupts disabled
and should not enable interrupts. Because interrupts are
disabled, an overly long routine will have dire consequences
and the routine should be terminated after no more than
about 2 milliseconds.

289

Great care must be taken when using operating system calls
from within an event handling routine. Many operating
system calls may enable interrupts during execution (see
chapter 7). If an interrupt occurs while the user’s event
handling routine is being executed the interrupt may cause
the user’s routine to be re-entered before it has finished
processing the previous event. It may be possible to write the
event handling routine in such a way that this will not have
any ill effects. A routine which may be re-entered in this way
is described as re-entrant or re-enterable. While the event
facility has been designed to enable users easy access to a
form of interrupt handling this aspect of their use may
complicate the issue. For more information see interrupts,
chapter 13.

The event handling routine should never be exited using an
RTI instruction. Using the old contents of the event vector is a
good way of leaving the routine. Making a copy of the vector
contents before changing this vector allows the user routine to
JMP indirect when the new routine has finished. Using this
method allows more than one event handling routine to be
used at one time. An RTS instruction may be used to exit the
routine if no other event handling is to be allowed.

Event Descriptions

12.5 Output buffer empty 0

This event enters the event handling routine with the buffer
number (see OSBYTE &15/*FX21) in X. It is generated when a
buffer becomes empty (i.e. just after the last character is
removed).

12.6 Input buffer full 1

This event enters the event handling routine with the buffer
number (see OSBYTE &15/*FX 21) in X. It is generated when
the operating system fails to enter a character into a buffer
because it is full. Y contains the character value which could
not be inserted.

290

12.7 Character entering input buffer 2

This event is normally generated by a key press and the ASCII
value of the key is placed in Y. It is generated independently
of the input stream selected.

For example:

 10 OSWORD=&FFF1
 20 EVNTV=&220
 30 DIM MC% 100
 40 DIM sound_pars 8
 50 FOR I=0 TO 3 STEP3
 60 P%=MC%
 70 [
 80 OPT I
 90 PHP
100 PHA
110 TXA
120 PHA
130 TYA
140 PHA \ save registers
150 STY sound_pars+4 \ SOUND pitch=key ASCII value
160 LDX #sound_pars AND 255
170 LDY #sound_pars DIV 256
180 LDA #7
190 JSR OSWORD \ perform SOUND command
200 PLA
210 TAY
220 PLA
230 TAX
240 PLA
250 PLP \ restore registers
260 RTS \ return from event handler
270]
280 NEXT I
290 ?EVNTV=MC% AND &FF
300 EVNTV?1=MC% DIV &100
310 !sound_pars=&FFF50001
320 sound_pars!4=&00010000 :REM set up SOUND 1,-11,x,1
330 *FX 14,2
340 :REM enable keyboard event

This example program illustrates how the keyboard event can
be used. When this program has been run, each key press
causes a sound to be made. The pitch of this sound is
dependent on the key pressed. This event handling routine
does not check the identity of the event calling it and so
enabling events other than the keyboard event will have
curious consequences.

12.8 ADC conversion complete 3

When an ADC conversion is completed on a channel this
event is generated. The event handling routine is entered with
the channel number on which the conversion was made in Y.

291

12.9 Start of vertical sync 4

This event is generated 50 times per second coincident with
vertical sync. One use of this event is to time the change to a
6845 or video ULA register so that the change to the screen
occurs during fly back and not while the screen is being
refreshed. This avoids flickering on the screen.

12.10 Interval timer crossing zero 5

This event uses the interval timer (see OSWORD calls &3 and
&4, sections 9.5 and 9.6). This timer is a 5 byte value
incremented 100 times per second. The event is generated
when the timer reaches zero.

For example:

 10 MODE7
 20 OSWORD=&FFF1
 30 OSBYTE=&FFF4
 40 OSWRCH=&FFEE
 50 EVNTV=&220
 60 DIM MC% 100
 70 DIM clock_pars 5
 80 DIM count 1
 90 FOR I=0 TO 2 STEP 2
100 P%=MC%
110 [
120 .entry OPT I
130 PHP
140 PHA
150 TXA
160 PHA
170 TYA
180 PHA \ save registers
190 LDX #clock_pars AND 255
200 LDY #clock_pars DIV 256
210 LDA #4
220 JSR OSWORD \ write to interval timer
230 LDA #&86
240 JSR OSBYTE \ read current text cursor position
250 TYA \ and save it on the stack
260 PHA
270 TXA
280 PHA
290 LDA #31 \ reposition text cursor
300 JSR OSWRCH \ with VDU 31,38,1
310 LDA #38
320 JSR OSWRCH
330 LDA #1
340 JSR OSWRCH
350 LDA count \ put count in A
360 JSR OSWRCH \ write it out
370 CMP #ASC"9" \ has count reached 9
380 BNE over \ jump next bit if it hasn't
390 LDA #ASC"/"
400 STA count \ put '-1' in count
410 .over INC count \ count=count+1
420 LDA #31 \ restore old cursor position
430 JSR OSWRCH \ using VDU 31

292

440 PLA
450 JSR OSWRCH
460 PLA
470 JSR OSWRCH
480 PLA
490 TAY
500 PLA
510 TAX
520 PLA
530 PLP \ restore registers
540 RTS \ return from event handler
550]
560 NEXTI
570 ?EVNTV=MC% AND &FF
580 EVNTV?1=MC% DIV &100
590 !clock_pars=&FFFFFF9C
600 clock_pars?4=&FF :REM clock value -100 centiseconds
610 *FX 14,5
620 :REM interval timer event
630 ?count=ASC"0" :REM initialise count
640 CALL entry :REM initialise clock

This demonstration program uses the interval timer event to
call the event handling routine at one second intervals. The 5
byte clock value is incremented every centisecond and so the
first task the routine must perform is to write a new value
(–100) to the timer to prepare for the next call. Each time the
routine is entered a count is incremented and the ASCII
character printed up on the top right corner of the screen. In
this simple example repeating a count from &30 to &39 (ASCII
‘0’ to ‘9’) makes the programming easy. It does not require a
lot of imagination to see how this concept could be expanded
to provide a constant digital time read out.

12.11 ESCAPE condition detected 6

When the ESCAPE key is pressed or an ESCAPE is received
from the RS423 (when RS423 ESCAPEs are enabled) this event
is generated. When this event is enabled, the ESCAPE state
(indicated by the flag at &FF) is not set when an ESCAPE
condition occurs. Therefore after a *FX14,6 the ESCAPE key
has no effect in BASIC.

12.12 RS423 error 7

This event is generated when an RS423 error is detected (see
RS423 chapter 14). This event is entered with the 6850 status
byte shifted right by one bit in the X register and the character
received in Y.

293

12.13 Network error 8

This event is generated when a network event is detected. If
the net expansion is not present then this could be used for
user events.

12.14 User event 9

This event number has been set aside for the user event. This
is most usefully generated from a user interrupt handling
routine to enable other user software to trap an interrupt
easily (e.g. an event generated from an interrupt driven utility
in paged ROM). An event may be generated using OSEVEN,
see section 7.11.

294

295

13 Interrupts
13.1 A brief introduction to interrupts

An interrupt is a hardware signal to the microprocessor. It
informs the 6502 that a hardware device, somewhere in the
system, requires immediate attention. When the
microprocessor receives an interrupt, it suspends whatever it
was doing, and executes an interrupt servicing routine. Upon
completion of the servicing routine, the 6502 returns to
whatever it was doing before the interrupt occurred.

A simple analogy of an interrupt is a man working hard at his
desk writing a letter (a foreground task). Suddenly the
telephone rings (an interruption). The man has to stop writing
and answer the telephone (the interrupt service routine).
After completion of the call, he has to put the telephone
down, and pick up his writing exactly where he left off
(return from interrupt).

In a computer system, the main objective is to perform
foreground tasks such as running BASIC programs. This is
equivalent to writing the letter in the above example. The
computer may however be concerned with performing lots of
other functions in the background (equivalent to the man
answering the telephone). A computer which is running the
house heating system for example would not wish to keep on
checking that the temperature in every room is correct – it
would take up too much of its processing time. However, if
the temperature gets too high or too low in any of the rooms it
must do something about it very quickly. This is where
interrupts come in. The thermostat could generate an
interrupt. The computer quickly jumps to the interrupt
service routine, switches a heater on or off, and returns to the
main program.

There are two basic types of interrupts available on the 6502.
These are maskable interrupts (IRQs) and non maskable
interrupts (NMIs). To distinguish between the two types,
there are two separate pins on a 6502. One of these is used to
generate IRQs (maskable) and the other is used to generate
NMIs (non maskable).

296

13.1.1 Non Maskable Interrupts

When a non maskable interrupt is asserted by a hardware
device connected to the NMI input on the 6502, a call is
immediately made to the NMI service routine at &0D00 on the
BBC microcomputer. Nothing in software can prevent this
from happening. So that the 6502 is only interrupted in very
urgent situations, only very high priority devices such as the
Floppy Disc Controller chip or Econet chip are allowed to
generate NMIs. They are then guaranteed to get immediate
attention from the 6502. To return to the main program from
an NMI, an RTI instruction is executed. It is always necessary
to ensure that all of the 6502 registers are restored to their
original state before returning to the main program. If they
are modified, the main program will suddenly find garbage in
its registers in the middle of some important processing. It is
probable that a total system ‘crash’ would result from this.

13.1.2 Maskable Interrupts

Maskable interrupts are very similar to non-maskable
interrupts in most respects. A hardware device can generate a
maskable interrupt to which the 6502 must normally respond.
The difference comes from the fact that the 6502 can choose to
ignore all maskable interrupts under software control if it so
desires. To disable interrupts (only the maskable ones
though), an SEI (set interrupt disable flag) instruction is
executed. Interrupts can be re-enabled at a later time using the
CLI (clear interrupt disable flag) instruction.

When an interrupt is generated, the processor knows that an
interrupt has occurred somewhere in the system. Initially, it
doesn’t know where the interrupt has come from. If there
were only one device that could have caused the interrupt,
then there would be no problem. However, since there is
more than one device causing interrupts in the BBC
microcomputer, each device must be interrogated. That is,
that each device is asked whether it caused the interrupt.

When the interrupt processing routine has discovered the
source of a maskable interrupt, it must decide what type of
action is required. This usually involves transferring some

297

data to or from the interrupting unit, and clearing the
interrupt condition. The interrupt condition must be cleared
because most devices that use interrupts continue to signal an
interrupt until they have been serviced. The completion of
servicing often has to be signalled by the processor writing to
a special register in the device.

Interrupts must not have any effect on the interrupted
program. The interrupted program will expect the processor
registers and flags to be exactly the same after return from an
interrupt routine as they were before the interrupt occurred.
Thus an interrupt routine must either not alter any registers
(which is difficult) or restore all register contents to their
original values before returning.

Interrupt routines are entered with interrupts disabled, so a
second interrupt cannot occur whilst an interrupt routine is
still processing, unless interrupts are deliberately enabled
because the interrupt servicing is likely to take an appreciable
time. When this is done, the interrupt routine must be written
with care because the interrupt service routine can then itself
be interrupted. For this reason it is usual to save register
contents onto the processor stack, rather than to fixed
memory locations which may get overwritten in a subsequent
incarnation of the interrupt routine.

13.2 Interrupts on the BBC microcomputer

Interrupts are required on the BBC microcomputer to process
all of the ‘background’ operating system tasks. These tasks
include incrementing the clock, processing envelopes or
transferring keys pressed to the input buffer. All of these
tasks must continue whilst the user is typing in, or running
his program. The use of interrupts can give the impression
that there is more than one processor, one for the user, one
updating the clock, one processing envelopes, etc.

As was mentioned in the introduction, normal (maskable)
interrupts may be disabled. Care should be taken to ensure
that interrupts are not disabled for a long time. If they are
then the operating system will cease to function properly.
Interrupts should only be disabled for such critical things as

298

changing the two bytes of a vector, writing to the system VIA
(see the system VIA chapter 23) or handling an interrupt or
event. Interrupts should not be disabled for long, because
whilst interrupts are disabled, the clock stops, and all other
interrupt activity ceases. Interrupts are disabled by the SEI
assembler instruction, and re-enabled with CLI. Most devices
that generate interrupts will continue to signal an interrupt
until it is serviced, and so will wait through the period of
interrupts being disabled. For this reason most short periods
of interrupts disabled are safe, it is only if a second interrupt
occurs from a device before the first is serviced that problems
can occur.

13.3 Using Non-Maskable Interrupts

Generally, NMIs are reserved for specialised pieces of
hardware which require very fast response from the 6502.
NMIs are not used on a standard system. They are used in
disc and Econet systems. An NMI causes a jump to location
&0D00 to be made.

13.4 Using Maskable Interrupts

Most of the interrupts on the BBC microcomputer are
maskable. This means that a machine-code program can
choose to ignore interrupts if it wishes, by disabling them.
Since all of the operating system features such as scanning the
keyboard, updating the clock and running the serial system
are run on an interrupt basis, it is unwise to disable interrupts
for more than about 2ms.

There are two levels of priority for maskable interrupts,
defined by two indirection vectors in page &02. The priority
of an interrupt indicates its relative importance with respect
to other interrupts. If two devices signal an interrupt
simultaneously, the higher priority interrupt is serviced first.

13.5 Interrupt Request Vector 1 (IRQ1V)

This is the highest priority vector through which all maskable
interrupts are indirected. This is nominally reserved for the
system interrupt processing routine. This operating system

299

routine handles all anticipated internal IRQs. Anticipated
IRQs include interrupts from the keyboard, system VIA, serial
system and the analogue to digital converter. Any interrupt
which cannot be dealt with by the operating system routine
(such as an interrupt from the user VIA or a piece of
specialised hardware) is passed on through the second
interrupt vector.

Within this interrupt routine the devices are serviced in the
following order of priority (see the hardware section chapters
17 et seq.), highest first:

The 6850 serial chip
The system 6522 VIA
The user 6522 VIA

13.6 Interrupt Request Vector 2 (IRQ2V)

Any interrupts which cannot be dealt with by the operating
system are passed on through this lower priority vector. This
vector is reserved for user supplied interrupt routines. The
user should intercept the interrupts at this point, rather than
at IRQ1V whenever possible. It should only be necessary to
intercept IRQ1V when a very high priority is required by the
user routine.

Note that the user supplied routine must return control to the
operating system routine to ensure clean handling of
interrupts. It is therefore advisable to store the original
contents of the indirection vector in memory somewhere. This
will enable the user routine to jump to the correct operating
system routine. Also, by using this method of jumping to the
old contents of the vector, several user routines can all
intercept it correctly.

13.7 Operating system interrupt processing

The following sections describe how the operating system
deals with interrupts indirected via IRQ1V. In very specialised
circumstances, the programmer may wish to process these
interrupts himself in some special way.

300

13.8 Serial interrupt processing

The 6850 asynchronous communications interface adapter (see
serial system chapter 20) will produce three types of interrupt:

1. Receiver interrupt – a character has been received.

2. Transmitter interrupt – a character has been
transmitted.

3. Data Carrier Detect (DCD) interrupt – a 2400Hz tone
has been discontinued – at the end of a cassette block.

The 6850 contains a status byte that enables the 6502 to locate
the cause of the interrupt. This byte is organised as:

bit 0 This bit is set on a receiver interrupt. Bits four
five and six are valid after this interrupt.

bit 1 This bit is set on a transmit interrupt.

bit 2 This bit is set on a DCD (data carrier detect)
interrupt.

bit 3 This bit is set if the 6850 is not CLEAR TO
SEND.

bit 4 Framing error. Receive error.

bit 5 Receiver overrun. Receive error.

bit 6 Parity error. Receive error.

bit 7 Set if the 6850 was the source of the current
interrupt. This bit is the first to be checked by
the operating system interrupt handling
routine. If it isn’t set, the routine moves on to
checking the system VIA to see if it generated
the interrupt.

Serial processing can be split into two parts, that done for the
cassette filing system, and that done for the RS423 system.

301

13.8.1 The cassette serial system

The cassette system uses the interrupts in the following ways:

A transmitter interrupt causes the next byte of output
data to be sent to the 6850.

A receiver interrupt causes a byte to be taken from the
6850 and stored in memory.

A Data Carrier Detect interrupt is used to mark the end of
a data block when skipping to find files or during a
cataloging process.

13.8.2 The RS423 serial system

The RS423 system uses the interrupts in the following ways:

A transmitter interrupt causes a character to be sent to the
6850 from the RS423 transmit buffer, or the printer buffer if
the RS423 printer is selected. If both buffers are empty, the
RS423 system is flagged as available (see OSBYTE &BF) and
transmitter interrupts are disabled.

A receiver interrupt is used to cause a character to be read
from the 6850 and inserted into the RS423 receive buffer (if
enabled by use of OSBYTE &9C). If there is a receive error,
(which can be ignored by use of OSBYTE &E8) event number
7 is generated, and the character is ignored. The character is
also ignored if OSBYTE &CC has been made non-zero. The
RTS line is pulled high if the receive buffer is getting full. The
number of characters which need to be in the buffer to cause
RTS to go high is set by OSBYTE &CB.

A DCD interrupt cannot occur unless the RS423 has been
switched to the cassette connector by use of OSBYTE &CD.
The DCD interrupt is normally cleared by reading from the
6850 receive register. An event number 7 (RS423 receive error
event) is then generated.

302

The RS423 system can be made to ignore any of the above
interrupts by use of OSBYTE &E8. The 6850 status register is
ANDed with the OSBYTE value. Any bit cleared by this is
ignored, and passed over to the user interrupt vector. The
user is then responsible for clearing the interrupt condition.
This is done by either reading the receive data register or
writing to the transmit data register of the 6850 (see serial
hardware chapter 20).

13.9 System VIA interrupt processing

The system VIA controls and monitors many of the BBC
microcomputer’s internal hardware devices. An interrupt
generated by the system VIA may have many different
interpretations. The reader is referred to the VIAs in general
chapter 22 and the system VIA in particular, chapter 23
sections in the hardware section.

When it generates an interrupt the system VIA’s status byte
indicates the type of interrupt:

bit 0 Set if a key has been pressed.

bit 1 Set if vertical synchronisation has occurred on
the video system (a 50Hz time signal).

bit 2 Set if the system VIA shift register times out.
This should not normally occur since the shift
register is not used on the system VIA.

bit 3 Set if a lightpen strobe off the screen has
occurred.

bit 4 Set if the analogue converter has finished a
conversion.

bit 5 Set if timer 2 has timed out. Used for the speech
system.

bit 6 Set if timer 1 has timed out. This timer provides
the 100Hz signal for running the internal
clocks.

303

bit 7 Set if the system VIA was the source of the
interrupt.

The standard interrupt routine can be made to ignore any of
the above interrupts by use of OSBYTE &E9. The status
register is ANDed with this OSBYTE value. Any bit masked
by this is ignored, and passed over to the user interrupt
vector. The user is then responsible for clearing the interrupt
condition. This is done by writing a byte to location &FE4D
with the bit corresponding to the interrupt to be cancelled set.

The standard interrupt routine uses the interrupts in the
following ways:

A key pressed interrupt causes the operating system to mark
the key pressed as the current key. It will be processed on a
subsequent timer interrupt.

A vertical sync interrupt is used to time the colour flashing
and change the colours when required. Modifying colours in
this way ensures that the colours do not change halfway
through displaying the screen. It is also used to ‘time out’ the
cassette and RS423 systems (when one of these has timed out
after half a second of inactivity, the 6850 can be claimed for
use by the cassette or RS423 systems). This interrupt also
causes a frame sync event (number 4).

The shift register of the system VIA is not used, and its
interrupt is passed over to the user.

The analogue conversion completion interrupt is used to
cause the newly converted value to be read, and stored in
RAM. The next channel to be converted is then initialised.
This interrupt also causes event number 3.

The light pen interrupt is not used by the operating system, as
it has no software to support the light pen. This interrupt is
always passed over to the user. An example lightpen
interrupt processing routine concludes this chapter.

304

Timer 2 is used by the operating system to count transitions
of the speech ‘ready’ output. When an interrupt occurs, there
is an attempt to speak another word.

Timer 1 is used to provide regular 100Hz interrupts. On
receipt of this interrupt, the following happens:

a) The interrupt is cleared.
b) The ‘TIME’ clock is swapped with its alternate and

incremented. There are two 5 byte clocks provided by
the operating system. They are updated alternately.
This ensures that any program which is in the middle
of reading the clock when an interrupt occurs can still
read a valid value.

c) The interval timer is incremented, and if zero an event
is caused (number 5). See section 12.10.

d) The INKEY timer is decremented.
e) One element of sound processing is performed.
f) If a new key has been pressed, its code is entered into

the buffer, and auto repeat processing is begun.
g) Then three emergency back-door operations are

performed:

1) The speech chip is checked, in case a speech
interrupt has been missed.

2) The 6850 is checked, because the transmitter
interrupts must be disabled to set the RTS line
high.

3) The analogue converter is checked, to ensure
that an interrupt is not missed.

If system VIA interrupts are disabled, sound, speech, the
clock, the countdown timer, INKEY, the keyboard, colour
flash, and analogue converters will all cease to work. It is
therefore inadvisable to disable interrupts for more than
about 2ms at any time.

13.10 User VIA interrupt processing

Port B of the user VIA is reserved for user applications, and
port A is used as a parallel printer interface (refer to chapter
22 on VIAs in general and chapter 24 on the user VIA).

305

The standard interrupt routine only uses the CA1 interrupt;
all others are passed over to the user. The CA1 interrupt is
used to signify that the parallel printer is ready to accept a
new character. A new character is sent to the printer if the
printer output buffer is not empty. OSBYTE call &E7 can be
used to mask out the CA1 interrupt and cause it to be passed
on to the user in the same way as interrupts are masked out of
the system VIA.

13.11 Intercepting interrupts

If the user intercepts either IRQ1V or IRQ2V by changing the
vector value at &204,5 or &206,7, the following conditions
apply on entry to the user’s interrupt routine:

The original processor status byte and return address are
already stacked ready for an RTI instruction.

The original X and Y states are still in their registers.

The original A register contents are in location &FC.

Note that the interrupt routine should not call any operating
system routines if at all possible. This is because it is possible
that the foreground process was using the desired routine at
the time of the interrupt. If the routine to be called is not
re-entrant, the foreground process will be disturbed, and may
crash.

The user’s interrupt routine should be ‘re-entrant’. This
means that if any routines called by the interrupt routine
re-enable interrupts, and a second interrupt occurs before the
first is finished, the interrupt routine should be able to handle
it. This is achieved by:

Pushing the original X, and Y registers onto the stack.
Pushing the contents of &FC onto the stack.
Not using any absolute temporary storage locations.

Note that enabling interrupts during a user interrupt routine
is unofficial, in that Acorn state that it should not be done, but
with care it is safe to do so.

306

If a non-re-entrant zone is entered (such as an operating
system routine, or an area that needs temporary storage),
keep a semaphore for that zone. If another interrupt then
occurs, that area of code must not be used again until it has
finished.

There now follows an example of a routine using interrupts
which will stop all keyboard input entering the buffer until
break is pressed.

 10 DIM M% 100
 20 FOR opt%=0 TO 3 STEP 3
 30 P%=M%
 40 [
 50 OPT opt%
 60 .init SEI \ Disable interrupts
 70 LDA &206 \ Save old vector
 80 STA oldv
 90 LDA &207
100 STA oldv+1
110 LDA #int MOD 256 \ Low byte of address
120 STA &206 \ IRQ2V low
130 LDA #int DIV 256 \ High byte of address
140 STA &207 \ IRQ2V high
150 CLI
160 RTS \ Exit
170 .int LDA &FC \ Do save...
180 PHA
190 TXA
200 PHA
210 TYA
220 PHA
230 LDA &FE4D \ Get system VIA interrupt status
240 AND #&81 \ Mask out bits not interested in
250 CMP #&81 \ Is it a keyboard interrupt?
260 BNE exit \ No - exit
270 STA &FE4D \ Clear interrupt
280 LDA #7 \ BELL character
290 JSR &FFEE \ Make a tone
300 .exit PLA \ Restore registers...
310 TAY
320 PLA
330 TAX
340 PLA
350 STA &FC \ Just in case its changed
360 JMP (oldv) \ Continue interrupt chain
370 .oldv EQUW 0 \ BASIC II reserve space
380]
390 NEXT opt%
400 REM grab the vector
410 CALL init
420 REM grab keyboard interrupts
430 REM Using mask 11111110=254
440 *FX 233,254
450 REM Demonstrate machine not crashed by:
460 X%=0
470 REPEAT
480 PRINT X%;
490 VDU 13
500 X%=X%+1
510 UNTIL FALSE

307

This example introduces some interesting points:

When a key is held down for some time, the machine seizes
up until the key is released. This is because keyboard
interrupts occur continuously so that the operating system
has no time for anything other than interrupt processing. The
operating system, on receiving a keyboard interrupt,
immediately disables it and polls the keyboard. The keyboard
interrupts are only re-enabled when all keys are released.

Note the clearing of the interrupt. If this was not done, the
keyboard interrupt would last for ever. It is the responsibility
of the interrupt routine to clear an interrupt, whether it is the
operating system interrupt routine, or a user provided one.

Note the direct poking of the I/O devices. This is necessary in
interrupt routines, which must operate fast and with a
minimum of calls to external routines. There is no need to
worry about Tube compatibility, since interrupt routines must
always run on the I/O processor.

An interesting example of a lightpen handler follows. It
detects invalid light pen strobe pulses, such as might be
generated when a lightpen is directed away from the screen.
It allows for a small amount of fluctuation in the output from
the light pen such as could be generated by other light
sources in the room.

Note that to keep the example as short as possible, the code
below assumes that there are no other claimers of IRQ2V. The
previous example should be consulted for the correct code to
account for the other users of the vector.

 10 DIM M% 150
 20 olp=&70:lpen=&74
 30 FOR opt%=0 TO 3 STEP 3
 40 P%=M%
 50 [
 60 OPT opt%
 70 .init SEI \ Disable interrupts
 80 LDA #int MOD 256 \ Low byte of address
 90 STA &206 \ IRQ2V low
100 LDA #int DIV 256 \ High byte of address
110 STA &207 \ IRQ2V high
120 LDA #&88 \ Interrupt change mask
130 STA &FE4E \ Enable lightpen interrupt
140 CLI
150 RTS \ Exit
160 .int LDA &FC \ Do save...

308

170 PHA
180 TXA
190 PHA
200 TYA
210 PHA
220 LDA &FE4D \ Get system VIA interrupt status
230 AND #&88 \ Mask out bits not interested in
240 CMP #&88 \ Is it a lightpen interrupt?
250 BNE exit \ No - exit
260 LDA &FE40 \ Clear interrupt
270 LDX #16 \ Lightpen register
280 STX &FE00 \ 6845 address
290 INX \ Ready for next read
300 LDA &FE01 \ 6845 data
310 CMP olp+1 \ =old value?
320 STA olp+1 \ Update with new value
330 BNE diff1
340 STX &FE00 \ Next register
350 LDA &FE01 \ Get low address
360 TAY \ Temporary store
370 SBC olp \ Is it nearly eq.
380 CLC
390 ADC #1 \ Nearly eq if 0,1,2
400 BMI diff2
410 CMP #3 \ Compare with 2+1
420 BCS diff2 \ >=3 so not nearly eq..
430 \ Have two values same so update lpen
440 STY lpen
450 LDA olp+1
460 STA lpen+1
470 JMP exit \ And depart
480 .diff1 STX &FE00 \ Next register
490 LDY &FE01
500 .diff2 STY olp \ Update olp
510 LDA #0 \ Mark lpen as invalid
520 STA lpen
530 STA lpen+1
540 .exit PLA \ Restore registers...
550 TAY
560 PLA
570 TAX
580 PLA
590 STA &FC \ Just in case it has changed
600 RTI
610]
620 NEXT opt%
630 REM Initialise workspace
640 !olp=0
650 !lpen=0
660 REM grab the vector
670 CALL init
680 REM grab lightpen interrupts
690 REM Using mask 11110111=247
700 *FX 233,247
710 REM Demonstrate action of lightpen interrupts
720 REM Refer to hardware section for adjustments etc.
730 REM Set up a text window to stop hardware scroll
740 VDU 28,0,23,39,0
750 REPEAT
760 IF !lpen = 0 THEN PRINT "Not valid":ELSE PRINT ~!lpen
770 UNTIL FALSE

309

14 The RS423 serial system
This chapter describes how the RS423 serial interface system
can be used. The flexibility provided by the BBC
microcomputer hardware and software enables the serial
system to be reconfigured in a variety of ways. Details on
using the RS423 system to run the cassette port are also
included in this chapter.

The BBC microcomputer is equipped with a fairly
sophisticated serial system which can be used for a variety of
purposes. These include controlling external serial printers,
other devices with an RS423 (or RS232) interface, and running
the BBC microcomputer from or as a serial terminal.

The serial interface has two channels, one for output and one
for input. Using OSBYTE calls 2 and 3, the input channel can
be used to replace the keyboard input, and the output channel
can be connected to the computer’s output stream. The RS423
system can also be used to control the cassette port.

14.1 OSBYTE calls relating to the serial system

The following OSBYTE calls all relate to the serial system:

&02 2 Select input channel. Keyboard/RS423.
&03 3 Select output channels, including RS423.
&05 5 Select printer type.
&07 7 Select receive baud rate.
&08 8 Select transmit baud rate.
&9C 156 Direct 6850 control.
&B5 181 RS423 mode.
&BF 191 RS423 use flag.
&C0 192 RS423 control (do not use).
&CB 203 RS423 handshake control.
&CC 204 RS423 input ignore.
&CD 205 RS423/cassette select.
&E8 232 6850 interrupt mask.

The buffer management OSBYTEs and event control OSBYTEs
(13 and 14) are also relevant, because an event is generated if
an RS423 error occurs (number 7).

310

14.2 Uses of the RS423 system

14.2.1 RS423 printers

RS423 printers can easily be interfaced to the BBC
microcomputer using the RS423 system. Simply select the
RS423 printer with OSBYTE call 5, and set the transmit baud
rate with OSBYTE call 8. Note that RS232 printers are
normally compatible with the RS423 interface.

14.2.2 RS423 terminals

It is possible to connect remote terminals to the BBC
microcomputer. By selecting RS423 input with OSBYTE 2, all
input from the terminal will be treated by the operating
system as if it had come from the integral keyboard. Selecting
RS423 output using OSBYTE 3, will ensure that all output is
echoed back to the remote terminal.

Note that normally characters received from the RS423 input
channel are not treated exactly as those received from the
keyboard. The differences are that neither softkey expansions,
nor the escape character are processed. To enable this
processing, an OSBYTE &B5 must be performed.

14.2.3 Using the BBC computer as an intelligent terminal

Using the BBC microcomputer as an intelligent terminal to
another computer is not trivial. This is because this
application requires the RS423 channels to be connected in the
opposite way to that normally assumed. That is: the RS423
input has to be directed to the VDU output stream, and the
keyboard input has to be directed to the RS423 output
channel.

A simple example of use of the BBC microcomputer as a
terminal to a remote computer is given here. This program is
extremely ‘dumb’, and merely transfers input characters to
the VDU output stream.

311

 10 REM Enable RS423 input
 20 *FX 2,2
 30 REM Set baud rates to 4800
 40 *FX 7,6
 50 *FX 8,6
 60 REM Disable escape
 70 *FX 229,1
 80 REM This to be an 80 column VDU
 90 MODE 3
100 OSBYTE=&FFF4
110 REM Main loop
120 REPEAT
130 REM Set next OSBYTE to insert in buffer.
140 A%=138:X%=2
150 REM If character in input buffer..
160 IF ADVAL(-1)>0 AND ADVAL(-3)>0 THEN Y%=GET:CALL OSBYTE
170 REM Set next input to read RS423
180 *FX 2,1
190 REM Check RS423 buffer
200 IF ADVAL(-2)>0 THEN VDU GET
210 REM Restore old state
220 *FX 2,2
230 REM Forever so..
240 UNTIL FALSE

This program continually scans the RS423 input and keyboard
input buffers. Whenever the keyboard input buffer is not
empty, and the RS423 buffer not full, the character is
transferred to the RS423 output buffer. Whenever the RS423
input buffer is not empty, that character is transferred to the
VDU. Note that for a real application this program would
usually be translated into machine code.

14.2.4 Writing to the cassette port

The user may wish to have direct control over the cassette
port, for doing such things as reading tapes from other
computers, or writing protected tapes for the BBC.

When writing to the cassette port using the RS423 system, it is
not as simple as merely directing the RS423 to transfer to the
cassette port, as the cassette port is controlled differently to
the RS423 port. The main difference applies to the RTS line
(see the serial chapter 20).

In the RS423 system this line is used to inform the remote
device that the computer’s RS423 input buffer is getting full,
and that transmission should cease until the buffer has been
emptied somewhat.

312

The cassette uses the RTS line to control the ‘carrier’. Data on
the cassette system is frequency modulated, one tone is used
to represent a ‘1’ state, and another is used for ‘0’. A third
state is also required – silence, this is used to indicate the gap
between blocks. When transmitting silence the carrier is said
to be absent. When the RTS line is at logical zero, the 2400Hz
carrier tone is enabled.

The RTS line cannot be controlled directly within the RS423
system. Control has to be achieved by rendering the RS423
input buffer non-empty, and enabling receiver interrupts.
This has the effect of allowing the RS423 system to make
changes to the RTS line. The state of the RTS line depends on
the fullness of the RS423 input buffer. Program control of the
RTS line can thus be achieved by changing the tolerance of the
buffer to being full when one byte is present, from being full
when 247 characters are present in the buffer (the default
state). When the buffer still has space in it, the RTS line is low,
and the 2400Hz tone is enabled.

There follows an example program to output to the cassette
port via the RS423 system.

Note the use of ADVAL to sense the buffer going empty. This
is needed because if the tone were turned off immediately
after sending the last character, it is possible that the last few
characters remain in the buffer and be corrupted when sent to
the tape.

 10 REM Fudge factor: put 2 dummy bytes in RS423 input buffer
 20 REM to allow control of RTS flag by use of buffer
 30 REM tolerance (OSBYTE &CB, 203)
 40 *FX 138,1,1
 50 *FX 138,1,1
 60 REM Enable receive interrupts to allow control of RTS
 70 *FX 2,2
 80 REM Indicate that RS423 is cassette
 90 *FX 205,64
100 REM Select baud rates
110 *FX 7,4
120 *FX 8,4
130 REM Reset 6850
140 *FX 156,3,252
150 *FX 156,2,252
160 REM Turn tone on
170 *FX 203,9
180 REM Turn motor on
190 *MOTOR 1
200 REM Inform user
210 PRINT "Press record and return"
220 DUMMY=GET

313

230 REM Select output route
240 *FX 3,1
250 REM Send ULA synchronisation
260 VDU &AA
270 REM Wait (header tone)
280 TIME=0
290 REPEAT UNTIL TIME=500
300 REM Send data with a '*' tape synchronisation
310 PRINT "*HELLO THERE"
320 REM Wait until buffer empty
330 REPEAT UNTIL ADVAL(-3)>&BE
340 REM Pause for a short period of tone
350 TIME=0
360 REPEAT UNTIL TIME=50
370 REM Disconnect RS423 output
380 *FX 3,0
390 REM Turn off tone
400 *FX 203,255
410 REM Wait (for an interblock gap of silence)
420 TIME=0
430 REPEAT UNTIL TIME=150
440 REM Turn motor off
450 *MOTOR 0
460 REM Restore RS423
470 *FX 205,0
480 REM Tidy up serial input
490 *FX 2,0
500 *FX 21,1

14.2.5 Reading from the cassette port

Reading from the cassette port also cannot be achieved
directly by reading from the RS423 system. This is because the
RS423 system does not use the DCD line in the same way as
the cassette system.

The RS423 system does not expect a DCD condition to occur,
as the carrier is assumed always to exist, and no pin
connection is made for it. The RS423 system thus considers a
DCD interrupt as an error condition, an causes an RS423
receive error event.

The cassette system, however, uses a carrier detection circuit
in the ULA to detect the gaps between blocks on the cassette.
A block start will only be recognised as the first thing after the
detection of a carrier. Note that after receiving an invalid block
start, the motor is blipped. This has the effect of breaking the
carrier, so a new carrier detect interrupt will be caused as soon
as a 2400Hz tone is detected.

314

Thus a simple event must be set up that detects a DCD
interrupt. In the example program it only marks the condition
in a byte in the base page.

Another problem that occurs when reading from tape, is that
the data separator on the ULA chip needs the baud rate to be
set to 300 baud for it to work. Thus to read at 1200 baud, the
6850 must convert the 300 baud clock into a 1200 baud clock.
This is achieved at line 420 by changing the clock divide bits
in the 6850 control register to divide by 16 instead of 64.

 10 REM Insert assembler code to handle RS423 event
 20 DIM M% 40
 30 FOR PASS%=0 TO 2 STEP 2
 40 P%=M%
 50 [OPT PASS%
 60 .event CMP #7 \ Check for RS423 event
 70 BEQ rsev \ If it is, then branch
 80 RTS \ Otherwise exit.
 90 .rsev PHA \ Save the accumulator
100 TXA \ And test the status byte
110 AND #2 \ .. for the DCD bit
120 BEQ ntdcd \ Branch if not a DCD error
130 STA &70 \ If DCD, mark it in &70
140 .ntdcd PLA \ Restore accumulator
150 RTS \ And exit.
160]
170 NEXT PASS%
180 REM Set event vector
190 ?&220=event MOD 256
200 ?&221=event DIV 256
210 REM Enable the RS423 event
220 *FX 14,7
230 REM Indicate that the RS423 system is connected to cassette
240 *FX 205,64
250 REM Select baud rates (note they are 300 baud)
260 *FX 7,3
270 *FX 8,3
280 REM Reset 6850
290 *FX 156,3,252
300 *FX 156,2,252
310 REM Turn motor off then on to cause a break in the data
320 REM carrier signal.
330 *MOTOR 0
340 *MOTOR 1
350 REM Ensure that the computer is left tidy if user escapes
360 ON ERROR GOTO 560
370 REM Wait for DCD interrupt
380 ?&70=0
390 REPEAT UNTIL ?&70<>0
400 REM Set for RS423 input, and do a bit adjust for 1200 baud
410 *FX 2,1
420 *FX 156,1,252
430 REM Search for synch character '*' (see previous example)
440 ?&70=0
450 REPEAT X%=INKEY(0)
460 UNTIL X%<>-1 OR ?&70<>0
470 REM If something else found, such as a DCD, or another
480 REM character, then await another DCD interrupt.

315

490 IF X%<>ASC"*" OR ?&70<>0 THEN 320
500 REM Sync found and carrier present, so can now input...
510 REPEAT
520 X%=GET
530 VDUX%
540 UNTIL X%=13
550 REM All done so.. reset input route
560 *FX 2,0
570 REM Turn motor off
580 *MOTOR 0
590 REM Disable event
600 *FX 13,7
610 REM Restore 6850
620 *FX 156,2,252
630 REM Restore RS423
640 *FX 205,0

316

317

15 Paged ROMs
Paged ROMs are ROMs that fit in the four rightmost ROM
sockets on the BBC microcomputer circuit board. They all
have the following features in common:

They exist in the address space &8000 to &BFFF; thus only
one can be active at a time, the rest being ‘paged’ out.

They are scanned by the operating system under certain
circumstances, usually associated with an occurrence which is
not understood by the operating system, eg. inexplicable
interrupts, unrecognised operating system commands.

The operating system has the software to handle up to 16
paged ROMs, although the hardware can only handle four.

A paged ROM is used in the following applications:

Filing systems, such as disc operating systems, or the Econet
system.

Languages, such as BASIC, FORTH, BCPL, etc.

Utilities, such as wordprocessors, debugging aids, file utilities
etc.

Hardware drivers, for personalised hardware on the 1MHz
bus, or the lightpen.

A paged ROM must be recognised by the operating system.
To be recognised the first few bytes must conform to:

00-02 JMP language entry
03-05 JMP service entry
06 ROM type
07 Copyright offset pointer (=nn)
08 Binary version number
09… Title string, printed on selection as a

language.
vv… Optional version string, preceded by &00.
nn–nn+3 &00, &28 ‘(’, &43 ‘C’, &29 ‘)’

318

nn+4… Copyright message
xx Copyright message terminator (&00)
xx+1–xx+5 If applicable, second processor relocation

address.

a) The language entry is called upon initialising the ROM as a
language, and after copying over to the second processor, if
applicable.

b) The service entry is called regularly, whenever a service is
needed by the MOS.

c) The ROM type is a flag byte informing the MOS as to what
the ROM is expected to do.

bit 7 If set, this indicates that the ROM has a service entry.
Note that a ROM with no service entry is assumed to
be the BASIC ROM. ALL user ROMs should have a
service entry.

bit 6 If set, this indicates that the ROM has a language
entry, and wishes to be considered for selection on a
hard reset. If not set, the ROM may still have a
language entry, but it must be started up by an
operating system command; such a language, if
selected, will still be selected after a soft reset.

bit 5 If set, this indicates that a second processor relocation
address is provided, and that the code in this ROM,
excepting that for the service entry, has been
assembled from that address. This is only relevant if
there is a language resident in the ROM; service
routines are never copied across the Tube.

bit 4 This bit controls the Electron soft key expansions, and
is not relevant on the BBC microcomputer.

bit 1 Must be set.

d) The copyright offset pointer is the offset from the
beginning of the ROM to the zero byte preceding the
copyright message.

319

e) The binary version number is ignored by the operating
system. It should be used to indicate the version number to
anyone examining the ROM.

f) The title string is printed out on selection of the ROM as a
language ROM. Apart from this, its only use is to identify the
ROM to those examining the ROM.

g) The version string is optional, and if it exists, it must be
preceded by a zero byte. It is only really of relevance to
languages, because on entry to a language the error pointer
(&FD and &FE) will point to this, or if not present, the
copyright message. ‘REPORT’ in BASIC demonstrates that
BASIC has no version string.

h) The copyright string is essential. This is because the ROM
is recognised by this string, and if it does not exist, the ROM
will be ignored. The format must always be a zero byte
followed by ‘(C)’.

i) The tube relocation address, if present, indicates to the tube
system that the language part of the contents of this ROM
have been assembled to an address other than &8000. The
address given is the address to which the program must be
copied in the second processor. The service call code should
still be assembled into the &8000 space, because, for service
entries, the ROM is executed within the I/O processor.

15.1 Entering Paged ROMs

Paged ROMs are entered via one of three methods: by a
service call, via an extended vector, or through the language
entry point. Generally, a ROM should never be executed at all
until it has responded to at least one service call; the exception
to this is BASIC which has no service entry point. Always
when within a paged ROM, location &F4 contains the ROM
number of the ROM being executed.

320

15.1.1 Service Call entries

When the paged ROMs are asked to provide a service, the
highest priority ROMs (the ones in the sockets to the right of
the board) are offered the chance first. They are entered at the
service entry point with the registers set up thus:

A Service type requested
X ROM number of the current ROM
Y Any parameter required for the service

If a ROM wishes to issue further service calls to other ROMs,
for example to claim memory, it should issue such calls using
OSBYTE call &8F, with the service type in the X register and
the parameter in the Y register.

If a ROM does not wish to provide the service, it should exit
with all the registers preserved. If, however, the ROM
performs the requested service, and wishes to prevent other
ROMs also performing the service, the accumulator should be
zero on exit.

The service types are:

00 No operation. All ROMs are to ignore this service
request: a higher priority ROM has already provided it.

01 Absolute workspace claim. On break, each ROM is
asked to stake a claim for absolute workspace.
Absolute workspace is a single block of memory which
is only allocated to one ROM at any one time. Being
absolute, this memory runs from &E00 to the highest
address asked for by any of the ROMs. On entry, the Y
register contains the current upper limit of the absolute
workspace. This starts off as &0E (the upper byte of the
first address of absolute workspace). Each ROM should
compare the value in the Y register with the upper
limit of absolute memory required by the ROM, and if
necessary replace it by the level required by the ROM.
This memory is shared between all the ROMs, and
should be claimed with service call &0A before use.
The accumulator should be preserved during this call.

321

02 Private workspace claim. On break, after absolute
workspace allocation, each ROM is offered the chance
to take some private workspace. This memory is
exclusive to the ROM claiming it. The ROM is entered
with the first page number of the workspace available
to it in the Y register. It should save this value in the
ROM workspace table at &DF0 to &DFF (for ROMs 0
to &F respectively), and add to the Y register the
length in 256 byte pages of the private workspace
required. Because the absolute workspace is shared
between all the paged ROMs, each ROM that uses it
should keep a flag within its private workspace which
indicates whether or not it currently has control of the
absolute workspace. This enables the ROM to claim
the workspace when it needs it, and to respond to
such a claim from other ROMs.

03 Auto-boot. Each service ROM is given the opportunity
to initialise itself on break. This is primarily used for
filing systems to set up their vectors on break rather
than having to be reselected every time with an
operating system command. To allow lower priority
ROMs a look in, each ROM should examine the
keyboard before initialisation, and initialise only if no
key is pressed, or a key exclusive to that ROM is
pressed (eg. the discs are selected by ‘D-break’). If the
ROM initialises, it should look for, and RUN, EXEC or
LOAD, a boot file (typically called ‘!BOOT’) if on entry
the Y register is zero.

04 Unrecognised command. When the user issues an OS
command that is not recognised by the central
operating system, the command is first offered to the
paged ROMs, and then to the currently active filing
system. ROMs containing general utilities should use
this call to activate them. Filing system and language
ROMs should trap this to catch their selection
command. Note that most filing system commands
should be intercepted via the filing system control
entry (see filing systems section 16.8). On entry, the
command to be interpreted is in the form of an ASCII
string terminated by &0D and pointed to by the
contents of &F2 and &F3 plus the Y register.

322

05 Unrecognised interrupt. When an interrupt occurs that
is either not recognised by the operating system, or
has been software masked out, the interrupt is first
offered to the paged ROMs, and then to the user via
the ‘IRQ2’ vector. A paged ROM accepting interrupts
should interrogate the device(s) that it will respond to,
to see if any of them are responsible for the interrupt,
and if so process it. If the interrupt is processed by a
ROM, it should set the accumulator to zero to prevent
it being offered elsewhere. Always return with an RTS
instruction, not RTI.

06 Break. The user has executed a BRK instruction,
usually flagging an error. Paged ROMs are informed
before handing over the error to the current language
via the break vector. The Y register should be
preserved during this call, but only if the service
routine intends to return and allow control to pass
back to the current language. On entry location &F0
contains the value of the stack pointer after the BRK
instruction was executed. Locations &FD and &FE
point to the error number in memory. Note that the
error may have occurred in another ROM, whose
contents are not directly accessible by the service
routine. OSBYTE &BA will give the ROM number of
the ROM which was active when the BRK occurred.

07 Unrecognised OSBYTE call. The user has issued an
OSBYTE call not known to the operating system. The
A, X and Y registers on entry to the OSBYTE are stored
at &EF, &F0 and &F1 respectively. The OSBYTE call
should be recognised on the contents of &EF.

08 Unrecognised OSWORD call. The user has issued an
OSWORD call not known to the operating system. The
A, X and Y registers on entry to OSWORD are stored
at &EF, &F0 and &F1 respectively. The OSWORD call
should be recognised on the contents of &EF. Note
that it is not worth trapping OSWORD calls with
numbers greater than &E0, as these are all sent to the
user vector at &200. Note also that OSWORD number
7 (make a sound) will cause this service call if an

323

unrecognised channel number is used (in the range
&2000 to &FEFF), allowing for future sound channel
expansion over the 1MHz bus.

09 *HELP instruction expansion. This service call is made
whenever the user issues a *HELP command. ROMs
should allow all resident ROMs to respond to it at
once, so that the user can find out about all the
resident ROMs at once. On entry, the rest of the
command after the *HELP is pointed to by the contents
of locations &F2 and &F3 plus the Y register. ROMs
should recognise keywords on that line to provide
information on a particular area. If the rest of the line
is blank, the ROM should type its name, and a list of
keywords to which it will respond.

0A Claim static workspace. When a paged ROM requires
use of the absolute workspace starting at location
&E00, it should ask the current owner to relinquish it
by issuing this call. On receiving this call, a ROM
should copy its valuable information to its private
area, and update its flag in its private area to indicate
that it no longer owns the workspace. When it again
needs the absolute workspace, it should itself issue this
call to get it back.

0B NMI release. This call, when issued, means that the
current user of the NMI space no longer requires it,
and it may be claimed. The Y register on entry should
contain the filing system id of the previous owner
(usually the net system), and each ROM should
compare it with their own identity before reasserting
control over the NMI space.

0C NMI claim. This call should be made with Y=&FF, and
if a ROM is currently the owner of the NMI space, it
should return in the Y register its filing system id, and
clear from the NMI space any important data. Y should
not be altered if the NMI space was not previously in
use. The claimer of NMI should store the returned id
number for use when releasing the NMI claim.

324

0D ROM filing system initialise. This call is issued when
the ROM filing system is active, and the paged ROMs
are being scanned for a particular file. On entry, the Y
register contains 15 minus the ROM number of the
next ROM to be scanned. If that adjusted ROM
number is less than the number of the ROM receiving
the call, the call should be ignored. Otherwise, the
number should be replaced by the ROM number of the
active ROM and stored at &F5 after adjusting it. The
current ROM should mark itself as active by returning
with the accumulator zero, and store in locations &F6
and &F7 a pointer to the data within the ROM. The
alteration of location &F5 is necessary because the
ROM filing system will abort a search if it gets no
response from any of the ROMs for any particular
ROM number. Altering &F5 causes non-existent ROMs
to be skipped over. See the example on ROM filing
system use in section 15.4.

0E ROM filing system byte get. This call is issued after
initialising the ROM with service type &0D to retrieve
one byte from the ROM. A ROM should only respond
to this if the ROM number in &F5 is 15−(ROM’s
physical number in &F4). The fetched byte should be
returned in the Y register. See the example on ROM
filing system use in section 15.4.

0F Vectors claimed. When a new filing system is
initialised, it should, after writing its new vectors,
issue this service call. This is to inform all the paged
ROMs that there is a filing system change imminent.

10 SPOOL/EXEC file closure warning. This call is issued
prior to closing the SPOOL and EXEC files when
changing filing systems. This call is made primarily to
allow any users of these files to tidy them up prior to
their closure with the disappearance of the filing
system. If a ROM responds to this call and returns
with the accumulator zero, the SPOOL and EXEC files
will not be closed. Care is necessary to prevent
accidental access to files belonging to another
(inactive) filing system.

325

11 Font implosion/explosion warning. Each time the fonts
are exploded or imploded the high water mark will
change. This call exists to inform languages that the
high water mark has changed, and that the Y register
contains the new value. This call should be used to get
your precious data out of the way before being
destroyed by the character set. BASIC, it should be
noted, ignores this warning, as it has no service entry.

12 Initialise filing system. If a program is transferring
files from one filing system to another, it may need to
have files open in more than one filing system. To do
this, filing systems need to be re-activated before an
access (all filing systems allow files to be open whilst
inactive). This call exists to initialise a filing system
without the fuss of issuing operating system
commands. A filing system should respond to this call
if the value in the Y register is its identification number
(for filing system numbers see OSARGS, section 16.3).
The filing system should initialise and restore all files
still open when the filing system shut down.

FE Tube system post initialisation. This call is always
issued after OSHWM has been set up. It is intended to
allow the Tube system to explode the character set, or
make other use of the main memory. On systems
without the Tube, this call can be used for nefarious
break trapping.

FF Tube system main initialisation. This call is issued only
if the Tube hardware has been detected, and is called
prior to message generation and filing system
initialisation.

15.1.2 The language entry point

The language entry point is used to start up a language, and
should only be entered with &01 in the accumulator on the
BBC microcomputer. No return is expected from a language.
The language entry point is always entered with a JMP
instruction. The stack state on entry is undefined, and the
stack pointer should be reinitialised.

326

The actual entry codes in the accumulator are:

0 No language present on break. No language ROM is
entered this way, but the Tube language entry point
might be.

1 Normal language start up.

2 Electron only. Request next byte of soft key expansion.
Key number set by call with A=3. Byte out in Y.

3 Electron only. Request length of soft key expansion.
Key number in Y. Length out in Y.

15.1.3 Vectored entry into paged ROMs

As many filing systems are paged ROM resident, a
mechanism has been provided for changing vectors to point
into paged ROMs.

Each vector has a number, n, such that the vector normally
exists at location &0200+2*n. Any vector can be made to point
into a sideways ROM by:

a) Making the main vector at location &0200+2*n point to
&FF00+3*n. This is the operating system’s entry point for
processing extended vectors.

b) Ascertaining the extended vector space by issuing OSBYTE
with A=&A8, X=&00, Y=&FF; this returns in X and Y the
address of the extended vector space. Call this address V. (In
OS1.20 V=&0D9F)

c) Setting the extended vector at location V+3*n to:

address in ROM low byte
address in ROM high byte
ROM number (held in &F4)

327

15.2 Languages

A language on the BBC microcomputer is not necessarily a
language at all, but could be any self contained machine code
program that is independent of language. Examples are:

Text editors and word processors
Terminal emulators
Teletext systems

Languages can only be started up by issuing an OSBYTE call
with A=&8E, X=ROM number (excepting BASIC which is a
special case). This is normally inconvenient and dependant on
ROM position. A service entry should therefore be provided
which uses the unrecognised command entry (service type 4)
to recognise the language name as a command. Upon
recognising the language name, the ROM should issue the
OSBYTE call to properly start up the language.

When starting up a language the operating system does the
following:

a) Records the ROM number to reselect the language on
errors and soft breaks

b) Displays the ROM name
c) Leaves the error message pointer pointing to the

copyright message or the version string if present
d) If a second processor is active, copies the language

across the Tube to the second processor and executes it
there. If there is a relocation address it is taken account
of during the transfer

e) Enters the language at its language entry point

When entered at the language entry point, a language should
always set up the BRK vector to its error handler. Even the
simplest language requires error handling, since just writing a
character to the screen can cause an error when output is
spooled. The error handler should output the error message,
and continue execution within the language ROM at a
suitable well defined point (such as the keyboard input
prompt).

328

The BRK vector does not need to be an extended vector, as the
operating system automatically switches to the current
language ROM on a BRK. When a BRK occurs, the currently
active paged ROM number is recorded, and can be read with
OSBYTE &BA. Service paged ROMs normally copy their error
messages into RAM, so that the language does not have to
read the error message from another ROM.

Languages must also enable interrupts, otherwise the
operating system will fail to work.

Languages have the following workspace available:

&0000 – &008F Page zero
&0400 – &07FF Main language workspace
OSHWM – screen bottom Program space

15.3 Filing systems

Filing systems are discussed fully in the Filing Systems
chapter (number 16). This section covers filing systems and
their relations with paged ROMs.

15.3.1 Initialising a filing system

Filing systems that are ROM resident can be initialised in
three ways, all of which should be catered for in a filing
system ROM:

An operating system command is issued naming the filing
system. The filing system should watch for its selection
command coming through a service call.

A service call &12 is issued with Y equal to the filing system
number.

Auto-booting on system reset. If a filing system receives a
service call &03, it should initialise if appropriate (see service
call &03 details). Note that at this stage the language has not
been initialised, so errors will be treated oddly. If Y=0 at this
point, a boot file should be searched for if appropriate.

329

On initialisation a filing system should do the following:

a) Call OSFSC with A=6 (see filing systems section) to
warn the old vector owner that the vectors are about
to be redefined.

b) Set up the extended vectors, as previously specified.
c) Issue service call &0F, to warn all other paged ROMs

of the vector change.
d) Restore all open files from the last activation of the

filing system. Filing systems should be able to keep
files open on ‘hold’ whilst inactive.

15.3.2 Other considerations for filing systems

If a filing system wishes to issue an error, it cannot do it in the
normal way of executing a BRK instruction, because when the
language comes to process the message, the message will be
unavailable in another ROM. The usual way of issuing errors
is to copy to location &0100 (the far end of the stack) a BRK
instruction, the error number and error message, and then
jump to location &0100.

The following workspace is reserved for filing systems:

Base page:

&A0 – &A7 NMI workspace. Can only be used
whilst NMI claimed.

&A8 – &AF Utilities area. Can only be used within
an operating system command (can be
a filing system command).

&B0 – &BF Filing system scratch space. Contents
are not guaranteed to remain present
from one call to another. Do not use
for interrupt routines.

&C0 – &CF Filing system dedicated workspace.
This is guaranteed to remain intact as
long as the filing system is active, and
as long as the absolute workspace is
not claimed.

330

Main memory:

&0D00 – &0D5F NMI code area. Filing systems using
NMI code should copy the code to this
space after claiming this space with
service call &0C. If the NMI code must
access the ROM, it should save the old
ROM number to restore at the end of
NMI service.

&0E00 – &ssss Absolute workspace. The address ssss
is set at reset by service call &01. Must
be claimed before use by service call
&0A.

15.4 ROM filing system software

ROM filing system (RFS) software that is resident in paged
ROMs should contain header code to provide data which has
been requested by service calls &0D and &0E. Each paged
ROM should contain an end-of-ROM code (&2B ‘+’) after the
last block. Data should be formatted as specified in the ROM
Filing System section number 16.11. A simple ROM filing
system service code block could be:

.serve CMP #&0D \ Is it a ROM initialising call?
 BNE ninit \ No - branch
 PHA \ Save the service call type
 TYA \ Get logical ROM number
 EOR #&0F \ Adjust it (do 15-x)
 CMP &F4 \ Compare with this ROM's number
 BCC notus \ Number less, this ROM already been done
 LDA #data MOD 256 \ Low byte of data address
 STA &F6 \ Location &F6 and &F7 reserved for this
 LDA #data DIV 256 \ High byte of data address
 STA &F7 \ Save high byte
 LDA &F4 \ This ROM's number
 EOR #&0F \ Adjust it back (15-x)
 STA &F5 \ Pass over any higher non-filing system
 \ ROMs
 PLA \ Discard service type
 LDA #0 \ Set service type to no-operation
 RTS \ Exit
.notus PLA \ Restore service type
.exit RTS \ Exit
.ninit CMP #&0E \ Is it a byte requests call?
 BNE exit \ No - exit
 PHA \ Save service type
 LDA &F5 \ Find the current ROM number
 EOR #&0F \ Adjust it
 CMP &F4 \ Compare it with this ROM
 BNE notus \ Not the same, must be for another ROM
 LDY #0 \ Prepare to get the data

331

 LDA (&F6),Y \ Get the data
 TAY \ In the Y register ready for exit
 INC &F6 \ Increment the address for next time
 BNE ninc7 \ No need to increment &F?
 INC &57
.ninc7 PLA \ Discard service type
 LDA #0 \ Set service type to no-operation
 RTS \ Exit
.data \ Data onward from here

332

333

16 Filing systems
16.1 Filing systems in general

16.1.1 Files

A file, to the BBC microcomputer, is a sequence of bytes. A
file has a number of attributes: a load address, an execution
address, a length, and, if ‘open’, a sequential pointer.

Every file is given a name when it is created. When a file is
used it is identified by this file name.

When a file is opened for single byte access the filing system
allocates the file a ‘channel’. The channel can be considered to
be a window into a file. A ‘handle’ is assigned to each channel
to identify it internally. A file may be opened more than once
for input, and so more than one channel can be associated
with one file at any one time. When the file is closed and no
further access is required then the channel is released and is
no longer valid. The channel that was in use is now available
to be assigned to another file if required. Any filing system
can only have a limited number of open channels at one time
and so there are only a limited number of handles available.
A sequential pointer is maintained for each open file. The
sequential pointer always points to the next byte to be read or
written. In the disc filing system it is possible to change the
value of this pointer to give random access within a file. Only
serial access is available with the tape filing system.

16.1.2 Directories

On the disc and network filing systems, each file is resident in
a directory. A file is identified by its directory followed by its
name. Directories are separated from filenames by a full stop.
For example, in ‘A.NAME’, ‘A’ is the directory name, and
‘NAME’ is the file name.

For convenience, the user may specify a ‘current’ directory,
which is assumed if the directory name is omitted from the
file identification.

334

The user may also specify a ‘library’ directory, which is similar
to a ‘current’ directory. The library directory is searched for
unrecognised commands unless a different directory is
included in the command name.

16.1.3 Cycle numbers

The network and disc filing systems also use a ‘cycle number’
associated with the disc. The cycle number represents the
number of times that a particular disc catalogue has been
written to. It is of use in helping to identify a disc with greater
reliability.

16.1.4 Filing systems

A filing system is a program that manages files on a particular
storage medium. Filing systems are entered through vectors
held in page 2 of memory.

Filing systems, upon selection, must provide a series of seven
vectors, from location &212 to &21F. These point to the
relevant routines within the filing system.

The filing system vectors are:–

&212 FILEV Operations on whole files.
&214 ARGSV Adjust file arguments.
&216 BGETV Get one byte from an open file.
&218 BPUTV Put one byte to an open file.
&21A GBPBV Get/put a block of bytes to/from an open file.
&21C FINDV Open/close a file for byte access.
&21E FSCV Filing system control – various actions.

Filing systems are selected either during a reset, or by means
of an operating system command; thus filing systems must
also trap the command line interpreter (see section 7.12) to
catch their selection command. Filing systems resident in
paged ROMs are automatically informed by the operating
system of any unrecognised command attempted.

335

16.2 OSFILE Read or write a whole file or its attributes

Call address &FFDD Indirected through &212

This routine is concerned with actions on whole files. Actions
performed by this routine are loading a file into memory,
saving a file from memory and writing file attributes.

On entry,
X and Y points to a parameter block in memory (X=low
byte, Y=high byte).

The accumulator contains a number indicating the action
to be performed.

The format of the parameter block is:

00 Address of filename, terminated by RETURN
&0D.

01

02 Load address of the file.
03 Low byte first.
04
05

06 Execution address of the file.
07 Low byte first.
08
09

0A Start address of data for save,
0B length of file otherwise.
0C Low byte first.
0D

0E End address of data for save,
0F file attributes otherwise.
10 Low byte first.
11

336

The value in the accumulator has the following
interpretations:

A=0 Save a block of memory as a file using the
 information provided in the parameter block.

A=1 Write the information in the parameter block to
the catalogue entry for an existing file (i.e. file
name and addresses).

A=2 Write the load address (only) for an existing file.

A=3 Write the execution address (only) for an existing
file.

A=4 Write the attributes (only) for an existing file.

A=5 Read a file’s catalogue information, with the file
type returned in the accumulator. The information
is written to the parameter block.

A=6 Delete the named file.

A=&FF Load the named file, the address to which the file
is loaded being determined by the lowest byte of
the execution address in the control block (XY+6).
If this byte is zero, the address given in the control
block is used, otherwise the file’s own load
address is used.

File attributes are stored in four bytes, the most significant
three bytes are filing system specific. The least significant byte
is defined as:–

Bit=1 Means: By

0 Readable You (DFS only uses
1 Writable You bit 3: file locked)
2 Executable You
3 Not Deletable You
4 Readable Others
5 Writable Others

337

6 Executable Others
7 Not Deletable Others

In this instance, ‘you’ means the user reading the attributes,
and ‘others’ means other users of, say, the Econet filing
system.

File types returned in the accumulator are:

0 Nothing found
1 File found
2 Directory found

On exit,
X and Y are preserved.
The accumulator contains the file type.
C, N, V and Z are undefined.
Interrupt status is preserved, but may be enabled during
a call.

16.3 OSARGS Read or write an open file’s arguments

Call address &FFDA Indirected through &214

This routine reads or writes an open file’s attributes.

On entry,
X points to a four byte zero page control block.
Y contains the file handle as provided by OSFIND, or
zero.
The accumulator contains a number specifying the action
required.

If Y is zero:

A=0 Returns the current filing system in A:

0 No filing system currently selected
1 1200 baud cassette
2 300 baud cassette
3 ROM filing system

338

4 Disc filing system
5 Econet filing system
6 Telesoftware system

A=1 Returns the address of the rest of the command
line in the base page control block. This gives
access to the parameters passed with *RUN or
*command.

A=&FF Update all files onto the media, ie ensure that the
latest copy of the memory buffer is saved.

If Y is not zero:

A=0 Read sequential pointer of file (BASIC PTR#)

A=1 Write sequential pointer of file

A=2 Read length of file (BASIC EXT#)

A=&FF Update this file to media

Note: the control block always resides in the I/O processor’s
memory, regardless of the existence of a Tube processor.

After an OSARGS call,
X and Y are preserved.
A is preserved, except when entered with Y=0, A=0.
C, N, V and Z undefined, D=0.
Interrupt state is preserved, but may be enabled during
the call.

16.4 OSBGET Get one byte from an open file

Call address &FFD7 Indirected through &216

This routine reads a single byte from a file.

On entry,
Y contains the file handle, as provided by OSFIND.

The byte is obtained from the point in the file designated by
the sequential pointer.

339

On exit,
X and Y are preserved.
A contains the byte read.
C is set if the end of the file has been reached, and
indicates that the byte obtained is invalid.
N, V and Z are undefined.
Interrupt state is preserved, but may be enabled during
the call.

16.5 OSBPUT Write a single byte to an open file

Call address &FFD4 Indirected through &218

OSBPUT writes a single byte to a file.

On entry,
Y contains the file handle, as provided by OSFIND.
A contains the byte to be written.

The byte is placed at the point in the file designated by the
sequential pointer.

On exit,
X, Y and A are preserved.
C, N, V and Z are undefined.
Interrupt state is preserved, but may be enabled during
the call.

16.6 OSGBPB Read or write a group of bytes

Call address &FFD1 Indirected through &21A

This routine transfers a number of bytes to or from an open
file. It can also be used to transfer filing system information.

On entry,
X and Y point to a control block in memory.
A defines the information to be transferred.

340

The control block format is:

00 File handle

01 Pointer to data in either I/O processor or Tube
02 processor.
03 Low byte first.
04

05 Number of bytes to transfer
06 Low byte first.
07
08

09 Sequential pointer value to be used for transfer
0A Low byte first.
0B
0C

The sequential pointer value given replaces the old value of
the sequential pointer.

The real utility of the OSGBPB call comes in the Econet
system, where there is a considerable time overhead for the
transfer of each piece of data. If single bytes are transferred
using OSBPUT and OSBGET, the overhead incurred for each
transfer has a marked effect on performance times. The
greater the number of bytes that can be read or written the
more efficient that transfer is; a single OSGBPB call can
replace an OSARGS call, and a large number of OSBGET or
OSBPUT calls.

The accumulator value before the OSGBPB call has the
following effects:–

A=1 Put bytes to media, using the new sequential
pointer.

A=2 Put bytes to media, ignoring the new sequential
pointer.

341

A=3 Get bytes from media, using the new sequential
pointer.

A=4 Get bytes from media, ignoring the new
sequential pointer.

A=5 Get media title, and boot up option. The data
returned is:
Single byte giving the length of the title.
The title in ASCII character values.
Single byte start option.
The start option meaning is filing system
dependant.

A=6 Read the currently selected directory, and device.
Single byte giving the length of device identity.
Device identity in ASCII characters.
Single byte giving the length of directory name.
Directory name in ASCII characters.
The device identity is the name of the device
containing the directory. On the disc filing
system, it is the drive number, but is not
applicable on the network filing system, so its
length is zero.

A=7 Read the currently selected library, and device.
The data format is the same as that used for A=6.

A=8 Read file names from the current directory. The
control block is modified, so that the file handle
byte contains the ‘cycle number’ (see section
above, 16.1.3), and the sequential pointer is
adjusted to ensure that the next call with A=8
gets the next file name. On entry, the number of
bytes to transfer is interpreted as the number of
file names to transfer; for the first call, the
sequential pointer should be zero. The data
returned is:
Length of filename 1
Filename 1
Length of filename 2
Filename 2 …

342

The requested transfer cannot be completed if the end of the
file has been reached, or there are no more file names to be
transferred. In this case, the C flag is set on exit. If a transfer
has not been completed the number of bytes or names which
have not been transferred are written to the parameter block
in the ‘number of bytes to transfer’ field. The address field is
always adjusted to point to the next byte to be transferred,
and the sequential pointer always points to the next entry in
the file to be transferred.

On exit,
X,Y and the accumulator are preserved.
N, V and Z are undefined.
C is set if the transfer could not be completed.
Interrupt state is preserved, but may be enabled during
operation.

16.7 OSFIND Open or close a file for byte access

Call address &FFCE
Indirected through &21C

OSFIND is used to open and close files. ‘Opening’ a file
declares a file requiring byte access to the filing system.
‘Closing’ a file declares that byte access is complete. To use
OSARGS, OSBGET, OSBPUT, or OSGBPB with a file, it must
first be opened.

On entry,
The accumulator specifies the operation to be performed:

If A is zero, a file is to be closed:
Y contains the handle for the file to be closed.
If Y=0, all open files are to be closed.

If A is non zero, a file is to be opened:
X and Y point to the file name.
(X=low-byte, Y=high-byte)
The file name is terminated by carriage return (&0D).

343

The accumulator can take the following values:
&40, a file is to be opened for input only.
&80, a file is to be opened for output only.
&C0, a file is to be opened for update (random access).

When opening a file for output only, an attempt is made to
delete the file before opening.

On exit,
X and Y are preserved.
A is preserved on closing, and on opening contains the
file handle assigned to the file. If A=0 on exit, the file
could not be opened.
C, N, V and Z are undefined.
Interrupt state is preserved, but may be enabled during
the call.

16.8 OSFSC Various filing system control functions

This has no direct call address Indirected through &21E

This entry point is used for miscellaneous filing system
control actions.

The accumulator on entry contains a code defining the action
to be performed.

A=0 A *OPT command has been used, X and Y are the
two parameters. See operating system commands,
section 2.14 for details of how *OPT is interpreted
for the cassette and ROM filing systems. Other
filing systems should follow the same pattern as
nearly as is appropriate.

A=1 EOF is being checked. On entry X is the file
handle of the file being checked. On exit, X=&FF
if an end of file condition exists, X=0 otherwise.

A=2 A */ command has been used. The ‘/’ character is
not part of the command name. The filing system
should attempt to *RUN the file whose name
follows the ‘/’ character. This gives the user an

344

abbreviated way of *RUNning a file when
specifying a directory in the file name. e.g.
*/L.FORM80 (*L.FORM80 would load the program
FORM80 from the current directory).

A=3 An unrecognised operating system command has
been used, the current filing system is offered the
command last, after all the paged ROMs (this may
include the filing system itself which will be
offered the command initially as a filing system
command via the service entry point. See paged
ROMs, section 15.1.1) The filing system should
normally attempt to *RUN unrecognised
commands. If the currently selected filing system
is unable to *RUN a file quickly (i.e. within a few
seconds) it should not attempt to *RUN the file
but issue a ‘Bad Command’ message instead. The
cassette filing system is unable to execute a tape
file quickly and so does not try to *RUN
unrecognised operating system commands. On
entry X and Y point to the command name.

A=4 A *RUN command has been used. Load and
execute the file whose name is pointed to by X
and Y.

A=5 A *CAT command has been used. Produce a
catalogue. X and Y point to the rest of the
command line for any parameters required.

A=6 A new filing system is about to take over, so shut
down gracefully, close the *SPOOL and *EXEC
files (using OSBYTE &77), and do anything else
considered necessary.

A=7 A request has been issued for the range of file
handles usable by the filing system. Return in X
the lowest handle issued, and in Y the highest
handle possible. Most filing system handles do
not overlap.

345

A=8 This call is issued by the operating system each
time it is about to process an operating system
command. It is used by the disc system to
implement a protection mechanism on dangerous
commands, by insisting that the previous
operating system command was *ENABLE.

On exit,
All registers are undefined, where not defined as
described above.
Interrupt state is preserved, but may be enabled during
operation.

16.9 Filing systems and the Tube

Filing systems are required to communicate with the Tube
system, and inform it of the following transactions:

Write to second processor memory
Read from second processor memory
Start execution in the second processor from a given
address

A filing system should only enter communication with the
Tube system when the Tube is present (checked with OSBYTE
&EA), and when the address required is not in the I/O
processor. The BBC microcomputer system uses a 32 bit
addressing system, and the I/O processor’s memory is
normally selected when the top 16 bits are &FFFF, other
addresses being second processor memory.

When the Tube is present some machine code instructions
will be present at location &406. If file addresses require data
to be transferred over the Tube a call should be made to &406
with the following parameters:–

X,Y point to a control block in memory, X low byte, Y
high byte. The control block contains a four byte
address.

346

A operation parameter, this can take the following
values:
A=0 Initialise read of second processor memory
A=1 Initialise writing of second processor

memory
A=4 Start execution in the second processor

Data is transferred to and from second processor memory
over the Tube via a Tube register at location &FEE5. Thus to
read second processor memory, a memory read is initialised
with A=0, then successive reads are performed of location
&FEE5.

16.10 The Cassette filing system

This filing system is provided as standard on all BBC
microcomputers. It is very basic, and many entry points are
not implemented, or are only partially implemented. The calls
implemented are:

OSFILE Partly implemented: entry with A=0 is save, all
other entries are considered to be ‘load file’
(A=&FF).

OSARGS Hardly implemented: only filing system
identification performed (A=0, Y=0).

OSBGET Fully implemented.

OSBPUT Fully implemented.

OSGBPB Not implemented at all.

OSFIND Implemented, allowing one file to be open for
input, and one for output. If an attempt is made to
open a file for update, it is opened for input.

OSFSC Calls 0 through 6 are implemented, though no
extra commands exist (ie. code 3 just gives ‘Bad
command’).

347

The file handles given are constant: 1 is the input file; 2 is the
output file.

The cassette tape format is:

5 seconds of 2400Hz tone to synchronise the ACIA (see also
bug fix in the hardware section in section 20.10).

A header block, which is:
1 byte synchronisation. (&2A ‘*’)
Filename (1 to 10 characters)
Filename terminator (&00)
Load address of file, four bytes, low byte first.
Execution address of file, four bytes, low byte first.
Block number, two bytes, low byte first.
Block length, two bytes, low byte first.

Block flag, one byte:
Bit 0 Protection bit. The file can only be *RUN if this bit

is set
Bit 6 Empty block bit. This block contains no data if this

bit is set. An empty block is created when a file is
opened for output and immediately closed again
without BPUTting anything

Bit 7 Last block bit. This block is the last block of a file
if this bit is set

Four spare bytes (&00)

Header Cyclic Redundancy Check (CRC), two bytes, high
byte first.

A data block, which is:
Data, 0 to 65535 bytes (the usual maximum is 256), as
specified in the header.
Data CRC, two bytes, high byte first.

The header CRC excludes the synchronisation byte.

A cyclic redundancy check value (CRC) is a number which
can be calculated from a block of data. If the data is changed
and another CRC performed the CRC value will probably be

348

different. When the cassette filing system saves data onto tape
it calculates the CRC for each block of data and includes it in
the cassette format. When data is reloaded from cassette a
CRC is calculated and compared with the CRC value stored
with the data. If the two CRC values are not the same then
the data has been corrupted.

Cyclic redundancy checking is sensitive enough to detect
single bit errors, but robust enough so that multibit errors are
unlikely to cancel out. Parity checking is used in some data
transfer situations where the consistency of the data is being
checked. Parity checking involves adding a bit to each byte of
output. This bit is calculated so that the total number of set
bits, including the parity bit, is consistently either odd or
even. Whether odd or even is not important, as long as it is
consistent. CRCs are usually used rather than byte-by-byte
parity checking because if two bits are in error in a single
byte, parity may not pick it up, though a CRC will.

CRCs may be calculated by using the following code, which
calculates the CRC for a block of bytes of length ‘lblk’ and
starting at ‘data’.

On exit, H contains the CRC high byte and L contains the
CRC low byte.

 LDA #0
 STA H \ Initialise the CRC to zero
 STA L
 TAY \ Initialise the data pointer
.nbyt LDA H \ Work data into CRC
 EOR data,Y
 STA H
 LDX #8 \ Perform polynomial recycling
.loop LDA H \ Loop is performed 8 times, once for bit
 ROL A \ Test if a bit is being cycled out
 BCC b7z
 LDA H \ Yes, add it back in *&810
 EOR #8
 STA H
 LDA L
 EOR #&10
 STA L
.b7z ROL L \ Always, rotate whole CRC left one bit
 ROL H
 DEX
 BNE loop \ Do once for each bit
 INY \ Point to next data byte
 CPY #lblk \ All done yet?
 BNE nbyt
 RTS \ All done- H=CRC Hi, L=CRC Lo

349

16.11 ROM filing system

The ROM filing system is standard on all BBC
microcomputers with 1.0 operating system, or later. The ROM
filing system uses data stored in paged ROM or in serially
accessed ROMs associated with the speech processor. The
socket on the left hand side of the keyboard is designed to
accommodate ROM packs containing speech ROM devices;
these require the presence of a speech system upgrade.

This filing system is the same as the cassette filing system in
every way, except:

OSFILE Save is meaningless.
OSBPUT Writing to ROM is not sensible.
OSFIND Opening for output is not possible. The

handle given for input is 3.

The internal format for ROMs is the same as the tape format,
with the following exceptions:

&2B (‘+’) is used as an end-of-ROM marker. Files can span
over an end of a ROM marker, but care should be taken to
ensure that the right ROM is read at the right time (i.e. the
next sequential block in the file must be in the next ROM to be
read).

In the ROM filing system, the whole header may be replaced
by a single character (&23 ‘#’) for all bar the first and last
blocks.

If the header is abbreviated in this way, it is assumed to mean
that the header is unchanged from the last block, except for
the block number.

In the ROM filing system, the ‘four spare bytes’ in the cassette
header block are used to contain the address of the byte after
the end of the file, enabling file searches to be a lot faster. Fast
searching is used by the ROM filing system by default. Full
CRC checking of each block during a *CAT can be enabled by
issuing a *OPT 1,2 command.

350

ROM software may be resident in standard paged ROMs, or,
if the speech chips are fitted, in a PHROM (PHrase Read Only
Memory). Storing data in paged ROMs will be covered in the
section on paged ROMs. Data stored in PHROMs, is
recognised as data, as opposed to speech, by an identification
sequence. This has the following format:

00 ignored
01 &00
02 &28 ‘(’
03 &43 ‘C’
04 &29 ‘)’
05
. ignored
.
3D
3E address of data in internal format for the speech chip

indirection command.

16.12 Disc filing system

The disc filing system is not provided as standard with the
BBC microcomputer. Extra hardware and software are
required to operate disc drives. The disc filing system is
complete except in some small areas. It differs from the
standard filing system protocol in the following ways:–

A restricted form of file attributes is used: the four bytes
are compressed into one bit. This bit is referred to as the
‘lock’ bit. A file is locked if either of the ‘you cannot
write’ or ‘you cannot delete’ bits is set. If either of these
attributes is set (see OSFILE, section 16.2) then both
attributes are set.

File types 0 or 2 are never returned, instead a ‘File not
found’ error is issued.

The device identity is the drive number and is one
character long.

Directory names are one ASCII character.

351

File names are up to 7 ASCII characters long.

The media title is the disc title, and is up to twelve
characters long.

16.13 Econet filing system

The net filing system is not provided as standard with the
BBC microcomputer. Extra hardware and software are
required. The networked filing system has the following
characteristics:

File attributes are complete. The second and third bytes
of the attribute block are used to store the date when the
file was created.

The device identity is not applicable, and its length is
zero.

Directory names are one to ten ASCII characters long.

File names are one to ten ASCII characters long.

The media title is the disc title, and is up to sixteen
characters long.

352

353

17 An Introduction to
Hardware
Most users of the BBC microcomputer will be familiar with
BASIC programs, but from BASIC the hardware is virtually
invisible. Commands are provided to deal with output to the
screen, input from the keyboard and analogue to digital
converter, plus all of the other hardware. The same applies to
machine code to a large extent through the use of OSBYTEs,
OSWORDs and other operating system commands. However,
a much more detailed understanding of the hardware and
how it can be controlled from machine code programs is very
useful and allows certain features to be implemented which
would have been impossible in BASIC.

The hardware section of this book satisfies the requirements
of two types of people; those who wish to use the hardware
features already present on the computer, and those who wish
to add their own hardware to the computer. All of the
standard hardware features available on the BBC
microcomputer are therefore outlined in detail from a
programmer’s point of view. Wherever possible, it is better to
use operating system routes for controlling the hardware.
These are very powerful and will be referred to whenever
relevant. In certain specialised cases, it is necessary to directly
access hardware, but even in such cases, OSBYTEs &92–&97
should be used. This will ensure that the software will still
operate on machines fitted with a Tube processor. For those
who wish to add their own hardware, full details on using the
USER port and 1MHz BUS are supplied.

The hardware on the BBC microcomputer consists of a large
quantity of integrated circuits, resistors, capacitors, transistors
and various other electronic components. All of these are
shown on the full circuit diagram inside the back cover of this
book. In order to help those who are not familiar with the
general layout of a computer circuit and the devices attached
to it, the rest of this introduction is devoted to analysing the
hardware as a series of discrete blocks interconnected by a
series of system buses.

354

Fig 17.1 THE SYSTEM BLOCK DIAGRAM

E
C

O
N

E
T

E
C

O
N

E
T

68
B

54

61
00

S
P

E
E

C
H

R
O

M

52
20

S
P

E
E

C
H

P
R

O
C

E
S

S
O

R
C

O
N

T
R

O
L

S
E

R
IA

L
R

O
M

S

K
E

Y
B

O
A

R
D

82
71

F
LO

P
P

Y
D

IS
C

C
O

N
T

R
O

L-
LE

R

D
IS

C
P

R
IN

T
E

R
U

S
E

R
 P

O
R

T
1M

H
z

B
U

S
T

U
B

E
 ™

A
N

A
LO

G
U

E

70
02

A
N

A
LO

G
U

E
T

O
D

IG
IT

A
L

C
O

N
V

E
R

T
E

R

V
IA

 A
65

22

V
IA

 B
65

22

76
48

9
S

O
U

N
D

G
E

N
E

R
A

T
O

R

S
E

R
IA

L
P

R
O

C
E

S
S

O
R

U
LA

68
50

A
C

IA

65
02

A
M

IC
R

O
-

P
R

O
C

E
S

S
-

O
R

C
A

S
S

E
T

T
E

R
S

42
3

C
LO

C
K

R
G

B

V
ID

E
O

P
R

O
C

E
S

-
S

O
R

U
LA

50
50

T
E

LE
T

E
X

T

V
ID

E
O

P
A

L
E

N
C

O
D

E
R

U
H

F
M

O
D

U
LA

T
O

R

68
45

C
R

T
C

R
O

M
S

E
L

16
K

 R
A

M

16
K

 R
A

M

P
A

G
E

D
R

O
M

S

C
O

N
T

R
O

L

355

Refer to figure 17.1 whilst reading the following outline of the
hardware. At the centre of the system is the 6502A central
processing unit (CPU). This is the chip which executes all of
the programs including BASIC. It is connected to the rest of
the system via three buses. These are the data bus, the
address bus and the control bus. For clarity on the diagram,
these buses are all compressed into one which is represented
by the double lines terminated with arrows at each major
block.

A bus is simply a number of electrical links connected in
parallel to several devices. Normally one of these devices is
talking to another device on the bus. The communication
protocols which enable this transfer of data to take place are
set up by the control, address and data buses. In the case of
the address bus, there are 16 separate lines which allow 65536
different combinations of 1’s and 0’s. The maximum amount
of directly addressable memory on a 6502 is therefore 65536
bytes. The data bus consists of 8 lines, one for each bit of a
byte. Any number between 0 and &FF (255) can be transferred
across the data bus. Communication between the peripherals,
memory and the CPU occurs over the data bus. The CPU can
either send out a byte or receive a byte. The data bus is
therefore called a bidirectional bus because data flows in any
one of two directions. The address bus is unidirectional since
the 6502 provides, but cannot receive addresses. Note that
some address buffers are included in the video circuit to allow
either the 6845, 5050 or 6502 to provide addresses for system
random access memory (RAM).

In order to control the direction of data flow on the data bus, a
read or write signal is provided by the control bus. Hardware
connected to the system can thereby determine whether it is
being sent data or is meant to send data back to the CPU. The
other major control bus functions are those of providing a
clock, interrupts and resets. The clock signal keeps all of the
chips running together at the same rate. The RESET line
allows all hardware to be initialised to some predefined state
after a reset. An interrupt is a signal sent from a peripheral to
the 6502 requesting the 6502 to look at that peripheral. Two
forms of interrupt are provided. One of these is the interrupt

356

request (IRQ) which the 6502 can ignore under software
control. The other in the non-maskable interrupt (NMI) which
can never be ignored. Refer to chapter 13 on interrupts for
more information.

When power is first applied to the system, a reset is generated
to ensure that all devices start up in their reset states. The
6502 then starts to get instructions from the MOS ROM. These
instructions tell the 6502 what it should do next. A variety of
different instructions exist on the 6502. The basic functions
available are reading or writing data to memory or an input/
output device and performing arithmetic and logical
operations on the data. Once the MOS (machine operating
system) program is entered, this piece of software gains full
control of the system.

SHEILA and the system hardware

All of the main blocks connected to the 6502 in the block
diagram, figure 17.1, together form the system hardware. In
6502 systems, the hardware is memory mapped which means
that any hardware device registers appear in the main
memory address space. Page &FE (the 256 bytes of memory
starting at &FE00) is reserved especially for the system
hardware in the BBC microcomputer. The special name of
‘SHEILA’ has been assigned to this page of memory. Two
other special pages are &FC (called ‘FRED’) and &FD (called
‘JIM’). FRED and JIM are concerned with external user
hardware attached to the one megahertz bus. They are dealt
with in chapter 28 on the one megahertz bus.

In the following chapters, all of the devices attached to Sheila
are described in detail. The table below shows the memory
map of Sheila, the function of the devices attached to it, and
the sections in which they are described.

357

SHEILA Integrated Description Section
address circuit number
(offset from
&FE00)
&00–&07 6845 CRTC Video controller 18
&08–&0F 6850 ACIA Serial controller 20.3
&10–&1F Serial ULA Serial system chip 20.9
&20–&2F Video ULA Video system chip 19
&30–&3F 74LS161 Paged ROM selector 21
&40–&5F 6522 VIA SYSTEM VIA 23
&60–&7F 6522 VIA USER VIA 24
&80–&9F 8271 FDC Floppy disc controller 25.1
&A0–&BF 68B54 ADLC ECONET controller 25.2
&C0–&DF uPD7002 Analogue to digital converter 26
&E0–&FF Tube ULA Tube system interface 27

Note: Some Sheila addresses are not normally used. This is
because the same devices appear at several different Sheila
addresses. For example, the paged ROM select register is
normally addressed at location &30, but it could equally well
be addressed at any one of the fifteen other locations
&31–&3F.

358

359

18 The 6845 CRTC
Sheila address &00–&07

18.1 General introduction to the 6845

The 6845 cathode ray tube controller chip (CRTC) forms the
heart of the BBC Micro’s video display circuitry. Its major
function is that of displaying the video data in memory on a
raster scan display device (a television or monitor). As an
extra bonus, the 6845 also refreshes all of the random access
memory so that the data stored there is not lost. This
refreshing process is inherent in the sequential nature of
accessing memory for the video display. The 6845 does not
interfere with processor access to the memory since the
processor and 6845 operate on alternate phases of the system
clock. The 6845 is responsible for producing the correct format
on the display device, positioning the cursor, performing
interlace if it is required and monitoring the light pen input.
Other video processing functions involving colour and
teletext are dealt with in conjunction with other sections in
Sheila.

Inside, the 6845 is a very powerful and complex VLSI chip.
From a user’s point of view it is useful to know how to define
a specialised screen layout, and how the screen layouts
(modes) have been defined by Acorn. A generalised overview
of the 6845 is therefore given first, followed by the values in
each of the registers in the various modes. This chapter ends
with a general summary table which describes the functions of
the various registers. Appendix F contains diagrams
illustrating all of the screen modes in a very concise and easily
referred to format.

360

Figure 18.1 – Illustration of a general screen format

18.2 Programming the 6845

The 6845 possesses 18 internal registers, 14 of which are write
only (R0–R13), 2 of which are read and write (R14–R15) and 2
of which are read only (R16–R17). In order to gain access to
any of these registers, the register address must be written
into the 6845 address register. This is situated at Sheila
address &00. Having written a 5 bit number into the address
register, the selected internal register may be written to or
read from at Sheila address &01.

The best way of programming the 6845 is by using the VDU23
command. For example VDU23,0,R,V,0,0,0,0,0,0 will put the
value V into register R. In BASIC programs it can be
shortened by using semicolons instead of commas. A
semicolon causes a 2 byte word to be included in the VDU
command. For example VDU23;R,V;0;0;0 has the same effect
as the first example.

General illustration of a CRT Format

 A B C D E

 Total number of horizontal characters (Nht+1)

 Number of displayed horizontal characters (Nhd)

 T
ot

al
 n

um
be

r
of

 v
er

tic
al

 c
ha

ra
ct

er
s

(N
vt

+
1)

 N
um

be
r

of
 d

is
pl

ay
ed

 v
er

tic
al

 c
ha

ra
ct

er
s

(N
vd

)

 M
ax

im
um

 s
ca

n
lin

es
 (

N
r+

1)

Total scan line adjust (Nadj)

Line

DISPLAY PERIOD
HORIZONTAL

RETRACE
PERIOD

VERTICAL RETRACE PERIOD

361

18.3 THE HORIZONTAL TIMING REGISTERS

The horizontal timing registers define all of the horizontal
timing for the screen layout. The point of reference for these
registers is the left most displayed character position. The
registers are programmed in ‘character time units’ relative to
the reference point.

18.3.1 Horizontal total register (R0)

This 8 bit write only register determines the horizontal sync.
frequency. It should be programmed with the total number of
displayed plus non-displayed character time units across the
screen minus one (Nht on figure 18.1).

Note that the number of displayed characters is not
necessarily the same as the number of characters per line. This
is because of the variable number of bits attributed to each
pixel, depending upon the number of colours available. The
table for R1 contents illustrates this.

Mode 0 1 2 3 4 5 6 7

R0 127 127 127 127 63 63 63 63

18.3.2 Horizontal displayed register (R1)

This 8 bit write only register determines the number of
displayed characters per horizontal line (Nhd on figure 18.1).

Mode 0 1 2 3 4 5 6 7

No. of CHRS as 80 80 80 80 40 40 40 40
seen by 6845
(Nhd)
No. of CHRS as 80 40 20 80 40 20 40 40
seen on the
screen
No.of bits used 1 2 4 1 1 2 1 1
to store colour
information

362

18.3.3 Horizontal sync position register (R2)

This 8 bit write only register determines the horizontal sync.
pulse position on the horizontal line. The specification is in
terms of character widths from the left hand side of the
screen.

Mode 0 1 2 3 4 5 6 7

R2 98 98 98 98 49 49 49 51

Increasing the value of this register pushes the entire screen
left whilst decrementing it pushes the whole screen right.

18.4 The sync width register (R3)

This 8 bit write only register defines both the horizontal and
the vertical sync. pulse times.

18.4.1 Horizontal sync pulse width

The lower 4 bits contain the horizontal sync. pulse width in
number of characters. Any number between 1 and 15 can be
programmed, but 0 is not valid. It is however not advisable to
change this register since most monitors and televisions
require the standard sync. width to operate properly.

Mode 0 1 2 3 4 5 6 7

Lower 4 bits of 8 8 8 8 4 4 4 4
R3

18.4.2 Vertical sync pulse width

The upper 4 bits contain the number of scan line times for the
vertical sync. pulse. This is set to 2 in all modes.

18.5 THE VERTICAL TIMING REGISTERS

The point of reference for vertical registers is the top
displayed character position. Vertical registers are
programmed in character row times or scan line times.

363

18.5.1 Vertical total register (R4)

The vertical sync. frequency is determined by both R4 and R5.
In order to obtain an exact 50Hz or 60Hz vertical refresh rate,
the required number of character line times is usually an
integer plus a fraction. The integer number of character lines
minus one (Nvt on figure 18.1) is programmed into this 7 bit
write only register.

Mode 0 1 2 3 4 5 6 7

R4 38 38 38 30 38 38 30 30

18.5.2 Vertical total adjust register (R5)

This 5 bit write only register is programmed with the fraction
for use in conjunction with register R4. It is programmed with
a number of scan lines (Nadj on figure 18.1). It can be varied
slightly in conjunction with R4 to move the whole display
area up or down a little on the screen. It is usually set to 0
except when using modes 3,6 and 7 in which it is set to 2. *TV
(OSBYTE &90) controls the vertical positioning of a display
on the screen. Refer to the OSBYTE section for more details.

18.5.3 Vertical displayed register (R6)

This 7 bit write only register determines the number of
displayed Character rows (Nvd on figure 18.1) on the CRT
screen and is programmed in character row times.

Mode 0 1 2 3 4 5 6 7

character lines 32 32 32 25 32 32 25 25

18.5.4 Vertical sync position (R7)

This 7 bit write only register determines the vertical sync
position with respect to the reference. It is programmed in
character row times.

Mode 0 1 2 3 4 5 6 7

Sync position 34 34 34 27 34 34 27 27

364

18.6 Interlace and delay register (R8)

This 6 bit write only register controls the raster scan mode and
cursor/display delay. The interlace options are:

18.6.1 Interlace modes (bits 0,1)

Interlace mode Description
register
Bit 1 Bit 0

0 0 Normal (non-interlaced) sync mode (figure 18.2a)
1 0 Normal (non-interlaced) sync mode (figure 18.2a)
0 1 Interlace sync mode (figure 18.2b)
1 1 Interlace sync and video (figure 18.2c)

All BBC microcomputer screen modes are interlaced sync only
except for mode 7 which is interlaced sync and video. The
default values can easily be changed using *TV (*FX 144)
followed by a 0 to turn interlacing on or a 1 to turn interlacing
off.

Figure 18.2a – Normal Sync.

SCAN LINE
ADDRESS

0

1

2

3

4

5

6

7

365

Figure 18.2b – Interlace Sync.

Figure 18.2c – Interlace Sync. & video

18.6.2 Display blanking delay (bits 4,5)

Bits 4 and 5 control the display blanking signal. This signal
must be enabled for all of the character output period and is
used to take account of the time to transfer data from memory
to the video output circuitry. No delay is required in modes
0–6, but a one character delay is required in mode 7 because
the SAA5050 character generator is used.

Display blanking delay

Bit5 Bit4 Description

0 0 No delay
0 1 One character delay
1 0 Two character delay
1 1 Disable video output

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

SCAN LINE ADDRESS

EVEN FIELD ODD FIELD

0

2

4

6

0

2

4

6

1

3

5

7

1

3

5

7

SCAN LINE ADDRESS

EVEN FIELD ODD FIELD

366

18.6.3 Cursor blanking delay (bits 6,7)

Bits 6 and 7 control the cursor blanking signal. This signal
must be enabled at the exact time when a cursor should
appear on the screen. No delay is required in modes 0–6, but
a two character delay is required in mode 7.

Cursor blanking signal

Bit 7 Bit 6 Description

0 0 No delay
0 1 One character delay
1 0 Two character delay
1 1 Disable cursor output

18.7 Scan lines per character (R9)

This 5 bit write only register determines the number of scan
lines per character row including spacing. The programmed
value is one less than the total number of output scan lines.

Mode 0 1 2 3 4 5 6 7

Scans per 7 7 7 9 7 7 9 18
character

18.8 THE CURSOR

It is possible to program a cursor to appear at any character
position (defined by R14 and R15). Its blink rate can be set to
16 or 32 times the field period of 20 ms. Optional non-blink
and non-display (i.e no cursor on the screen) modes can also
be selected. Its height in number of lines and its vertical
position in a character slot can be defined as well.

18.8.1 The cursor start register (R10)

This 7 bit write only register controls the cursor format (see
figure 18.3). Bit 7 is not used. Bit 6 enables or disables the
blink feature. Bit 5 is the blink timing control bit. When bit
5=0, blink frequency = 16 times the field rate. When bit 5=1,
blink frequency = 32 times the field rate. When bit 6=0 and
bit 5=1, the cursor is disabled. The cursor start line is set by
the lower five bits.

367

Figure 18.3 – Cursor layout examples

18.8.2 The cursor end register (R11)

This 5 bit write only register sets the cursor end scan line (see
diagram).

Mode 0 1 2 3 4 5 6 7

Cursor end 8 8 8 9 8 8 9 19

18.8.3 Cursor position register (R14 and R15)

This 14 bit read/write register stores the current cursor
location. It consists of 8 low order (R15) and six high order
(R14) bits.

18.9 LIGHT PENS

18.9.1 Light pens in general

A typical light pen consists of a small light sensitive device
fixed to the end of a pen shaped holder. The sensor picks up
the light given out from the monitor screen and sends an
electronic signal into the micro. This LPSTB (light pen strobe)
signal can be decoded (because the screen is scanned on a
raster basis) and the position of the pen head determined.

0

1

2

3

4

5

6

7

8

9

10

11

Cursor Start Address = 9
Cursor End Address = 9

0

1

2

3

4

5

6

7

8

9

10

11

Cursor Start Address = 9
Cursor End Address = 10

0

1

2

3

4

5

6

7

8

9

10

11

Cursor Start Address = 2
Cursor End Address = 6

368

Light pens can be used for a multitude of tasks such as
drawing, ‘painting’, designing layouts, playing games etc.,
but their use in many applications is limited by the resolution.
The reason for this is that a fairly large area of screen (ie.
perhaps .5cm x .5cm) is usually required to provide sufficient
light to operate the pen. The maximum resolution for defining
the position of the light pen is therefore a patch on the screen
of this size, so accurate line drawings are impossible. The
position of the light pen is stored to the nearest character
position, so this limits the resolution to a character cell.

18.9.2 Light pen position register (R16 and R17)

This 14 bit read only register is used to store the location of a
light pen sensor placed in front of the screen. The register is
modified whenever the LPSTB signal is pulsed high.

18.9.3 Constructing a light pen

The light pen hardware must produce a positive going TTL
pulse whenever the display scan position is under the sensor.
The light pen position will then be stored in the light pen
register R16,R17. Note that slow light pen response will
require a delay factor to be subtracted from R16,R17 to
produce the correct light pen position.

Luckily, there are small light sensitive devices available which
provide a direct TTL logic level output. If one of these is fixed
to the end of an empty pen and connected to the light pen
input on the rear of the BBC microcomputer, an operational
light pen can be constructed. The connections for such a pen
are illustrated in figure 18.4. A special photosensor called a
‘Sweet spot’ is available from R S Components or most of
their distributors, and is supplied as part number RS 303-292.

369

Figure 18.4 – Light pen circuit

18.9.4 Light pen software

In order to take account of the different screen start addresses
for the various modes, a further correction factor must be
subtracted from the contents of the light pen register. These
correction factors are:

Mode Correction factor

0 &0606 (1542)
1 &0606 (1542)
2 &0606 (1542)
3 &0806 (2054)
4 &0B04 (2820)
5 &0B04 (2820)
6 &0C04 (3076)
7 &2808 (10248)

The light pen position in terms of x,y co-ordinates is given by:

y = (L.p register–correction) DIV number of characters per
line

x = (L.p register–correction) MOD number of characters per
line

VIEW INTO ANALOGUE PORT CONNECTOR
SHOWING CONNECTIONS FOR A LIGHT PEN

2
1
3

8 7 6 5 4 3 2 1

15 14 13 12 11 10
9

0V +5V

LPSTB

ANALOGUE PORT
CONNECTOR

PHOTOSENSOR
(see text)

PEN SHELL

2

1

3

UNDERSIDE VIEW
OF PHOTOSENSOR
1 = +5V
2 = OUTPUT
3 = 0V

370

This x value will be in terms of 6845 characters and will have
to be modified by multiplying by

Number of characters per line on screen

Number of characters as seen by 6845

e.g. for mode 2 = 20/80 = 1/4

The resolutions are therefore:

Modes single displayed character
0,3,4,6,7
Modes 1,5 half of a displayed character
Mode 2 quarter of a displayed character

Note that the screen should be cleared before using a light
pen and not scrolled whilst the pen is in use. If it is scrolled,
the position of the start of the screen will have to be taken into
account as well.

18.10 Displayed screen start address register (R12,R13)

This 14 bit write only register determines the location in
memory which corresponds to the upper left hand character
displayed on the screen. R13 (8 bits) is the low order address
and R12 (6 bits) is the high order address. It can often be
useful to know what the current contents of this register are.
Unfortunately, being a write only register it is not possible to
read the value directly. However, OSBYTE &A0 can be used
to get these parameters from the operating system workspace
in page &03. The start of screen address is stored in locations
&350 and &351. CALL OSBYTE &A0 with X=&50. The
contents of &350 will be returned in the X register and the
contents of &351 will be returned in the Y register.

Note that the actual screen start address must be divided by 8
before being sent to R12,R13 because there are 8 lines per
character (modes 0–6). In mode 7 a rather more complex
correction has to be applied. See section 18.11.3 on mode 7
scrolling at the end of this chapter.

The ability to define the start of the screen to be anywhere in
memory is very useful because it allows fast scrolling of the

371

screen up, down, left and right. Provided that the start
address is inside the screen memory of the mode being used,
a hardware wrap around feature will also operate. Characters
which would have scrolled off the top of the screen will
therefore reappear at the bottom. The wrap around circuit
simply detects whenever the 6845 tries to get video data from
a ROM (an address above &7FFF), and adds an offset to that
address. This has the effect of bringing the address back
inside the video RAM. Since the screen sizes are different in
the various modes, 2 bits on the SYSTEM VIA are used to
define the length of the hardware scrolled screen, see section
23.2.

18.11 HARDWARE SCROLLING

Scrolling the screen fast in any direction can be of immense
use in a large number of applications. Text can be scrolled in
word processing applications, landscapes can be made to rush
by in a horizontal direction (see games such as Acornsoft
Planetoid). If it were not for the hardware scroll feature, it
would be necessary to move every byte on the screen to
perform a scroll. This is very time consuming for 20000 bytes
and therefore slow. In order to make effective use of the
hardware scrolling facilities available, it is necessary to
understand both the advantages and the limitations which are
imposed.

Modes 0–6 will now be analysed in detail followed by mode 7
which is slightly different.

18.11.1 Modes 0–6 vertical scrolling

In order to move the screen position upwards by one
character line, it is necessary to increment the current start
address register (R12,R13) by the number of characters per
line. Remember that these are characters as produced by the
6845 and not as seen on the screen. There are 80 6845
characters per line in modes 0–3 and 40 characters per line in
modes 4, 5 and 6. The screen can be scrolled downwards by
decrementing the screen start address register by the number
of characters per line. Note that you should not normally
allow the screen start address register to contain a value less

372

than the official screen start address or greater than the official
screen end address in the mode being used. If this occurs then
areas of the main system memory will be displayed directly on
the screen. This produces some interesting results, especially if
zero page is displayed! Remember that the value put into
R12,R13 is the actual memory address DIV 8. See the example
program in section 18.14.

18.11.2 Sideways scrolling

The whole screen can be made to move left by one character
(as seen by 6845) by incrementing the screen start register. It
will move one character to the right by decrementing this
register. Note that each character which moves off the left of
the screen will appear on the next line up at the right of the
screen. It is therefore necessary to move each of these
characters down a line in software to maintain a true sideways
scroll.

This scrolling technique is good for text, but may produce
jumpy movements in graphics due to the limited resolution in
the screen position. On a mode 0 screen, each sideways scroll
moves the screen by 8 pixels. On a mode 2 screen, each 6845
character only represents 2 graphics pixels so a fairly effective
hardware scroll can be used.

18.11.3 Mode 7 scrolling

Hardware scrolling in mode 7 is slightly more complex than in
modes 0–6. To calculate the value to put into registers 12 and
13, first of all calculate the required start address in RAM (e.g
&7C28). Take the high byte and subtract &74, then EOR the
result with &20. This new value should be put into R12. R13
contains the low order address byte. A similar correction
factor should be applied when working out the cursor register
contents.

373

18.12 FAST ANIMATION

18.12.1 Fast animation using mode 2

Mode 2 has several advantages over all of the other modes for
fast animation. It is for this reason, plus the fact that all 16
colours are available that this mode is used in most fast
graphics games. Provided that the programmer is prepared to
put up with a 2 pixel at a time movement instead of a 1 pixel
at a time movement, moving objects simplifies to moving
complete bytes in memory. Consider for a moment the layout
of each byte on a mode 2 screen.

 P2d P1d P2c P1c P2b P1b P2a P1a
BIT 7 6 5 4 3 2 1 0

P1a-P1d are 4 bits defining the colour of pixel I
P2a-P2d are 4 bits defining the colour of pixel 2

To move graphics sideways by one pixel involves extracting
P1a–P1d from P2a–P2d. These removed bits must then be
reinserted into the adjacent byte. This process is tricky and
consumes a lot of processing time leading to very slow
movement in all but the simplest of cases. It will be
appreciated how much faster it is to simply move a byte (2
pixels) at a time from one memory location to another, which
can be done very fast indeed.

18.12.2 Fast animation using mode 0

Unlike mode 2, moving a byte at a time in mode 0 moves 8
pixels. Animation moving 8 pixels at a time will generally
produce very uneven motion. However, since the packing of
pixels in mode 0 assigns one bit per pixel, animation can be
implemented by shifting all of the bits in a byte left or right
by one position. This uses a 6502 ‘ROR’ or ‘ROL’ instruction.
The bit which moves off the edge of one byte must be put into
the adjacent byte.

18.13 Wrap around

To ensure that the hardware wrap around feature operates
correctly, the start of screen address must be kept within the
screen boundaries. If it goes below the start of screen address

374

then add the length of the screen to it. If it goes above the top
of screen address then subtract the length of screen from it.

eg. in mode 0, the calculated start of screen address may be
&8050. Since this is outside of the screen, it should be
changed to &3050 by subtracting &5000, the screen size. The
amount of memory which is wrapped around is controlled by
the system VIA as described in section 23.2.

18.14 Hardware scroll example

The program listed below uses the hardware scroll facilities in
mode 0. A line of text can be moved around the screen using
the cursor keys. Note that as text moves off one side of the
screen (sideways scroll), it reappears on the other side either
one line up or one line down from its original position. If a
true sideways scroll is required, it is necessary to move all of
the bytes on the relevant side of the screen up or down one
character position. During motion of the line of text in a
vertical direction, there will be brief flashes of another line on
the screen. This is partially due to the delay in BASIC between
setting register 12 and register 13 on the 6845, and also
because the change occurs in the middle of a screen display.
The flashing will be reduced in machine code programs which
wait until the frame sync period before changing any of the
6845 registers.

 10 REM HARDWARE SCROLL EXAMPLE IN MODE 0
 20 MODE0
 30 START=&3000
 40 PRINT"THIS TEXT CAN BE SCROLLED IN ANY DIRECTION USING THE
 CURSOR KEYS"
 50 REM SET KEYS REPEAT RATE AND CURSOR KEYS TO GIVE 136 ETC.
 60 *FX4,1
 70 *FX12,3
 80 REPEAT
 90 A=INKEY(0)
100 IF A=136 THEN PROCMOVE(8)
110 IF A=137 THEN PROCMOVE(-8)
120 IF A=138 THEN PROCMOVE(-640)
130 IF A=139 THEN PROCMOVE(640)
140 UNTIL FALSE
150 DEF PROCMOVE(offset)
160 START=START+offset
170 REM IF ABOVE OFFICIAL START THEN SUBTRACT SCREEN LENGTH
180 IF START>=&8000 THEN START=START-&5000
190 REM IF BELOW OFFICIAL START ADDRESS, ADD SCREEN LENGTH
200 IF START<&3000 THEN START=START+&5000
210 REM MODIFY 6845 MEMORY START ADDRESS REGISTER
220 VDU23;12,START DIV 2048;0;0;0
230 VDU23;13,START MOD 2048 DIV 8;0;0;0
240 ENDPROC

375

18.15 6845 REGISTER SUMMARY TABLE

Register Register Program Data bit
number name unit 7 6 5 4 3 2 1 0

AR Address register – x x x A4 A3 A2 A1 A0
R0 Horizontal total Character D7 D6 D5 D4 D3 D2 D1 D0
R1 Horizontal Character D7 D6 D5 D4 D3 D2 D1 D0
 displayed
R2 Horizontal sync Character D7 D6 D5 D4 D3 D2 D1 D0
 position
R3 Horizontal sync Character H3 H2 H1 H0
 width
 Vertical sync Scan line V3 V2 V1 V0
 width
R4 Vertical total Char. row x D6 D5 D4 D3 D2 D1 D0
R5 Vertical total Scan line x x x D4 D3 D2 D1 D0
 adjust
R6 Vertical displayed Char. row x D6 D5 D4 D3 D2 D1 D0
R7 Vertical sync Char. row x D6 D5 D4 D3 D2 D1 D0
 position
R8 Interlace mode V S
 Display enable Character D1 D0
 delay
 Cursor enable Character C1 C0
 delay
R9 Scan lines/ Scan line x x x D4 D3 D2 D1 D0
 character
R10 Cursor start Scan line x D4 D3 D2 D1 D0
 Cursor blink rate – R
 Cursor blink – B
 ON/OFF
R11 Cursor end Scan line x x x D4 D3 D2 D1 D0
R12 Screen start – x x H5 H4 H3 H2 H1 H0
 address H
R13 Screen start – L7 L6 L5 L4 L3 L2 L1 L0
 address L
R14 Cursor address H – x x H5 H4 H3 H2 H1 H0
R15 Cursor address L – L7 L6 L5 L4 L3 L2 L1 L0
R16 Light pen H – x x H5 H4 H3 H2 H1 H0
R17 Light pen L – L7 L6 L5 L4 L3 L2 L1 L0

x = not used

376

377

19 The video ULA
Sheila address &20–&21

The Video ULA is a special chip, designed by Acorn especially
for use in the BBC microcomputer. It provides all of the video
timing for the rest of the system (including the 6845),
determines the relationship between logical and physical
colours, controls the cursor width and provides Red, Green
and Blue (R G B) video outputs. This section explains how the
ULA is programmed for the various modes 0–7 and then gives
an example of creating a totally new mode with 16 colours but
only 10 characters across the screen. This only uses 10K of
memory and therefore allows a 16 colour mode on model A
micros, or large games programs on a model B which require
lots of memory and full 16 colour graphics.

19.1 THE VIDEO CONTROL REGISTER – SHEILA &20
WRITE ONLY

This 8 bit register controls which flashing colour is present at
any one time, whether teletext is selected, the number of
characters per line, the clock rate sent to the 6845, the width in
bytes of each character and the master cursor size. *FX154
should be used to write data into this register.

Fig 19.1 – The Video Control Register

 7 6 5 4 3 2 1 0
MASTER
CURSOR

SIZE

WIDTH OF
CURSOR IN

BYTES

6845
CLOCK
RATE

SELECT

NUMBER OF
CHARACTERS PER

LINE

TELETEXT/
NORMAL
SELECT

FLASH
COLOUR
SELECT

378

19.1.1 Selected flash colour (bit 0)

This bit selects which colour of the two flashing colours is
actually displayed at any particular time. It is continually
changed by the operating system to generate the flashing
colours. *FX9 and *FX10 control how long each colour is on
the screen and can be defined down to one fiftieth of a
second. By varying the flash rates of the colours it is possible
to generate ‘new’ colours. This is because a flash rate of one
fiftieth of a second is fast enough to fool the eye into seeing a
single colour rather than two rapidly flashing colours.

0 = first colour selected
1 = second colour selected

19.1.2 Teletext output select (bit 1)

This bit selects whether RGB input comes from the video
serialiser in the ULA or from the teletext chip.

0 = on chip serialiser used
1 = teletext input selected

19.1.3 Number of characters per line (bits 2,3)

These two bits determine the actual number of displayed
characters per line. It is by varying this number that the new
10 character per line mode can be generated.

Bit 3 Bit 2 Number of characters per line

1 1 80
1 0 40
0 1 20
0 0 10

19.1.4 6845 Video Controller Chip Clock Rate Select (Bit 4)

The clock frequency sent to the 6845 can be varied using this
bit.

0 = low frequency clock (modes 4–7)
1 = high frequency clock (modes 0–3)

379

19.1.5 Width of cursor in bytes (bits 5,6)

These two bits determine the number of bytes of memory
required to generate a cursor width.

Bit 6 Bit 5 Number of bytes per cursor

0 0 1 (modes 0,3,4,6)
0 1 not defined
1 0 2 (modes 1,5,7)
1 1 4 (mode 2)

19.1.6 Master cursor width (bit 7)

If set, this bit will cause a large cursor to be generated. If reset
it will cause a small cursor to be generated.

NOTE – setting bits 5,6 and 7 to 0 will cause the cursor to
vanish from the screen under ALL conditions.

19.1.7 General summary of the video control register

 Cursor Bytes per Clock Number of chars Flash
 size cursor speed per line select

Mode Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex

0 1 0 0 1 1 1 0 X &9C
1 1 1 0 1 1 0 0 X &D8
2 1 1 1 1 0 1 0 X &F4
3 1 0 0 1 1 1 0 X &9C
4 1 0 0 0 1 0 0 X &88
5 1 1 0 0 0 1 0 X &C4
6 1 0 0 0 1 0 0 X &88
7 0 1 0 0 1 0 1 X &4B

X signifies that the flash bit is changed regularly

19.2 THE PALETTE – SHEILA &21 WRITE ONLY

The ‘Palette’ is a 64 bit RAM in the video ULA which defines
the relationship between the logical and actual colours
displayed on the screen. If you don’t understand the
difference between logical and actual colours yet, then refer to
the COLOUR section in the User Guide. *FX155 can be used
to write colour data into the Palette. It will automatically EOR
the physical colour with 7 (see later). Usually, it is better to
use VDU19 or OSWORD &0C to program logical and actual
colours.

380

The palette register consists of two 4 bit fields. Bits 0–3 are the
actual colour field. Bits 4–7 are the logical colour field, as
illustrated in figure 19.2.

Fig 19.2 – The Palette register

19.2.1 Logical colour field

The following description of programming the palette only
applies to direct programming using *FX155. If OSWORD
&0C or VDU19 are used, none of the problems which are
about to be outlined will be relevant.

Programming the logical colour directly is easy in mode 2. The
logical colour number then occupies the entire 4 bit field. In
two colour modes 0,3,4 and 6, programming the logical colour
directly is more complex. Bit 7 defines the logical colour, but
bits 4, 5 and 6 must be programmed to all their possible
values. In other words, in order to set logical colour 1 to actual
colour 5, it is necessary to program logical colours 8, 9, 10, 11,
12, 13, 14 and 15 to 5. If this is not done, some parts of
characters will be in one colour and other parts will be in a
different colour.

Programming the logical colours in a four colour mode is
slightly more complex. Bits 7 and 5 together contain the logical
colour number. All other possible combinations of bits 6 and 4
must also be programmed. The following table shows how to
program logical colours 0–3. For example, to program logical
colour 0, it is necessary to program four separate locations in
the palette.

 7 6 5 4
‘LOGICAL’ COLOUR

REGISTER

 3 2 1 0
‘ACTUAL’ COLOUR

REGISTER

381

Logical colour bit 7 bit 6 bit 5 bit 4

0 0 0 0 0
 0 0 0 1
 0 1 0 0
 0 1 0 1

1 0 0 1 0
 0 0 1 1
 0 1 1 0
 0 1 1 1

2 1 0 0 0
 1 0 0 1
 1 1 0 0
 1 1 0 1

3 1 0 1 0
 1 0 1 1
 1 1 1 0
 1 1 I 1

19.2.2 General Summary for logical colour programming

Mode Bit 7 Bit 6 Bit 5 Bit 4

2 colour Logical colour x x x
 Bit 0
4 colour Logical colour x Logical colour x
 Bit 1 Bit 0
16 colour Logical colour Logical colour Logical colour Logical colour
 Bit 3 Bit 2 Bit 1 Bit 0

382

19.2.3 Physical colour field

The physical colours are:

&00 (0) black
&01 (1) red
&02 (2) green
&03 (3) yellow (red+green)
&04 (4) blue
&05 (5) magenta (red+blue)
&06 (6) cyan (green+blue)
&07 (7) white
&08 (8) flashing black–white
&09 (9) flashing red–cyan
&0A (10) flashing green–magenta
&0B (l1) flashing yellow–blue
&0C (12) flashing blue–yellow
&0D (13) flashing magenta–green
&0E (14) flashing cyan–red
&0F (15) flashing white–black

It is these colour numbers which should be used with *FX155.
Note however that the actual number sent to the Palette is the
above number EOR &07, ie with the three colour bits inverted
and the flash bit as above.

19.2.4 Some interesting effects using the palette

Because of the necessity to program 4 different palette
locations for each colour in a four colour mode, some ‘nasty’
effects can be produced on the screen if all four locations are
not programmed with the same colour. To illustrate this
point, try displaying four colours on the screen at once, then
run this line of BASIC:

A%=155: REPEAT: X%=RND(255): CALL &FFF4:
UNTIL0

383

19.3 ‘MODE 8’ Implementation example

This example program will set up a brand new mode which
has been nominated as ‘MODE 8’. This is a full 16 colour
mode and can be implemented on a Model A as well as a
Model B since only 10K of RAM is used. There will only be 10
characters across the screen, but printing and plotting will
operate properly. One word of warning however. Do not try
to redefine the text window when this mode is in use because
it will not work! All error checking on window bounds will be
ineffective in this mode since the operating system does not
expect mode 8 to exist.

 10 REM CREATE 'MODE 8'-
 20 REM NOTE: NO WINDOWING ALLOWED
 30 REM
 40 REM NOTE: POKING VDU VARIABLES
 50 REM IS GENERALLY ILL ADVISED.
 60 MODE 5:REM BASIC MODE
 70 REM CONFIGURE VIDEO ULA FOR 10 COLUMN, 16 CHARACTER
 80 *FX 154,224
 90 ?&360=&F:REM COLOUR MASK
100 ?&361=1:REM PIXELS PER BYTE-1
110 ?&34F=&20:REM BYTES PER CHARACTER (4 wide x 8 high)
120 ?&363=&55:REM GRAPHICS RIGHT MASK
130 ?&362=&AA:REM GRAPHICS LEFT MASK
140 ?&30A=9:REM NO. OF CHARS PER LINE
150 VDU 20
160 REM DEMO
170 MOVE 0,0:DRAW 640,512:DRAW 1279,0
180 PRINT TAB(1,2);
190 A$="***HelloThere***"
200 COLOUR 129
210 FOR A%=1 TO 16
220 IF A%=9 THEN PRINT TAB(1,8);
230 COLOUR A%-1
240 PRINT MID$(A$,A%,1);
250 NEXT A%
260 PRINT

384

385

20 The serial system
Sheila address &08–&1F

The serial system on the BBC microcomputer deals with the
transmission and reception of asynchronous serial data. Serial
data is used in conjunction with the cassette and RS423
interfaces where it is impractical to use the 8 databus lines.
The heart of the system is the 6850 Asynchronous
Communications Interface Adapter (ACIA). This chip
interfaces serial data to the 8 bit parallel processor bus. The
input and output devices (ie cassette or RS423) and baud rates
are all defined by the serial ULA. As with all the other
hardware interfaces in this guide, the official operating system
commands should be used to communicate with the chip
registers. This will allow programs written in this way to
operate over the Tube.

20.1 General description of a serial interface

This general description aims to introduce the terms which are
used throughout the rest of this chapter. It is most relevant to
the RS423 interface. A serial interface will usually consist of a
data IN line, data OUT line and a ground connection. This is
the barest minimum for a bi-directional serial link.
Handshaking lines are often supplied as well. The RTS
(Request to send) goes low when the BBC micro is ready to
accept data on the RS423 (it acts as a data carrier enable for the
cassette). The other device can control when data is sent to it
via the CTS (Clear to send) line. The device pulls this low to
indicate that it can receive data and pulls it high to indicate
that it is unable to receive data (eg because its input buffer is
full). Data should therefore only be sent out from the BBC
microcomputer if the CTS input is low. OSBYTE &CB
controls the serial handshaking and OSBYTE &CC suppresses
all RS423 input.

386

Each character is transmitted serially according to a
predefined format. A start bit indicates that a character will
follow. 7 or 8 bits of character are then sent followed by a
parity bit, if parity is selected. This parity bit may be set to
either 1 or 0 to indicate whether the number of high bits in the
character were odd or even. The parity bit (if selected) is then
followed by one or two stop bits. The idea behind using a
parity bit is that the receiving device can check that parity is
correct. If it is incorrect then an error has occurred between
the transmitter and receiver. The following diagram
illustrates the format of an 8 bit word with odd parity and 1
stop bit selected.

Fig 20.1 – Timing diagram for a serial character

20.2 Line termination

If very long lines are used to connect devices over an RS423
link, then it may be necessary to terminate the line. This will
only be necessary in exceptional circumstances where both
high baud rates and long line lengths are in use. Refer to
Appendix I which describes the necessary links, for more
information.

20.3 The 6850 ACIA (Asynchronous Communications
Interface Adapter)

This chip performs two basic functions. It converts 8 bit
parallel data to serial data, which it then transmits. It also
converts a serial input stream into parallel data for the system
bus, automatically providing the formatting and error
checking.

START
BIT

DATA
BIT0

DATA
BIT1

DATA
BIT2

DATA
BIT3

DATA
BIT4

DATA
BIT5

DATA
BIT6

DATA
BIT7

PARITY
BIT

STOP
BIT

387

20.4 Transmit data register (TDR) Sheila &09 write only

A character may be written into the Transmit Data Register
(TDR) if a status read operation has indicated that the TDR is
empty. OSBYTE &97 (151) should be used to perform the
write. This character is transferred to a serial shift register
where it is transmitted, preceded by a start bit and followed
by one or two stop bits. Internal parity (odd or even can
optionally be added to the character and will appear after the
last data bit and before the first stop bit. After the first
character has been written to the TDR, the Status register can
be checked for a Transmit Data Register Empty condition. If
the register is empty, another character can be loaded for
transmission even though the first character is in the process
of being transmitted. The second character will automatically
be transferred into the Shift Register when the first character
transmission is complete.

20.5 Receive data register (RDR) Sheila &09 read only

Data is received from a peripheral via the cassette or RS423
serial interfaces. A divide by 64 clock ratio is provided to
select the baud rate from the serial ULA, and divide by 16 or 1
ratios are provided as well. The 6850 waits until a full half of
the start bit has been received before it synchronises its clock
to the bit time. As a character is being received, parity (odd or
even) will be checked and any errors will be available in the
Status register. When parity has been selected for an 8 bit
word (7 bits plus parity), the 6850 sets bit 8 to 0 so that only
the 7 bit data is transferred to the 6502. To read from the RDR,
OSBYTE &96 (150) should be used.

20.6 THE CONTROL REGISTER – Sheila &08 write only

The 8 bit 6850 control register determines the function of the
transmitter, receiver, interrupts and the RS423 Request to
send (RTS). Since this is a write only register, it is not possible
to read its current contents directly. There is a way of
determining its current contents via the operating system.
OSBYTE &9C (156) is a powerful command to do this. The X
and Y registers must be set, the old contents of the control
register are then AND Y EOR X. Y therefore masks bits and X

388

toggles bits. Setting Y=&FF and X=0 will generate no change
at all. The routine returns with the old value of the control
register in the X register. This register is normally set to &56
when using a cassette based system which isn’t in the process
of transmitting or receiving anything.

20.6.1 Counter Divide Select Bits (CR0 and CR1)

These bits determine the divide ratios used in both the
transmitter and receiver sections of the ACIA. Additionally,
these bits provide a master reset which initialises the
transmitter, receiver and status register. The clock division
rate is normally set to 64 whilst the RS423 system is in
operation. The cassette system selects between 300 and 1200
baud using this division ratio. The serial ULA is always set to
300 baud for cassette, so division by 64 actually generates 300
baud. Division by 16 makes it 4 times faster so 1200 baud is
generated. Division by 1 would make it a further 16 times
faster, ie 19200 baud but the cassette will not operate at this
speed.

CR1 CR0 Function

0 0 divide by 1
0 1 divide by 16
1 0 divide by 64
1 1 Master reset

20.6.2 Word Select Bits (CR2, CR3 and CR4)

Select bits are used to select word length, parity and the
number of stop bits. Any changes become effective
immediately.

CR4 CR3 CR2 Function

0 0 0 7 bits + even parity + 2 stop bits
0 0 1 7 bits + odd parity + 2 stop bits
0 1 0 7 bits + even parity + 1 stop bit
0 1 1 7 bits + odd parity + 1 stop bit
1 0 0 8 bits + 2 stop bits
1 0 1 8 bits + 1 stop bit
1 1 0 8 bits + even parity + 1 stop bit
1 1 1 8 bits + odd parity + 1 stop bit

389

20.6.3 Transmitter Control Bits (CR5 and CR6)

Two transmitter control bits provide control of the interrupt
from the Transmit Data Register Empty condition, the RTS
output, and the transmission of a break level (space).

CR6 CR5 Function

0 0 RTS = low, transmitting interrupt disabled
0 1 RTS = low, transmitting interrupt enabled
1 0 RTS = high, transmitting interrupt disabled
1 1 RTS = low, transmits a break level on the transmit data output.
 Transmitting interrupt is disabled.

20.6.4 Receive Interrupt Enable Bit (CR7)

The conditions of receive data register full, overrun, or a low
to high transition on the Data Carrier Detect (DCD) signal line
are enabled by a high level bit in this position.

20.7 THE STATUS REGISTER – Sheila &08 read only

Information on the status of the 6850 is available from this
register.

20.7.1 Receive Data Register Full (RDRF) Bit 0

The RDRF register indicates that received data has been
transferred to the Receive Data Register. RDRF is cleared after
the processor has read from the Receive Data Register or by a
master reset. DCD being high also causes RDRF to indicate
empty.

20.7.2 Transmit Data Register Empty (TDRE) Bit 1

This bit goes high to indicate that the Transmit Data Register
contents have been transferred and that new data may now be
entered. The low state indicates that the TDR is full.

20.7.3 Data Carrier Detect (DCD) Bit 2

When DCD goes high it indicates that the carrier is not
present from the cassette input. It will always be low when
the RS423 interface is selected.

390

20.7.4 Clear To Send (CTS) Bit 3

This is always low when using the cassette. On the RS423 this
bit indicates that the RS423 is Clear To Send data out while
this bit is low. Master reset doesn’t affect the CTS bit since it
is an external input.

20.7.5 Framing Error (FE) Bit 4

The Framing Error indicates that the received character was
incorrectly framed by a start and stop bit. The error persists
throughout the time that the associated character is available
in the RDR.

20.7.6 Receiver Overrun (OVRN) Bit 5

This indicates that a character, or number of characters were
received but not read from the receive data register. Character
synchronisation is maintained during overrun. The overrun
indication is reset after the reading of data from the Receive
Data Register or after a Master reset.

20.7.7 Parity Error (PE) Bit 6

This bit indicates that the number of ones in the character
doesn’t agree with the pre-selected odd or even parity. The
parity error is present whilst the character is in the RDR. If no
parity is selected then both transmitter parity output
generation and receiver parity input checks are inhibited.

20.7.8 Interrupt Request (IRQ) Bit 7

This indicates the state of the IRQ output. Whenever the IRQ
output is low the IRQ bit is high. IRQ is cleared by a read
operation to the Receive Data Register or a write operation
the Transmit Data Register.

Note that OSBYTE &E8 is used to mask the 6850 ACIA IRQ.
See chapter 13 on interrupts for further details about using
interrupts.

391

20.8 6850 ACIA Summary table

Bit Control Register Status Register
 WRITE ONLY READ ONLY

0 Counter Divide select 1 (CR0) Receive Data Register Full
 (RDRF)
1 Counter Divide select 2 (CR1) Transmit Data Register Empty
 (TDRE)
2 Word select 1 (CR2) Data Carrier Detect
3 Word select 2 (CR3) Clear To Send
4 Word select 3 (CR4) Framing Error (FE)
5 Transmit control 1 (CR5) Receiver overrun
6 Transmit control 2 (CR6) Parity error (PE)
7 Receiver interrupt enable (CR7) Interrupt request (IRQ)

392

20.9 THE SERIAL ULA – SHEILA &10

The serial ULA performs several functions related to the
cassette and RS423 interfaces. It allows the input to the 6850 to
be switched between cassette and RS423. It produces the
transmit and receive data clocks for the 6850, thereby defining
the baud rate. This ULA synthesises the data carrier signal for
the cassette recording and has a data separator and run in
detector when playing back cassette tapes. It produces the
data carrier present signal from the cassette whenever a
pre-recorded program is played back.

The Serial ULA is operated from a single 8 bit control register.
The various bits operate as follows:

20.9.1 Serial ULA bits 0–2

These define the transmit baud rate so that 000 generates
19200 baud and 111 generates 75 baud. Note that this relies
upon the 6850 control register being set to divide the
incoming clock signal by 64. *FX8 is used to select the
transmit baud rate on an RS423 input.

20.9.2 Serial ULA bits 3–5

These operate in a similar way to bits 0–2 except that they
define the receiver baud rate. *FX7 is used to select the
receiving baud rate for the RS423 interface.

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Baud rate

0 0 0 0 0 0 19200
1 0 0 1 0 0 9600
0 1 0 0 1 0 4800
1 1 0 1 1 0 2400
0 0 1 0 0 1 1200
1 0 1 1 0 1 300
0 1 1 0 1 1 150
1 1 1 1 1 1 75

393

20.9.3 Serial ULA bit 6

This selects between the cassette or RS423 system. If it is set to
0 then the cassette system is selected. If it is set to 1 the RS423
is selected. Normally, the cassette will only be selected when
input from or output to cassette is in progress under the
cassette filing system. OSBYTE &CD is provided to select
between the RS423 and cassette serial systems.

20.9.4 Serial ULA bit 7

The cassette motor relay and LED can be turned on by setting
this bit to 1, or off by setting it to 0. Note that the command
*MOTOR (*FX137 or OSBYTE &89) is available to do this.

20.10 The ‘BUG’ fix required when using the cassette system

On early versions of the operating system, there was a bug
which led to erroneous recording of programs on cassettes.
This has been corrected on later versions of the operating
system (1.0 onwards) but it is necessary to know how to fix
the bug if the cassette hardware is being used directly from a
user program.

The problem occurred because it was possible for the serial
ULA to get out of sync for a few bits when the 6850 divide bits
were changed. This tended to corrupt the first character of the
first block in a SAVE, or the first character of any block during
sequential access (since the 6850 is reset for each block during
putbytes). The cure is to write a dummy byte to tape at the
start of a SAVE and the start of every block during putbytes.
If the leader of a prerecorded program is played back, a run in
tone followed by a blip (the dummy byte) followed by more
run in tone will be heard. It is necessary to have a run in
period of high tone after the dummy byte. Preferably this
should be done by polling the 6850 to check if the TDR is
empty, since it is difficult to accomplish if the 6850 is
continually interrupting. The 6850 can then be turned on to
interrupt just before starting the block write operation.

394

395

21 Paged ROM select
register
Sheila address &30

This 4 bit write only register determines which paged ROM is
switched into the memory map (eg BASIC, FORTH or LISP
etc.). Up to 16 paged ROMS are therefore catered for, 4 of
which are on the main circuit board. The operating system
keeps track of which paged ROM is being used at any one
time, so it will change the value in this register quite often. It
is not advisable to POKE directly to this register, especially
from BASIC since it is likely to crash the machine.

The ROM sockets on the main BBC microcomputer circuit
board hold paged ROM numbers 12, 13, 14 and 15. These
correspond to IC52, IC88, IC100 and IC101 respectively. ROM
number 15 is the highest priority ROM.

There is an official way to read a byte from any paged ROM.
This is by CALLing the routine OSRDRM at &FFB9 with the
relevant paged ROM number in the Y register and the address
in the paged ROM in locations &F6 and &F7. The value in the
byte at this location will be returned in the A register. For
more details about paged ROMs, refer to the paged ROM
chapter 15.

396

397

22 The 6522 Versatile
Interface Adapters
Sheila addresses &40–&7F

There are two 6522 VIAs (Versatile Interface Adapters) inside
the BBC Micro. One of these is dedicated to the MOS and
controls the keyboard, sound, speech, joystick fire buttons etc.
The other drives the parallel printer port and the user port.
The devices connected to each VIA are therefore completely
different. The 6522 by itself will be considered first of all,
since it applies to both units. Separate sections on the MOS
VIA and the printer/user VIA then follow on.

22.1 6522 Versatile interface adapters in general

Each VIA chip is housed inside a large 40 pin package. It
contains two fully programmable bidirectional 8 bit I/O ports.
These are designated port A and port B, each one of which
has its own ‘handshaking’ capability. There are two 16 bit
programmable timer/counters, a serial/parallel or
parallel/serial shift register and latched input/output
registers.

22.1.1 PIN DESCRIPTIONS

PA0–PA7 (peripheral port A)

These 8 lines can be individually programmed as inputs or
outputs under control of a Data Direction Register. The logic
level on the output pins is controlled by an output register
and input data can be latched into an internal register under
control of the CA1 line. These various modes of operation are
all controlled via internal control registers which are
programmed by the 6502.

398

CA1, CA2 (port A control lines)

These two lines can act either as interrupt inputs or as
handshake outputs. Each line controls an internal interrupt
flag with a corresponding interrupt enable bit. In addition,
CA1 controls the latching of data on port A input lines.

PB0–PB7 (peripheral port B)

The 8 bidirectional port B lines are controlled by an output
register and a data direction register in a similar way to port
A. The logic level of the PB7 output signal can also be
controlled by one of the interval timers. The second timer can
be programmed to count pulses on the PB6 input. These
outputs are capable of sourcing up to 1 mA at 1.5 volts in the
output mode. This allows direct drive of Darlington transistor
circuits. Note that only the port B lines can provide 1mA, the
port A lines cannot.

CB1, CB2 (port B control lines)

The port B control lines act as interrupt inputs or as
handshake outputs just like port A. They can also be
programmed to act as a serial port under the control of the
shift register. These lines cannot source 1mA either.

22.1.2 ELECTRICAL SPECIFICATION

Inputs

Input voltage for logic 1 = 2.4 VDC minimum
Input voltage for logic 0 = 0.4 VDC maximum
Maximum required input = 1.8 mA
current

Outputs

Output logic 1 voltage = 2.4 VDC minimum at a load
 of 100 µA maximum (except
 PB0–PB7)
Output logic 0 voltage = 0.4 VDC maximum when
 sinking 1.6 mA
Current sinking capability = 1.6 mA minimum

399

22.2 FUNCTIONAL DESCRIPTION

 Register RS Coding Register Description

 Number RS3 RS2 RS1 RS0 Desig. Write Read

 0 0 0 0 0 ORB/IRB Output Register “B” Input Register “B”

 1 0 0 0 1 ORA/IRA Output Register “A” Input Register “A”

 2 0 0 1 0 DDRB Data Direction Register “B”

 3 0 0 1 1 DDRA Data Direction Register “A”

 4 0 1 0 0 T1C-L T1 Low-Order Latches T1 Low-Order Counter

 5 0 1 0 1 T1C-H T1 High-Order Counter

 6 0 1 1 0 T1L-L T1 Low-Order Latches

 7 0 1 1 1 T1L-H T1 High-Order Latches

 8 1 0 0 0 T2C-L T2 Low-Order Latches T2 Low-Order Counter

 9 1 0 0 1 T2C-H T2 High-Order Counter

 10 1 0 1 0 SR Shift Register

 11 1 0 1 1 ACR Auxiliary Control Register

 12 1 1 0 0 PCR Peripheral Control Register

 13 1 1 0 1 IFR Interrupt Flag Register

 14 1 1 1 0 IER Interrupt Enable Register

 15 1 1 1 1 ORA/IRA Same as Register 1 Except No “Handshake”

Figure 22.1 – 6522 Internal Register Summary

400

22.2.1 Operation of port A and port B

There are two data direction registers DDRA and DDRB which
specify whether the peripheral pins are to operate as inputs or
outputs. Placing a ‘0’ in a bit of a DDR will cause the
corresponding bit of that port to be defined as an input. A ‘1’
will cause it to be defined as an output.

Each of the port’s I/O pins is controlled by a bit in an output
register (ORA or ORB) and an input register (IRA or IRB).
When programmed as an output, a port line will be controlled
by the corresponding bit in the output register. If the line is
defined as an input then writing data into its output register
will have no effect. Reading from a peripheral port will read
the value of the input register (IRA or IRB). With input
latching disabled IRA will contain the value present at
PA0–PA7 when the read is performed. If input latching is
enabled then IRA will contain the value present at PA0–PA7
when the latching occurred (via CA1).

The IRB register is similar to the IRA register, but there is a
difference for pins programmed as outputs. When reading
IRA, it is the voltage level on PA0–PA7 which determines the
level read back. When reading IRB, it is always the bit in the
output register which is read back. This means that with loads
which pull an output ‘1’ low or an output ‘0’ high, reading
IRA may indicate a different logic level to that written to the
output. Reading IRB will however always read back the value
programmed no matter what loading is applied to the pin.

401

Figure 22.2 – Port B Input/Output

REG 0 – ORB/IRB

 7 6 5 4 3 2 1 0

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

OUTPUT REGISTER “B” (ORB)

OR

INPUT REGISTER “B” (IRB)

Pin
Data Direction

Selection
DDRB = “1” (OUTPUT)

DDRB = “0” (INPUT)
(Input latching disabled)

DDRB = “0” (INPUT)
(Input latching enabled)

WRITE

MPU writes Output Level
(ORB)
MPU writes into ORB, but
no effect on pin level until
DDRB changed.

READ

MPU reads output register bit
in ORB. Pin level has no effect.
MPU reads input level on PB
pin.

MPU reads IRB bit, which is
the level of the PB pin at the
time of the last CB1 active
transition.

402

Figure 22.3 – Port A Input/Output

Figure 22.4 – Data Direction Registers

REG 1 – ORA/IRA

 7 6 5 4 3 2 1 0

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

OUTPUT REGISTER “A” (ORA)

OR

INPUT REGISTER “A” (IRA)

Pin
Data Direction

Selection
DDRA = “1” (OUTPUT)
(Input latching disabled)
DDRA = “1” (OUTPUT)
(Input latching enabled)

DDRA = “0” (INPUT)
(Input latching disabled)
DDRA = “0” (INPUT)
(Input latching enabled)

WRITE

MPU writes Output Level
(ORA)

MPU writes into ORA, but
no effect on pin level until
DDRA changed.

READ

MPU reads level on PA pin.

MPU reads IRA bit which is
the level of the PA pin at the
time of the last CA1 active
transition.
MPU reads level on PA pin.

MPU reads IRA bit which is
the level of the PA pin at the
time of the last CA1 active
transition.

REG 2 (DDRB) AND REG 3 (DDRA)

 7 6 5 4 3 2 1 0

PB0/PA0

PB1/PA1

PB2/PA2

PB3/PA3

PB4/PA4

PB5/PA5

PB6/PA6

PB7/PA7

DATA DIRECTION REGISTER
“B” OR “A” (DDRB/DDRA)

“0” ASSOCIATED PB/PA PIN IS AN INPUT
(HIGH IMPEDANCE)

“1” ASSOCIATED PB/PA PIN IS AN OUTPUT,
WHOSE LEVEL IS DETERMINED BY
ORB/ORA REGISTER BIT.

403

22.2.2 Write handshaking data transfer

Handshaking allows data transfers between two
asynchronous devices. Write handshaking operates with ‘data
ready’ and ‘data taken’ signals. The 6522 provides the ‘data
ready’ (CA2 or CB2) signal and accepts the ‘data taken’ (CA1
or CB1) signal from the peripheral device. This ‘data taken’
signal sets the interrupt flag and clears the ‘data ready’
output. See the timing diagram figure 22.5.

Figure 22.5 – Write Handshake Timing

1MHzE

WRITE ORA, ORB
OPERATION

“DATA READY”
HANDSHAKE MODE
(CA2, CB2)

“DATA READY”
PULSE MODE
(CA2, CB2)

“DATA TAKEN”
(CA1, CB1)

IRQ OUTPUT

404

Selection of operating modes for CA1, CA2, CB1 and CB2 is
controlled by the Peripheral Control Register, see figure 22.6.

Figure 22.6 – CA1, CA2, CB1, CB2 Control

22.2.3 Timer operation

The interval timer, referred to from now on as ‘T1’, consists of
two 8 bit latches and a 16 bit counter. After it has been loaded,
the counter decrements at the system clock rate (1 MHz) until
it reaches zero. When it reaches zero, an interrupt flag will be
set and an interrupt will be requested of the 6502, if enabled.
The timer then disables any further interrupts, or
automatically transfers the contents of the latches into the
counter and continues to decrement. The timer may also be
programmed to invert the output level on an output line every
time its count reaches zero. Figure 22.7 and figure 22.8
illustrate the T1 counter and latches.

 7 6 5 4 3 2 1 0

REG 12 – PERIPHERAL CONTROL REGISTER

CB2 CONTROL CA1 INTERRUPT CONTROL

CA2 CONTROL

CB1 INTERRUPT CONTROL

0 = NEGATIVE ACTIVE EDGE
1 = POSITIVE ACTIVE EDGE

0 = NEGATIVE ACTIVE EDGE
1 = POSITIVE ACTIVE EDGE

7 6 5 OPERATION
0 0 0 INPUT NEGATIVE ACTIVE EDGE
0 0 1 INDEPENDENT INTERRUPT
 INPUT NEG EDGE
0 1 0 INPUT POSITIVE EDGE
0 1 1 INDEPENDENT INTERRUPT
 INPUT POS EDGE
1 0 0 HANDSHAKE OUTPUT
1 0 1 PULSE OUTPUT
1 1 0 LOW OUTPUT
1 1 1 HIGH OUTPUT

3 2 1 OPERATION
0 0 0 INPUT NEGATIVE ACTIVE EDGE
0 0 1 INDEPENDENT INTERRUPT
 INPUT NEG EDGE
0 1 0 INPUT POSITIVE EDGE
0 1 1 INDEPENDENT INTERRUPT
 INPUT POS EDGE
1 0 0 HANDSHAKE OUTPUT
1 0 1 PULSE OUTPUT
1 1 0 LOW OUTPUT
1 1 1 HIGH OUTPUT

405

Figure 22.7 – T1 Counter Registers

Figure 22.8 – T1 Latch Registers

22.2.4 Timer 1 one-shot mode

This mode allows a single interrupt to be generated for each
timer load operation. The delay between writing T1C-H and
generation of the interrupt to the 6502 is a direct function of
the data loaded into the counter. T1 can be programmed to
produce a single negative pulse on the PB7 peripheral pin as
well as generating a single interrupt. With output enabled
(ACR7=1), writing T1C-H will cause PB7 to go low. PB7 will
go high again when T1 ‘times out’. The overall result of this is
a programmable width pulse on PB7.

 7 6 5 4 3 2 1 0

REG 4 – TIMER 1 LOW-ORDER COUNTER

128

64

32

16

8

4

2

1

COUNT
VALUE

WRITE – 8 BITS LOADED INTO T1 LOW ORDER
LATCHES. LATCH CONTENTS ARE
TRANSFERRED INTO LOW ORDER
COUNTER AT THE TIME THE HIGH
ORDER COUNTER IS LOADED (REG 5).

READ – 8 BITS FROM T1 LOW ORDER COUNTER
TRANSFERRED TO MPU. IN ADDITION,
T1 INTERRUPT FLAG IS RESET (BIT 6 IN
INTERRUPT FLAG REGISTER).

 7 6 5 4 3 2 1 0

REG 5 – TIMER 1 HIGH-ORDER COUNTER

32768

16384

8192

4096

2048

1024

512

256

COUNT
VALUE

WRITE – 8 BITS LOADED INTO T1 HIGH ORDER
LATCHES. ALSO, AT THIS TIME BOTH
HIGH AND LOW ORDER LATCHES
TRANSFERRED INTO T1 COUNTER.
T1 INTERRUPT FLAG IS ALSO RESET.

READ – 8 BITS FROM T1 HIGH ORDER COUNTER
TRANSFERRED TO MPU.

 7 6 5 4 3 2 1 0

REG 6 – TIMER 1 LOW-ORDER LATCHES

128

64

32

16

8

4

2

1

COUNT
VALUE

WRITE – 8 BITS LOADED INTO T1 LOW ORDER
LATCHES. THIS OPERATION IS NO
DIFFERENT THAN A WRITE INTO
REG 4.

READ – 8 BITS FROM T1 LOW ORDER LATCHES
TRANSFERRED TO MPU. UNLIKE REG 4
OPERATION, THIS DOES NOT CAUSE
RESET OF T1 INTERRUPT FLAG.

 7 6 5 4 3 2 1 0

REG 7 – TIMER 1 HIGH-ORDER LATCHES

32768

16384

8192

4096

2048

1024

512

256

COUNT
VALUE

WRITE – 8 BITS LOADED INTO T1 HIGH ORDER
LATCHES. UNLIKE REG 5 OPERATION
NO LATCH TO COUNTER TRANSFER
TAKES PLACE.

READ – 8 BITS FROM T1 HIGH ORDER LATCHES
TRANSFERRED TO MPU.

406

Writing into the high order latch has no effect on the
operation of T1 in the one-shot mode. It is however necessary
to ensure that the low order latch contains the correct data
before initiating the countdown by writing T1C-H. When the
6502 writes into the high order counter, the T1 interrupt flag
is cleared, the contents of the low order latch are transferred
into the low order counter, and the timer begins to decrement
at 1MHz. If PB7 output is enabled then it will go low after the
write operation. Upon reaching zero, the T1 interrupt flag is
set, an interrupt is generated (if enabled) and PB7 goes high.
The counter continues to decrement at the system clock rate.
The 6502 is then able to read the contents of the counter to
determine the time since the interrupt occurred. The T1
interrupt must be cleared before it can be set again.

22.2.5 Timer 1 free-run mode

The advantage of having latches which remember the initial
value put into the counter is that the initial value can be
restored after the counter has decremented to zero. If this is
done automatically then the timer enters a free-running
mode. In the free-running mode, PB7 is inverted and the
interrupt flag is set each time the counter has decremented to
zero. The contents of the 16 bit latch are then transferred to
the counter, which decrements to zero again and so on. This
produces a true square wave of variable frequency on the PB7
output. The interrupt flag can be cleared by writing T1C-H,
by reading T1C-L, or by writing directly into the flag as will
be described.

All of the timers in the 6522 can be re-triggered. This means
that rewriting the value in the counter will always re-initialise
the time-out period. Time-out will therefore be completely
inhibited if the processor continues to rewrite the timer before
it reaches zero. T1 operates in this way if the 6502 writes into
the high order counter (T1C-H). If the 6502 only loads the
latches, this will not affect the counter until the next time zero
is reached. The timer can be read without affecting its value.
This can be very useful because the new timer time doesn’t
come into effect until zero is reached. If the 6502 responds to
each interrupt by programming a new value into the latches,

407

the period of the next half cycle on the PB7 output will be
determined. Waveforms with complex mark-space ratios can
be generated in this way.

22.2.6 Timer 2 operation

Timer 2 operates either as an interval timer (in the one-shot
mode only) or as a counter for counting negative pulses on
the PB6 pin. A single control bit in the Auxiliary Control
Register selects between these two modes. Timer 2 comprises
a ‘write only’ low order latch (T2L-L), a ‘read only’ low order
counter and a read/write high order counter. The counter
register contents are decremented at 1 MHz. Figure 22.9
illustrates the timer 2 counter registers.

Figure 22.9 – T2 Counter registers

22.2.7 Timer 2 one-shot mode

In the one-shot mode, the operation of timer 2 is similar to
that of timer 1. T2 provides a single interrupt for each time
out after T2C-H had been set. The counter continues to
decrement after time-out, but the interrupt is disabled after
the initial time-out so that it will not be set again each time
that the timer decrements through zero. T2C-H must be
rewritten to re-enable the interrupt flag. The interrupt flag is
cleared by reading T2C-L or by writing T2C-H.

 7 6 5 4 3 2 1 0

REG 8 – TIMER 2 LOW-ORDER COUNTER

128

64

32

16

8

4

2

1

COUNT
VALUE

WRITE – 8 BITS LOADED INTO T2 LOW ORDER
LATCHES.

READ – 8 BITS FROM T2 LOW ORDER COUNTER
TRANSFERRED TO MPU. T2 INTERRUPT
FLAG IS RESET.

 7 6 5 4 3 2 1 0

REG 9 – TIMER 2 HIGH-ORDER COUNTER

32768

16384

8192

4096

2048

1024

512

256

COUNT
VALUE

WRITE – 8 BITS LOADED INTO T2 HIGH ORDER
COUNTER. ALSO, LOW ORDER LATCHES
TRANSFERRED TO LOW ORDER
COUNTER. IN ADDITION, T2 INTERRUPT
FLAG IS RESET.

READ – 8 BITS FROM T2 HIGH ORDER COUNTER
TRANSFERRED TO MPU.

408

22.2.8 Timer 2 pulse counting mode

In this mode, T2 counts a predetermined number of negative
going pulses applied to PB6. This can be accomplished by first
of all loading a number into T2. Writing into T2C-H will clear
the interrupt flag and allow the counter to decrement every
time that a pulse is applied to PB6. The interrupt flag is set
when T2 counts down past zero. The timer continues to
decrement with each pulse applied to PB6. T2C-H must be
rewritten to allow the interrupt flag to set on subsequent
down counts.

Figure 22.10 – Auxiliary Control Register

22.2.9 Shift register operation

The shift register (SR) enables serial data to be transferred
into and out of the CB2 pin under the control of an internal
modulo-8 counter. Pulses from an external source can be
applied to CB1 to shift a bit into or out of CB2. Alternatively,
with proper mode selection, shift pulses generated internally
will appear on the CB1 pin for controlling external devices.

The control bits which select the various shift register
operating modes are located in the Auxiliary Control Register.
The configuration of the SR data bits and the SR control bits of
the ACR are illustrated in figure 22.10 and figure 22.11.

 7 6 5 4 3 2 1 0

REG 11 – AUXILIARY CONTROL REGISTER

T1 TIMER CONTROL

7 6 OPERATION PB7
0 0 TIMED INTERRUPT
 EACH TIME T1 IS
 LOADED DISABLED
0 1 CONTINUOUS
 INTERRUPTS
1 0 TIMED INTERRUPT ONE SHOT
 EACH TIME T1 IS OUTPUT
 LOADED
1 1 CONTINUOUS SQUARE
 INTERRUPTS WAVE
 OUTPUT

T2 TIMER CONTROL

5 OPERATION
0 TIMED INTERRUPT
1 COUNT DOWN WITH
 PULSES ON PB6

PA

PB 0 = DISABLE
1 = ENABLE LATCHING

LATCH ENABLE/DISABLE

SHIFT REGISTER CONTROL

4 3 2 OPERATION
0 0 0 DISABLED
0 0 1 SHIFT IN UNDER CONTROL OF T2
0 1 0 SHIFT IN UNDER CONTROL OF 1MHz CLK.
0 1 1 SHIFT IN UNDER CONTROL OF EXT. CLK.
1 0 0 SHIFT OUT FREE-RUNNING AT T2 RATE
1 0 1 SHIFT OUT UNDER CONTROL OF T2
1 1 0 SHIFT OUT UNDER CONTROL OF 1MHz CLK.
1 1 1 SHIFT OUT UNDER CONTROL OF EXT. CLK.

409

Figure 22.11 – Shift Register Control Bits

22.2.10 Shift register modes of operation

Shift Register Disabled (SRMODE 0)

In this mode the SR is disabled. The 6502 can however write
or read the SR and the SR will shift one bit left on each CB1
positive edge. The logic level present on CB2 is shifted into bit
0. The SR interrupt flag is always disabled in this mode.

Shift in under control of T2 (SRMODE 1)

In mode 1 the shifting rate is controlled by the 8 low order
bits of T2. Shift pulses are generated on the CB1 pin to control
shifting in external devices. The time between transitions of
this output clock is controlled by the low order T2 latch.

Reading from or writing to the SR will trigger a shifting
operation if the SR flag in the IFR is set. If it isn’t set then the
first shift will occur when T2 next times out after a read or

REG 10 – SHIFT REGISTER

 7 6 5 4 3 2 1 0

SHIFT
REGISTER
BITS

NOTES:
1. WHEN SHIFTING OUT, BIT 7 IS THE FIRST BIT

OUT AND SIMULTANEOUSLY IS ROTATED
BACK INTO BIT 0.

2. WHEN SHIFTING IN, BITS INITIALLY ENTER
BIT 0 AND ARE SHIFTED TOWARDS BIT 7.

410

write SR. Data is shifted first into the low order bit of the SR,
then into the next higher order bit and so on on the negative
edge of each shift clock pulse. The input data should then
change before the next positive going edge of CB1. Data is
shifted into the shift register on the positive going edge of the
CB1 pulse. After 8 CB1 clock pulses, the shift register
interrupt flag will be set and an interrupt will be requested of
the 6502.

Figure 22.12 – Input Mode 1 Timing

Shift in under control of system clock (SRMODE 2)

In mode 2 the shift rate is a direct function of the 1MHz
system clock. Pulses for controlling external devices are
generated on the CB1 output. Timer 2 has no effect on the SR
and acts as an independent interval timer. The shifting
operation is triggered by reading or writing the SR. Data is
first shifted into bit 0 and then into successively higher order
bits on the trailing edges of system clock pulses. After 8 clock
pulses, the shift register interrupt flag will be set and output
clock pulses from CB1 will cease.

Figure 22.13 – Input Mode 2 Timing

1MHzE

WRITE OR READ
SHIFT REG.

CB1 OUTPUT
SHIFT CLOCK

CB2 INPUT
DATA

IRQ

1 2 3 8

1 2 3 8

N+2 CYCLES N+2
CYCLES

1MHzE

READ SR
OPERATION

CB1 OUTPUT
SHIFT CLOCK

CB2 INPUT
DATA

IRQ

1 2 3 4 5 6 7 8

411

Shift in under control of external CB1 clock (SRMODE 3)

CB1 is a clock input in mode 3 so that external devices can
load the shift register at their own pace. The shift register
counter will generate an interrupt each time that 8 bits have
been shifted in. The SR counter does NOT stop the shifting
operation, it simply operates as a pulse counter. Reading from
or writing to the shift register resets the interrupt flag and
initialises the SR counter to count another 8 pulses. Note that
data is shifted in on the first system clock cycle following the
positive going edge of the CB1 shift pulse. Data must
therefore be held stable during the first full system clock cycle
after CB1 has gone high.

Figure 22.14 – Input Mode 3 Timing

Shift out free running at T2 clock rate (SRMODE 4)

In this mode the shift rate is controlled by timer 2 (T2). Unlike
mode 5, the SR counter will not stop the shifting operation.
Shift register bit 7 is re-circulated back into bit 0, so the 8 bits
loaded into the shift register will be clocked onto CB2
repetitively. The shift register counter is disabled in this
mode.

Figure 22.15 – Output Mode 4 Timing

1MHzE

CB1 INPUT
SHIFT CLOCK

CB2 INPUT
DATA

IRQ

1 2 3 4 8

1 2 3 4 8

1MHzE

WRITE SR
OPERATION

CB1 OUTPUT
SHIFT CLOCK

CB2 OUTPUT
DATA

N+2 CYCLES N+2 CYCLES

1 2 3 4 8 9

1 2 3 4 8 1

412

Shift out under control of T2 (SRMODE 5)

The shift rate is controlled by T2 as in mode 4. If the SR flag in
the IFR is set, then the shifting operation is triggered by the
read or write of the SR. Alternatively the first shift will occur
at the next timeout of T2 after a read or write of the SR. With
each write or read of the SR, the SR counter is reset and 8 bits
are shifted onto CB2. Eight shift pulses appear on the CB1
output to facilitate the control of shifting into external devices.
When the 8 shift pulses have occurred, shifting is disabled, the
SR interrupt flag is set and CB2 remains fixed at the last data
bit level.

Figure 22.16 – Output Mode 5 Timing

Shift out under control of the system clock (SRMODE 6)

In this mode, the shift rate is controlled directly by the 1MHz
system clock.

Figure 22.17 – Output Mode 6 Timing

1MHzE

WRITE SR
OPERATION

CB1 OUTPUT
SHIFT CLOCK

CB2 OUTPUT
DATA

IRQ

N+2 CYCLES N+2 CYCLES

1 2 3 8

1 2 3 8

1MHzE

WRITE SR
OPERATION

CB1 OUTPUT
SHIFT CLOCK

CB2 OUTPUT
DATA

IRQ

1 2 3 4 7 8

1 2 3 4 7 8

413

Shift out under control of external CB1 clock (SRMODE 7)

Shifting is controlled by pulses applied to the CB1 pin by an
external device in this mode. The SR interrupt flag is set each
time that the SR counter counts 8 pulses, but the shifting
function is not disabled. The SR interrupt flag is reset and the
SR counter is initialised to begin counting the next 8 shift
pulses on CB1, each time that the 6502 writes or reads the
shift register. The interrupt flag is set after 8 shift pulses. The
6502 can then load the next byte of data into the shift register.

Figure 22.18 – Output Mode 7 Timing

22.2.11 Interrupt operation

Interrupt flags are set either by an interrupt condition in the
chip (eg. from a counter), or an interrupt condition on an
input to the chip. Interrupt flags normally remain in the set
condition until the interrupt has been serviced. The source of
an interrupt can be determined by reading these interrupt
flags in order from highest priority to lowest priority. This is
best performed by reading the flag register into the processor
accumulator, shifting either right or left and using conditional
branch instructions to detect an active interrupt.

There is an interrupt enable bit associated with each interrupt
flag. If this enable bit is set to a logic 1 and the associated
interrupt occurs, then the 6502 will be interrupted. If the
enable bit is set to 0 then the 6502 will not be interrupted.

All interrupt flags are contained in the interrupt flag register
(IFR – see figure 22.19). To enable the 6502 to check the 6522
without checking each bit in the IFR, bit 7 will be set to a logic

1MHzE

WRITE SR
OPERATION

CB1 INPUT
SHIFT CLOCK

CB2 OUTPUT
DATA

IRQ

1 2 8

1 2 8

414

1 if the 6522 has generated the interrupt. In addition to
reading the IFR, individual bits may be cleared by writing a 1
into the appropriate bit of the IFR. Note however that IFR bit
7 is not a flag as such and will not be cleared by writing a 1
into it. It can only be cleared by clearing all the flags in the
register or by disabling ALL of the active interrupts.

The 6502 can set or clear selected bits in the interrupt enable
register without affecting the other bits. This is accomplished
by writing to the IER. If bit 7 of the byte written is a 0 then
each 1 in bits 0–6 will clear the corresponding bit in the IER.
For each zero in bits 0–6, the corresponding bit will not be
affected. Selected bits can be SET in a similar manner. In this
case, bit 7 of the written byte should be set to 1. Each 1 in bits
0–6 will then SET the selected bit. A zero will cause the
corresponding bit to remain unaffected. The contents of the
IER can be read by the 6502. Bit 7 is then always read as a logic
1.

Figure 22.19 – Interrupt Flag Register

REG 13 – INTERRUPT FLAG REGISTER

* IF THE CA2/CB2 CONTROL IN THE PCR IS SELECTED AS
“INDEPENDENT” INTERRUPT INPUT, THEN READING OR
WRITING THE OUTPUT REGISTER ORA/ORB WILL NOT
CLEAR THE FLAG BIT. INSTEAD, THE BIT MUST BE
CLEARED BY WRITING INTO THE IFR, AS DESCRIBED
PREVIOUSLY.

SET BY CLEARED BY

CA2 ACTIVE EDGE

CA1 ACTIVE EDGE

COMPLETE 8 SHIFTS

CB2 ACTIVE EDGE
CB1 ACTIVE EDGE
TIME-OUT OF T2

TIME-OUT OF T1

ANY ENABLED
INTERRUPT

READ OR WRITE
REG 1 (ORA)*
READ OR WRITE
REG 1 (ORA)
READ OR WRITE
SHIFT REG
READ OR WRITE ORB*
READ OR WRITE ORB
READ T2 LOW OR
WRITE T2 HIGH
READ T1 LOW OR
WRITE T1 HIGH
CLEAR ALL
INTERRUPTS

 7 6 5 4 3 2 1 0

CA2

CA1

SHIFT REG

CB2
CB1

TIMER 2

TIMER 1

IRQ

415

Figure 22.20 – Interrupt Enable Register

REG 14 – INTERRUPT ENABLE REGISTER

 7 6 5 4 3 2 1 0

0 = INTERRUPT DISABLED

1 = INTERRUPT ENABLED

NOTES:
1. IF BIT 7 IS A “0”, THEN EACH “1” IN BITS 0 - 6 DISABLES THE

CORRESPONDING INTERRUPT.
2. IF BIT 7 IS A “1” THEN EACH “1” IN BITS 0 - 6 ENABLES THE

CORRESPONDING INTERRUPT.
3. IF A READ OF THIS REGISTER IS DONE, BIT 7 WILL BE A “1” AND

ALL OTHER BITS WILL REFLECT THEIR ENABLE/DISABLE STATE.

CA2

CA1

SHIFT REG

CB2

CB1

TIMER 2

TIMER 1

SET/CLEAR

416

417

23 The System VIA
Sheila addresses &40–&4F

The System VIA is responsible for a large amount of control
within the BBC Micro itself. It controls the speech system,
sound system and keyboard. Also, several other sections can
be partially controlled from this VIA. These are the hardware
scrolling, vertical sync pulse interrupt, joysticks input, end of
conversion input from the ADC and a light pen strobe input.

23.1 System VIA line allocation

PA0–PA7

The 6502 CPU does not talk to the speech system, sound
generator or keyboard directly over its data bus. Instead, it
writes to and reads from the 8 bit port A I/O lines. This forms
a ‘slow’ databus over which the CPU can communicate. To
write to this databus, the data direction register A at Sheila
&43 should set all lines as outputs. The 6502 can then write
directly into output register A at Sheila &41. To read from the
slow data bus, DDRA must set all lines as inputs by writing
&00 to Sheila address &43. A direct read from input register
A at Sheila &41 can then be made. NOTE that any reading or
writing over this slow databus will have to be done from
machine code with ALL 6502 interrupts disabled. This is
because the interrupt routines themselves will make extensive
use of the system VIA and keep changing the register values.

CA1 input

This is the vertical sync input from the 6845. CA1 is set up to
interrupt the 6502 every 20 ms (50 Hz) as a vertical sync from
the video circuitry is detected. The operating system changes
the flash colours on the display in this interrupt time so that
they maintain synchronisation with the rest of the picture.

418

CA2 input

This input comes from the keyboard circuit, and is used to
generate an interrupt whenever a key is pressed. See the
keyboard circuit diagram in Appendix J for more details.

PB0–PB2 outputs

These 3 outputs form the address to an 8 bit addressable
latch, IC32 on the main circuit diagram. See the following
‘Addressable Latch’ section.

PB3 output

This output holds the data to be written to the selected
addressable latch bit.

PB4 and PB5 inputs

These are the inputs from the joystick FIRE buttons. They are
normally at logic 1 with no button pressed and change to 0
when a button is pressed. OSBYTE &80 can be used to read
the status of the joystick fire buttons.

PB6 and PB7 inputs from the speech processor

PB6 is the speech processor ‘interrupt’ signal and PB7 is from
the speech processor ‘ready’ signal.

CB1 input

The CB1 input is the end of conversion (EOC) signal from the
7002 analogue to digital converter. It can be used to interrupt
the 6502 whenever a conversion is complete. See chapter 26
on the Analogue to Digital Converter.

CB2 input

This is the light pen strobe signal (LPSTB) from the light pen.
It also connects to the 6845 video processor, see section 18.9.
CB2 can be programmed to interrupt the processor whenever
a light pen strobe occurs. See the light pen example in the
interrupts chapter 13.

419

23.2 The addressable latch

This 8 bit addressable latch is operated from port B lines 0–3
inclusive. PB0–PB2 are set to the required address of the
output bit to be set. PB3 is set to the value which should be
programmed at that bit. An example illustrating how to use
this latch from BASIC is described in conjunction with the
sound generator, see section 23.5. The functions of the 8
output bits from this latch are:–

B0 – Write Enable to the sound generator IC
B1 – READ select on the speech processor
B2 – WRITE select on the speech processor
B3 – Keyboard write enable (see Appendix J)

B4,B5 – these two outputs define the number to be
added to the start of screen address in hardware to
control hardware scrolling:–

Mode Size Start of screen Number to B5 B4
 add

0,1,2 20K &3000 12K 1 1
3 16K &4000 16K 0 0
4,5 10K &5800 (or &1800) 22K 1 0
6 8K &6000 (or &2000) 24K 0 1

B6 – Operates the CAPS lock LED
B7 – Operates the SHIFT lock LED

23.3 The 76489 sound chip

The sound chip on the BBC microcomputer is in itself a very
simple chip. There are three channels for which the frequency
and volume of output can be defined. There is also a fourth
white noise generator. The output from all of these channels
is automatically mixed on chip. The complex sound
commands available from BASIC are very powerful but
require a large amount of time to process, especially if
complex envelopes are defined. In fast machine code
programs it may sometimes be advantageous to write directly
to the sound chip. The example program shows how this can

420

be done. The data to be written into the sound chip is first of
all put onto the slow databus. Note that interrupts are
disabled before this is started. The sound generator write
enable line is then pulled low for at least 8 µs then pulled high
again.

23.3.1 Tone generators

There are 3 tone generators. The frequency of each channel is
determined by 10 bits of data. F9 is the most significant bit.
The frequency of each channel can be calculated as:–

frequency = 4 000 000/32 x 10 bit binary number

The volume level for each channel is variable to 16 different
levels these are:

Bit A3 Bit A2 Bit A1 Bit A0 VOLUME

0 0 0 0 15 (MAX)
0 0 0 1 14
0 0 1 0 13
0 0 1 1 12
0 1 0 0 11
0 1 0 1 10
0 1 1 0 9
0 1 1 1 8
1 0 0 0 7
1 0 0 1 6
1 0 1 0 5
1 0 1 1 4
1 1 0 0 3
1 1 0 1 2
1 1 1 0 1
1 1 1 1 0 (OFF)

421

23.3.2 Noise generator

The noise generator comprises a noise source and volume
control. The noise generator parameters are defined by three
bits.

FB – this bit when set to ‘0’ causes PERIODIC NOISE to be
generated. When set to ‘1’ it causes WHITE NOISE to be
generated.

Noise frequency control – the noise base frequency can be
defined in 4 possible states by bits NF1 and NF0.

NF1 NF0 FREQUENCY

0 0 low
0 1 medium
1 0 high
1 1 tone generator 1 frequency

23.3.3 Sound chip register address field

R2 R1 R0 Description

0 0 0 Tone 3 frequency
0 0 1 Tone 3 volume
0 1 0 Tone 2 frequency
0 1 1 Tone 2 volume
1 0 0 Tone 1 frequency
1 0 1 Tone 1 volume
1 1 0 Noise control
1 1 1 Noise volume

422

23.4 PROGRAMMING BYTE FORMATS

The sound generator is programmed by sending it bytes in
the following format:–

23.4.1 Frequency (First byte)

 Register Address Data

Bit 7 6 5 4 3 2 1 0
 1 R2 R1 R0 F3 F2 F1 F0

23.4.2 Frequency (Second byte)

 Data

Bit 7 6 5 4 3 2 1 0
 0 X F9 F8 F7 F6 F5 F4

Note that the second low order frequency byte may be
continually updated without rewriting the first byte.

23.4.3 Noise source byte

 Register Address

Bit 7 6 5 4 3 2 1 0
 1 R2 R1 R0 X FB NF1 NF0

23.4.4 Update volume level

 Register Address Data

Bit 7 6 5 4 3 2 1 0
 1 R2 R1 R0 A3 A2 A1 A0

423

23.5 Example program for direct control of the sound
generator

 10 REM Demonstration of direct poke to sound chip
 20 PROCINIT
 30 REPEAT
 40 INPUT"Byte to send to sound chip";A$
 50 A% = EVAL(A$)
 60 CALL DIRECT
 70 UNTIL FALSE
 80 DEF PROCINIT
 90 DIM Q% 40
100 OSBYTE = &FFF4
110 FOR C=0 TO 3 STEP 3
120 P% = Q%
130 [OPT C
140 .DIRECT SEI \Disable interrupts
150 PHA
160 LDA #&97
170 LDX #&43 \Data direction register A
180 LDY #&FF \Set all 8 bits as output
190 JSR OSBYTE \Write to SHEILA OSBYTE CALL
200 LDX #&41 \Output register A
210 PLA
220 TAY \Y holds byte to sound chip
230 LDA #&97 \Write to SHEILA OSBYTE CALL
240 JSR OSBYTE \Output to slow data bus
250 LDX #&40 \Output register B
260 LDY #&00 \Set sound chip write pin low
270 JSR OSBYTE
280 LDY #&08 \Set sound chip write pin high
290 JSR OSBYTE
300 CLI \Enable interrupts
310 RTS:]
320 NEXT
330 ENDPROC

Run the example program and enter &80, &20 and &90 to
generate a frequency at maximum volume on channel 3.

23.6 The speech chip

The Speech processor can be added as an optional upgrade. It
can be programmed through OSBYTE calls &9E, &9F and
SOUND &FFxx. The speech data is held in a special serial
speech ROM. The standard one provided with the Acorn
speech upgrade kit has a selection of words spoken by the
newsreader Kenneth Kendall. It is also possible to purchase
serial ROMs for the speech system which contain games.
These plug into the slot on the left hand side of the keyboard.
Again, system software is available to read data from these
ROMs using OSBYTE calls &9E, &9F and *ROM. For more
information about the speech system, refer to the Speech
System User Guide.

424

425

24 The User/Printer VIA
Sheila addresses &60–&6F

Full programming details for the 6522 VIA are contained in
chapter 22. This brief section is designed to help anyone who
specifically wishes to use the USER VIA.

24.1 PORT A – The printer port

All of the port A lines PA0–PA7 are buffered before being
connected to the printer connector. This means that they can
only be operated as output lines, but they do have a much
larger drive capacity than do unbuffered lines. CA1 can be
used directly as described in the general section on 6522s, but
note that it is connected to +5 volts via a 4K7 resistor. CA1
normally acts as an ‘acknowledge’ line when a printer is used.
CA2 is buffered so that it has become an open collector output
only. It usually acts as the printer STROBE line. Note that
CA2 can be connected directly to the edge connector using
link option 1, see Appendix I.

24.2 PORT B – The user port

All of port B lines, ie PB0–PB7 and CB1, CB2 are available
directly on the user port connector. Chapter 22 explains how
port B can be programmed. The diagram below (figure 24.1)
illustrates the connector. The view is shown looking into the
board mounted connector from outside. Note that wires 1 and
20 are the two outermost wires on the ribbon cable. The
‘female’ part to the connector is a standard 20 way IDC
connector. IDC means ‘insulation displacement connector’.
The plug is normally connected to users’ circuits via a length
of special 20 way ribbon cable which is available from most
good computing shops. This cable can be connected to a
circuit directly by soldering the wires to the circuit board, or
indirectly by another IDC plug and header or a DIL header. A
DIL header will plug into any ordinary integrated circuit
socket.

426

24.3 The USER PORT connector

Figure 24.1 – User port connector

20

18

16

14

12

10

8

6

4

2

19

17

15

13

11

9

7

5

3

1

B
O

T
T

O
M

T
O

P

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

CB2

CB1

0V

0V

0V

0V

0V

0V

0V

0V

+5V

+5V

USER PORT CONNECTOR LOOKING INTO SOCKET
MOUNTED ON THE MAIN CIRCUIT BOARD

Note — Pins 1 and 20 connect to the wires at the edge of
the ribbon cable connected to the IDC header.

427

25 Floppy Disc and Econet
Sheila addresses &80–&BF

25.1 The 8271 floppy disc controller – Sheila &80–&9F

The 8271 floppy disc controller chip and its associated
hardware must be fitted to the standard model B before discs
can be used. The upgrade information is in Appendix H. The
function of this chip is to extract data from a disc or to write
data to a disc. Many other tasks have to be performed to
ensure that this one basic task is carried out properly. For
example, the 8271 will detect read errors, refuse to write to a
‘protected’ disc, automatically position the read/write head on
the disc drive plus much more. It is an exceptionally complex
chip, but luckily there are several very powerful filing system
and OSBYTE options available to communicate with the 8271
at a higher level than sending bits to control registers and
examining results bit by bit. Refer to the Disc System User
Guide and chapter 16 on filing systems for more information
about using discs.

This list of 8271 register addresses is included for reference:

Sheila
address Read function Write function

&80 Status register Command register
&81 Result register Parameter register
&82 Reset register
&83 Not used Not used
&84 Read data Write data
 (DMA Ack. set) (DMA Ack. set)

428

25.2 The 68B54 Advanced Data Link Controller – Sheila
&A0–&BF

The 68B54 ADLC is the central component in the Econet
Interface circuit. In an Econet system up to 255 BBC
microcomputers can be connected together. The advantage of
doing this is that they may all share expensive peripheral
devices such as discs and printers. This is of immense use in
an educational environment where a large number of users
can have access to expensive peripherals without purchasing
them for each user. Refer to the Econet Manual and OSBYTEs
&C9, &CE, &CF, &D0 for more information.

The addresses of registers within the 68B54 are given here for
reference:

Sheila
address Write function Read function

&A0 Control Register 1 Status Register 1
&A1 Control Registers 2,3 Status Register 2
&A2 Transmit FIFO Receive FIFO
 (Frame Continue)
&A3 Transmit FIFO Receive FIFO
 (Frame Terminate)

25.3 The Econet station ID register – Sheila &20 Read only

This will only be valid for users on an Econet system. Reading
from this register will return the station ID number. This is set
via links S11 to any number between 0 and 255. The Econet
data link controller circuit produces NMIs to the CPU. These
interrupts are automatically enabled by the hardware every
time when the station ID is read.

429

26 The Analogue to Digital
converter
Sheila addresses &C0–&C2

The analogue to digital converter (ADC) chip provided in the
BBC microcomputer is a 10 bit integrating converter. It has
four input channels which can be selected under software
control. By applying a voltage of between 0 volts and Vref to
the channel inputs, a 10 bit binary number will be generated
which is directly proportional to the applied voltage. For
example applying a voltage Vref/2 would produce a 10 bit
value of approximately 511. Vref itself corresponds to about
1023.

26.1 Programming the Analogue to Digital converter

The analogue to digital conversion is initiated by writing to
the Data Latch/AD start register at Sheila &C0. Bits D1 and D0
together define which one of the four input channels is
selected. Bit D3 defines whether an 8 bit resolution or a 10 bit
resolution conversion should occur. If set to 0, an 8 bit
conversion occurs, if set to 1 a 10 bit conversion occurs. 8 bit
conversions typically take 4 ms to complete whereas 10 bit
conversions typically take 10 ms to complete. Unless high
resolution is required, it is often better to use the fast 8 bit
conversion. If enabled, an interrupt will be generated when
the conversion is complete. This indicates that valid data can
be read from the ADC.

430

26.1.1 Channel Summary:–

Bit 1 Bit 0 Channel Designation
control control number in
 MOS and
 BASIC

 Master Joystick

0 0 1 Left/Right (low = right)
0 1 2 Up/Down (low = down)

 Secondary Joystick

1 0 3 Left/Right (low = right)
1 1 4 Up/Down (low = down)

Relevant OSBYTEs which write to the ADC are &10, &11 and
&BD.

WRITING TO THE ADC

There is one register in the analogue to digital converter
which can be written to.

26.1.2 Data latch and conversion start – Sheila &C0 Write
only

Writing to this register will select the current input channel
and select an 8 or 10 bit conversion. The operation of writing
to this register automatically initiates a conversion.

Bit 0 and Define the input channel as shown in
Bit 1 section 26.1.1
Bit 2 Flag input, normally set to 0
Bit 3 8 bit mode = 0
 10 bit mode = 1
Bits 4–7 not used

431

READING FROM THE ADC

There are three registers in the ADC which can be read
directly, the status register and two data registers.

26.1.3 Status Register – Sheila &C0 Read only

Bit 0 and These define the currently selected input channel
Bit 1 as in the AD start register.
Bit 2 not used
Bit 3 8 bit mode = 0

10 bit mode = 1
Bit 4 2nd most significant bit (MSB) of conversion.
Bit 5 MSB of conversion.
Bit 6 0 = busy, 1 = not busy
Bit 7 0 = conversion completed
 1 = conversion not completed

26.1.4 High data byte – Sheila &C1 Read only

This byte contains the 8 most significant bits of the analogue
to digital conversion.

26.1.5 Low data byte – Sheila &C2 Read only

Bits 7 to bit 4 define the four low order bits of a 12 bit
conversion. In 8 bit only mode, all four bits are inaccurate. In
10 bit mode, bits 7 and 6 are accurate. Bits 5 and 4 are likely to
be inaccurate but this will depend upon the particular
qualities of individual 7002 chips. Bits 3–0 are always set to
low.

OSBYTEs &80, &BC, &BD and &BE are relevant when
reading from the ADC.

432

26.2 Hardware connections for a joystick

Figure 26.1 – Connections for Joysticks

A 15 way ‘D’ type connector is provided on the rear of all
model Bs. This is the analogue port connector. The pin
designations and layout are illustrated in figure 26.1.
Connections required for the various joysticks are also
illustrated. Note the two ‘fire’ buttons are there as well. Their
states can be determined using OSBYTE &80.

Apart from giving the information needed to construct
joysticks, this diagram should be helpful to anyone wishing to
be a bit more adventurous with their hardware. One use for
the full 10 bits available would be communication with a
graphics tablet. By using high-quality variable resistors and a
series of pulleys or lever arms, the position of a pointer can be
determined. This would allow high resolution graphic
drawing to be entered into the BBC microcomputer for
display on the high resolution screen. Some other possibilities
include measuring temperature, light level, pH (hydrogen ion
concentration), current, voltage, resistance or pressure.

8 7 6 5 4 3 2 1

15 14 13 12 11 10 9

PB0
FIRE
BUTTON

PB1
FIRE
BUTTON

JOYSTICK 1

JOYSTICK 2

CH0

CH1

CH2 CH3

ANALOGUE
GROUND

CH1 0V ANALOGUE
GROUND

CH3 0V 0V +5V

CH0 VREF PB0 CH2 VREF PB1 LPSTB

VIEW INTO ANALOGUE PORT CONNECTOR SHOWING
CONNECTIONS FOR BOTH JOYSTICKS

433

27 The Tube
Sheila addresses &E0–&FF

27.1 General introduction to the Tube

The BBC microcomputer is provided with three basic methods
of expansion. The user port and the one megahertz bus are
covered in other chapters. This chapter covers the third
expansion route – the Tube. The Tube itself is just a fast
parallel communication link between two computers. First of
all, the basic fundamentals required of any Tube system are
explained followed by some specific examples of its use with
different processors.

The Tube connector on the BBC microcomputer simply
consists of the system data bus, the lower half of the system
address bus and some miscellaneous control lines. These
connect via a ribbon cable to a second processor card. The
second processor is connected to the Tube interface by a Tube
ULA (uncommitted logic array) chip which has been designed
specifically for this application by Acorn.

The Tube ULA provides a completely asynchronous parallel
interface between the two processor systems. The original
BBC microcomputer is the ‘HOST’ system and the new second
processor forms the heart of the ‘PARASITE’ system. To each
system, the Tube resembles a conventional peripheral device
which occupies 8 bytes of memory or I/O space. Four
byte-wide read only and four byte-wide write only latches are
provided within this address space, together with their
associated control registers.

The byte-wide communication paths fall into two distinct
categories. The first set are simply latches, so data written in
on one side is read out directly on the other side. The second
set are FIFO (first in first out) buffers which store two or more
bytes at a time. These bytes can then be read out on the other
side of the Tube in the same order that they were entered into
the buffer.

434

Data and messages are passed back and forth through the
various registers according to carefully designed software
protocols. Proper allocation of the registers to specific tasks
allows both systems to operate at maximum efficiency. For
example, complex VDU plot and colour fill commands can be
sent via the largest FIFO from the parasite to the host
processor. The parasite processor will not then have to wait
for the host to finish processing the laborious VDU
commands before continuing with its language processing.

27.2 Some second processors and their uses

Currently, three second processors can be used on the Tube.
These are a 6502, Z80 and 16032.

27.2.1 The 6502 Second processor

The 6502B on the Tube is a faster 3MHz version of the 2Mhz
6502A used in the main BBC microcomputer. It is provided
with a full 64K of RAM. When the machine is powered up,
the default language is copied across from the main BBC to
the Tube processor. From then on the main BBC
microcomputer 6502A is turned into a servant. Its purpose is
that of handling all input from the RS423, keyboard, joysticks
etc. and output to the screen, sound generator etc. It sends its
input across the Tube to the fast 6502B and executes
laborious tasks which the fast 6502B sends back. All of the
processing for languages or applications packages are
performed by the Tube processor. The advantage is that the
work load is shared out. Because the fast 6502B doesn’t have
to worry about interrupts from any of the devices connected
to a BBC microcomputer, it can process at a very fast speed.
The old 6502A does all output like plotting graphics on the
screen, but it doesn’t ever need to do any language
processing. Programs will generally run at almost twice their
original speed.

If the above process sounds rather complex, then don’t worry.
BBC BASIC will appear to operate almost exactly as normal
over the Tube. The major difference will be the extra memory
available. Since all of the screen memory resides in the host
processor, the parasite has all of its memory available for

435

program and data storage. Naturally, 16K of the parasite’s
RAM will be required for BASIC, but most of the remaining
48K is available to the programmer (compared with a
maximum of 27K on an ordinary BBC microcomputer). The
16K operating system ROM stays in the host processor’s
memory map and is not transferred across the Tube.

27.2.2 The Z80 Second processor

Like the 6502, the Z80 is a microprocessor, but with a different
instruction set. It can also operate over the Tube. The set up is
still very similar to that for a 6502 since the Z80 does all
language processing and the BBC microcomputer 6502 does all
of the I/O processing. Machine code programs written to run
on the BBC micro will not operate with a Z80 Tube. However,
the vast amount of Z80 software which is available will
operate on a Z80 Tube machine. The operating system called
CP/M is supplied as standard with all Z80 second processors.
There is a large quantity of CP/M software (business
packages, most languages, games + almost everything else)
available on other CP/M machines. Some of this software will
operate on the BBC microcomputer with a Z80 second
processor, provided that the disc format is correct.

27.2.3 The 16032 Second processor

As with the 6502 and Z80 Tubes, the old BBC micro 6502 still
does all input/output and the 16032 runs languages. Unlike
the 6502 and Z80 which are both relatively old 8 bit
processors, the 16032 is one of a new generation of 16 bit
processors. Its internal structure operates on 32 bits, and it has
a very nicely organised instruction set which is very powerful.
With one of these sitting on the end of the Tube, and a Hard
Disc Drive connected to the host processor, the computing
power available will be equal that available on many
mainframe computers. One standard operating system
provided on 16032 Tube machines will be UNIX.

436

437

28 The One Megahertz bus
28.1 Introduction to the 1MHz bus

There are basically two routes which a user can take towards
adding his own hardware. One of these is the 6522 USER
port. The problem with the USER port is that there are only 8
I/O lines and a couple of control lines. For more complex
peripherals, direct access to the 6502 address and data buses
are required. This interface is provided by the one megahertz
bus.

Physically, the one megahertz bus interface is a 34 pin
connector mounted at the front edge of the main BBC
microcomputer circuit board. It is accessed from underneath
the keyboard. A buffered databus and the lower 8 bits of the
address bus are connected to this socket together with a series
of useful control signals. Whilst the designer could use the
one megahertz bus in innumerable different configurations,
Acorn has defined how the bus should be used to maintain
compatibility with other devices.

The standard uses of the one megahertz bus allow up to 64K
bytes of paged memory to be used as well as 255 direct
memory mapped devices (plus the paging register). ‘FRED’ is
normally assigned as the memory mapped I/O page and ‘JIM’
is normally assigned as the 64K memory expansion page.
Communication between FRED, JIM and programs should be
implemented using OSBYTEs &92, &93, &94 and &95.

28.2 ‘FRED’ and Memory Mapped Hardware

Page &FC in the BBC microcomputer is reserved for
peripherals with small memory requirements. The initial
allocations of space in FRED are:–

&FC00 – &FC0F Test Hardware
&FC10 – &FC13 Teletext
&FC14 – &FC1F Prestel
&FC20 – &FC27 IEEE 488 Interface
&FC28 – &FC2F Acorn Expansion, currently unused

438

&FC30 – &FC3F Cambridge Ring Interface
&FC40 – &FC47 Winchester Disc Interface
&FC48 – &FC7F Acorn Expansion, currently unused
&FC80 – &FC8F Test Hardware
&FC90 – &FCBF Acorn Expansion, currently unused
&FCC0 – &FCFE User Applications
&FCFF Paging Register for JIM

When designing circuits to add on to the one megahertz bus,
the ‘Not page &FC’ (NPGFC) signal together with the lower 8
address lines should be decoded to select the add-on circuit.
Note that a ‘clean up’ circuit will be required on the NPGFC
signal in most applications. This is described in section 28.5.
For very keen constructors who require more than the 63 page
&FC locations reserved for User Applications, either page
&FD can be used for memory mapped peripherals or other
FRED locations can be used. Using reserved FRED locations in
this way will mean that the hardware add-ons specified for
those locations cannot be added in future if user hardware is
already using the slot.

28.3 ‘JIM’ and 64K Paged Memory

28.3.1 General description of JIM

Page &FD in the BBC microcomputer address space is used in
conjunction with the paging register in FRED to provide an
extra 64K of memory. This memory is accessed one page at a
time. The particular page being accessed is selected by the
value in FRED’s paging register, and is referred to as the
‘Extended page number’. Note that a ‘Not page &FD’
(NPGFD) signal is available on the one megahertz bus
connector. Accessing memory through the 1MHz bus will
generally be about twenty times slower than accessing
memory directly.

28.3.2 Extended page allocation

‘Extended pages’ &00 – &7F in JIM are reserved for use by
Acorn. The other pages &80 – &FF are reserved for user
applications.

439

Figure 27.1 – The 1MHz bus connector.

34 33

32 31

30 29

28 27

26 25

24 23

22 21

20 19

18 17

16 15

14 13

12 11

10 9

8 7

6 5

4 3

2 1

A7 A6

A5 A4

A3 A2

A1 A0

0V D7

D6 D5

D4 D3

D2 D1

D0 0V

AUDIO IN 0V

RST 0V

NPGFD 0V

NPGFC 0V

NIRQ 0V

NNMI 0V

1MHzE 0V

R/W 0V

B
O

T
T

O
M

T
O

P

1MHz BUS CONNECTOR LOOKING INTO
SOCKET MOUNTED ON MAIN CIRCUIT BOARD

Note—Pins 1 and 34 connect to the wires at the edge of
the ribbon cable, connected to the IDC header.

440

28.4 Bus signal definitions

The one megahertz bus connector is illustrated in figure 28.1.
The specification for the signals on the one megahertz bus
are:–

0 volts This is connected to the main system 0
volts line. The reason for putting 0V
lines between the active signal lines is to
reduce the interference between
different signals.

R/W (pin 2) This is the read-not-write signal from
the 6502 CPU, buffered by two 74LS04
inverters.

1MHzE (pin 4) This is the 1MHz system timing clock. It
is a 50% duty-cycle square wave. The
6502 CPU is operating at 2MHz, so the
main processor clock is stretched
whenever 1MHz bus peripherals are
being accessed. The trailing edges of the
1MHzE and 2MHz processor clock are
then coincidental. The processor clock is
only ever truly 2MHz when accessing
main memory.

NNMI (pin 6) Not Non-Maskable Interrupt. This is
connected directly to the 6502 NMI
input. It is pulled up to +5 volts with a
3K3 resistor. Use of Non-Maskable
Interrupts on the BBC microcomputer is
only advisable after the chapter on
interrupts has been read and thoroughly
understood. Both Disc and Econet
systems rely heavily upon NMIs for
their operation so take care. Note that
NMIs are triggered on negative going
edges of NMI signals.

441

NIRQ (pin 8) Not Interrupt Request. This is connected
directly to the 6502 IRQ input. Any
devices connected to this input should
have open collector outputs. The line is
pulled up to +5 volts with a 3K3 resistor.
Interrupts from the 1MHz bus must not
occur until the software on the main
system is able to cope with them. All
interrupts must therefore be disabled
after a reset. Note that the main system
software may operate very slowly if
considerable use is made of interrupts.
Certain functions such as the real time
clock which is incremented every 10 mS
will be affected if interrupts are masked
for more than this period. Refer to the
chapter on interrupts, section 13.1 for
more information.

NPGFC (pin 10) Not page &FC. This signal is derived
from the 6502 address bus. It goes low
whenever page &FC is written to or read
from. FRED is the name given to this
page in memory and it is described in
more detail in section 28.2.

NPGFD (pin 12) Not page &FD. This signal is derived
from the 6502 address bus. It goes low
whenever page &FD is accessed. JIM is
the name given to this page in memory
and it is in section 28.3.

NRST (pin 14) Not RESET. This is an active low output
from the system reset line. It may be
used to initialise peripherals whenever a
power up or a BREAK causes a reset.

442

Audio Input This is an input to the audio amplifier on
(pin 16) the main computer. The amplified signal

is produced over the speaker on the
keyboard. Its input impedance is 9K
Ohms and a 3 volt RMS signal will
produce maximum volume on the
speaker. Note however that signals as
large as this will cause distortion if the
sound or speech is used at the same
time.

D0 – D7 (pins 18 – This is a bi-directional 8 bit data bus
24) which is connected via a 74LS245 buffer

(IC72) to the CPU. The direction of data
transfer is determined by the R/W line
signal. The buffer is enabled whenever
FRED or JIM are accessed.

A0 – A7 (pins 27 – These are connected directly to the
34) lower 8 CPU address lines via a 74LS244

buffer (1C71) which is always enabled.

28.5 ‘Cleaning up’ FRED and JIM’s page selects

All 1MHz peripherals are clocked by a 1MHz 50% duty cycle
square wave, designated as 1MHzE in figure 28.2. This clock
rate was chosen to allow chips such as 6522 VIAs to use their
internal timing elements correctly. The system 6502 CPU is
normally clocked at twice the speed of the peripherals and so
it operates at 2MHz. However, if the CPU wishes to access
any device on the 1MHz bus, the processor has to be slowed
down. The effect of this slow down circuit is illustrated in
figure 28.2. After generating a valid 1MHz address, the slow
down circuit stretches the clock high period (from ‘T’ to ‘U’).
Unfortunately, two major problems arise from this mode of
operation:

443

Figure 28.2 – 1MHz bus timing showing page select signals

C
P

U
 C

LO
C

K
 W

IT
H

C
Y

C
LE

 S
T

R
E

T
C

H
IN

G
(M

A
S

T
E

R
 2

M
H

z
C

LO
C

K
S

H
O

W
N

 D
O

T
T

E
D

)

1M
H

zE

A
D

D
R

E
S

S
 B

U
S

N
P

G
F

C
(o

r
N

P
G

F
D

)

C
N

P
G

F
C

1
(o

r
C

N
P

G
F

D
1)

C
N

P
G

F
C

2
(o

r
C

N
P

G
F

D
2)

T
U

P
Q

P
Q

R

Q
Q

S
V

t la
g

t la
g

444

28.5.1 Spurious address decoding ‘glitches’ – PROBLEM 1

Addresses on the system address bus will only usually change
when the 2MHz processor clock is low. However, the 1MHz
clock is alternately low, then high when the CPU addresses
change. This gives rise to the address decoding glitches
labelled ‘P’ and ‘Q’ in figure 28.2. The ‘Q’ glitches are not
normally important because the 1MHzE clock is then low. The
‘P’ glitches can cause problems because the 1MHzE signal is
then high. Spurious pulses may therefore occur on the various
chip select pins, leading to possible malfunction of some
devices.

28.5.2 Double accessing of 1MHz bus devices – PROBLEM 2

If a 1MHz bus device is accessed during a period when the
1MHzE clock is high (point ‘R’ in figure 28.2), that device will
be accessed immediately. The device will then be accessed
again when 1MHzE is next high (point ‘V’ in figure 28.2). This
is because the CPU clock is held high until the next coincident
falling edge of the 2MHz and 1MHz clocks (point ‘U’). Double
accessing a peripheral does not normally present a problem.
However, if reading from or writing to a device has some
other function, such as clearing an interrupt flag, a problem
may occur.

28.5.3 ‘Clean up’ circuit 1

This standard ‘clean up’ circuit for the page select signals is
shown in figure 28.3. Three NOR gates are used to create a
standard R-S flip-flop with a gated input. The ‘clean page
select’ output (CNPGFC1) can only be set low if 1MHzE is
low. The net effect of the circuit is illustrated in figure 28.2.
Both of the problems outlined above are overcome, since the
‘P’ glitches are removed and the page select only goes low at
‘S’, after the 1MHzE clock has gone low. The ‘Q’ glitches due
to spurious addresses whilst 1MHzE is low are still there. In
most applications, this will not affect circuit operation, but
occasionally a totally glitch free page select will be required.
Circuit 2 will provide this type of page select.

445

Figure 28.3 – ‘Clean up’ circuit 1

1

2

3

4

5

6

70V

14

13

12

11

10

9

8

+5V

74LS02
PIN CONNECTIONS

1MHzE

NPGFC

or NPGFD

CLEAN NPGFC
or

CLEAN NPGFD

CIRCUIT TO REMOVE ‘GLITCHES’ FROM
NPGFC OR NPGFD ON THE 1MHz BUS

446

28.5.4 ‘Clean up’ circuit 2

In situations in which a 100% ‘clean’ page select signal is
required, circuit 2 which is illustrated in figure 28.4 should be
used. Before CNPGFC can go low, a valid page address with
1MHzE low must occur. The page low is then latched into a
D-type flip-flop on the rising edge of the 1MHzE clock. As
shown in figure 28.2, CNPGFC2 will go low a time tlag (40nS)
after 1MHzE goes high and it will remain valid until 40nS after
1MHzE has gone low again. Take care if any of the lines on
the 1MHz bus are buffered, because delays introduced by
buffers could make data invalid when it is latched. Refer to
the precise timing information in section 28.6.5 for more
details.

Figure 28.4 – ‘Clean up’ circuit 2

NPGFC
(or NPGFD)

1MHzE

CNPGFC2
(or CNPGFD2)

+5V

D +5V Q

CLK PR Q

½LS74

¼LS32

447

28.6 Hardware requirements for 1MHz bus peripherals

All additional hardware designed to operate from the 1MHz
bus must conform to the following standards:

28.6.1 Power supply

No power should be drawn from the BBC microcomputer. All
peripherals should have their own integral power supply, or
use a separate power supply unit.

28.6.2 Logic line loading

No more than one low power Schottky TTL load should be
presented to any of the logic lines by a peripheral. In most
instances, this means that all logic lines will have to be
buffered for each peripheral.

28.6.3 Connection to the BBC microcomputer

Connection to the BBC microcomputer should be via a 600mm
length of 34-way ribbon cable terminated with a 34-way IDC
socket. The 1MHz bus connections should ‘feed through’ the
unit, ie. a 34-way output header plug connector should be
provided so that more devices can be connected as required.

28.6.4 Bus termination

All bus lines except NRST, NNMI and NIRQ should be
provided with the facility for adding optional termination.
The recommended way of terminating lines is to connect each
one to +5V with a 2K2 resistor and to 0V with a 2K2 resistor

28.6.5 Timing requirements

The 1MHz bus timing requirements are illustrated in the
timing diagram, figure 28.5. It should be noted that these
timings are based on the assumption of only one peripheral
being attached to the bus. Heavier loading may extend the rise
and fall times of 1MHzE with possible adverse effects on
timings.

448

Figure 28.5 – 1MHz bus timing

The timing requirements are:

Description Symbol Min. Max.

Address (and Read/Write) t as 300nS l000nS
Set-up time

Address (and Read/Write) t ah 30nS –
Hold time

NPGFC & NPGFD Set-up time t pgs 250nS l000nS

NPGFC & NPGFD Hold time t pgh 30nS –

Write data set-up time t dsw – 150nS

Write data hold time t dhw 50nS –

Read data set-up time t dsr 200nS –

Read data hold time t dhr 30nS –

1 MHzE

ADDRESS AND
READ/WRITE LINES

NPGFC, NPGFD

DATA (WRITE CYCLE)

DATA (READ CYCLE)

tas tah

tpgs tpgh

tdsw tdhw

tdsr

tdhr

449

Appendix A – *FX/OSBYTE call index
 brief description dec. hex.

*CODE perform *CODE 136 88

*MOTOR perform *MOTOR 137 89

*OPT perform *OPT 139 8B

*ROM perform *ROM 141 8D

*TAPE perform *TAPE 140 8C

*TV perform *TV 144 90

ADC select channels sampled 16 10
 force ADC conversion 17 11
 read ADC channel 128 80
 read current ADC channel 188 BC
 read/write max channel number 189 BD
 read ADC conversion type 190 BE

BELL/ctrl G read/write BELL channel number 211 D3
 read/write BELL envelope number 212 D4
 read/write BELL frequency 213 D5
 read/write BELL duration 214 D6

BREAK/reset read/write ESCAPE, BREAK effect 200 C8
 read/write message + !BOOT opts 215 D7
 read/write BREAK intercept code 247 F7
 + 248 F8
 + 249 F9
 read/write last BREAK type 253 FD
 read/write start up options 255 FF

450

 brief description dec. hex.

buffer flush selected class 15 0F
 flush particular buffer 21 15
 get buffer status 128 80
 insert value into buffer 138 8A
 get character from buffer 145 91
 examine buffer status 152 98
 insert character into input buffer 153 99

bus read from FRED 146 92
 write to FRED 147 93
 read from JIM 148 94
 write to JIM 149 95
 read from SHEILA 150 96
 write to SHEILA 151 97

cursor enable cursor editing 4 04
 read text cursor position 134 86
 read character at cursor 135 87
 read/write cursor editing state 237 ED

Econet read/write net keyboard disable 201 C9
 read/write OS call intercept 206 CE
 read/write OSRDCH intercept 207 CF
 read/write OSWRCH intercept 208 D0

ESCAPE clear ESCAPE condition 124 7C
 set ESCAPE condition 125 7D
 acknowledge ESCAPE 126 7E
 read/write ESCAPE, BREAK effect 200 C8
 read/write ESCAPE key value 220 DC
 read/write ESCAPE key status 229 E5
 read/write ESCAPE effects flag 230 E6

events disable event 13 0D
 enable event 14 0E

explode character definition RAM 20 14
 read/write explosion state 182 B6

451

 brief description dec. hex.

files close EXEC or SPOOL files 119 77
 check for EOF of open file 127 7F
 fast Tube BPUT 157 9D
 read/write CFS timeout counter 176 B0
 *TAPE/*ROM switch 183 B7
 read/write EXEC file handle 198 C6
 read/write SPOOL file handle 199 C7

flashing flashing colour mark duration 9 09
 flashing colour space duration 10 0A
 read/write flash counter 193 C1
 read/write mark period count 194 C2
 read/write space period count 195 C3

input select input stream 2 02
 read/write input source 177 B1

keyboard auto-repeat delay 11 0B
 auto-repeat rate 12 0C
 reflect keyboard status in LEDs 118 76
 write current keys pressed 120 78
 perform keyboard scan 121 79
 perform keyboard scan from 16 122 7A
 read key with time limit 129 81
 read key translate address 172 AC
 + 173 AD
 read/write keyboard semaphore 178 B2
 read/write auto-repeat delay 196 C4
 read/write auto-repeat period 197 C5
 read/write net keyboard disable 201 C9
 read/write keyboard status 202 CA
 read/write TAB key value 219 DB
 read/write ESCAPE key value 220 DC

452

 brief description dec. hex.

memory character definition RAM 20 14
 read high order address 130 82
 read top of OS RAM (OSHWM) 131 83
 read bottom of display (HIMEM) 132 84
 read hypothetical HIMEM 133 85
 read/write primary OSHWM 179 B3
 read/write current OSHWM 180 B4
 read/write font explosion state 182 B6
 read/write ESCAPE, BREAK effect 200 C8
 read/write location &280 240 F0
 read/write user OSBYTE location 241 F1
 read/write location &28A 250 FA
 read/write location &28B 251 FB
 read/write available RAM 254 FE

O.S. version number 0 00
read machine type 129 81

 read address of OS variables 166 A6
 + 167 A7

output select output stream 3 03
 read/write output status 236 EC

paged ROM enter language ROM 142 8E
 issue ROM service request 143 8F
 read address of ROM pointers 168 A8
 + 169 A9
 read address of ROM information 170 AA
 + 171 AB
 read ROM active at last BRK 186 BA
 BASIC ROM number 187 BB
 read/write current language ROM 252 FC

printer printer destination 5 05
 set printer character ignored 6 06
 printer driver going dormant 123 7B
 read/write printer destination 245 F5
 read/write character ignored 246 F6

453

 brief description dec. hex.

RS423 RX baud rate 7 07
 TX baud rate 8 08
 read/write RS423 mode 181 B5
 read/write RS423 use flag 191 BF
 read RS423 control flag 192 C0
 read/write RS423 handshake 203 CB
 read/write input suppression flag 204 CC
 read/write RS423/cassete select 205 CD

serial read/write 6850 control register 156 9C
 read/write IRQ mask, 6850 232 E8
 read RAM copy of serial ULA reg. 242 F2

soft keys disable cursor editing 4 04
 reset soft keys 18 12
 read/write key string length 216 D8
 read/write &C0 to &CF status 221 DD
 read/write &D0 to &DF status 222 DE
 read/write &E0 to &EF status 223 DF
 read/write &F0 to &FF status 224 E0
 read/write function key status 225 E1
 read/write SHIFT fn key status 226 E2
 read/write CTRL fn key status 227 E3
 read/write CTRL+SHIFT fn status 228 E4
 read/write consistency flag 244 F4

sound read/write sound suppression 210 D2

speech read from speech processor 158 9E
 write to speech processor 159 9F
 read/write speech suppression 209 D1
 read speech presence 235 EB

timer read/write timer switch state 243 F3

Tube fast Tube BPUT 157 9D
 read Tube presence 234 EA

454

 brief description dec. hex.

user user OSBYTE call 1 01
 read/write user OSBYTE location 241 F1

vertical sync wait for vertical sync 19 13

VDU read VDU status 117 75
 read VDU variable value 160 A0
 read address of VDU variables 174 AE
 + 175 AF
 read/write VDU queue length 218 DA

VIA/6522 read/write IRQ mask, user VIA 231 E7
 read/write IRQ mask, system VIA 233 E9

video flashing colour mark duration 9 09
 flashing colour space duration 10 0A
 wait for vertical sync 19 13
 write to ULA control register 154 9A
 write to ULA palette register 155 9B
 read RAM copy of ULA ctrl reg. 184 B8
 read RAM copy of ULA palette reg. 185 B9
 read/write flash counter 193 C1
 read/write mark period count 194 C2
 read/write space period count 195 C3
 read/write lines from page halt 217 D9

455

Appendix B – Operating System calls summary
Routine Vector Summary of function
Name Address Name Address

 USERV 200 The user vector
 BRKV 202 The BRK vector
 IRQ1V 204 Primary interrupt vector
 IRQ2V 206 Unrecognised IRQ vector
OSCLI FFF7 CLIV 208 Command line interpreter
OSBYTE FFF4 BYTEV 20A *FX/OSBYTE call
OSWORD FFF1 WORDV 20C OSWORD call
OSWRCH FFEE WRCHV 20E Write character
OSNEWL FFE7 – – Write LF,CR to screen
OSASCI FFE3 – – Write character &0D=LF,CR
OSRDCH FFE0 RDCHV 210 Read character
OSFILE FFDD FILEV 212 Load/save file
OSARGS FFDA ARGSV 214 Load/save file data
OSBGET FFD7 BGETV 216 Get byte from file
OSBPUT FFD4 BPUTV 218 Put byte in file
OSGBPB FFD1 GBPBV 21A Multiple BPUT/BGET
OSFIND FFCE FINDV 21C Open or close file
 FSCV 21E File system control entry
 EVNTV 220 Event vector
 UPTV 222 User print routine
 NETV 224 Econet vector
 VDUV 226 Unrecognised VDU commands
 KEYV 228 Keyboard vector
 INSV 22A Insert into buffer vector
 REMV 22C Remove from buffer vector
 CNPV 22E Count/purge buffer vector
 IND1V 230 Spare vector
 IND2V 232 Spare vector
 IND3V 234 Spare vector
NVWRCH FFCB – – Non-vectored write character
NVRDCH FFC8 – – Non-vectored read character
GSREAD FFC5 – – Read character from string
GSINIT FFC2 – – String input initialise
OSEVEN FFBF – – Generate an event
OSRDRM FFB9 – – Read byte in paged ROM

456

Appendix C – Key Values Summary
Key/ ASCII INKEY Internal Key No.
character dec. hex. dec. hex. dec. hex.

SPACE 32 20 – 99 9D 98 62
! 33 21
" 34 22
35 23
$ 36 24
% 37 25
& 38 26
‘ 39 27
(40 28
) 41 29
* 42 2A
+ 43 2B
, 44 2C –103 99 102 66
– 45 2D – 24 E8 23 17
. 46 2E –104 98 103 67
/ 47 2F –105 97 104 68
0 48 30 – 40 D8 39 27
1 49 31 – 49 CF 48 30
2 50 32 – 50 CE 49 31
3 51 33 – 18 EE 17 11
4 52 34 – 19 ED 18 12
5 53 35 – 20 EC 19 13
6 54 36 – 53 CB 52 34
7 55 37 – 37 DB 36 24
8 56 38 – 22 EA 21 15
9 57 39 – 39 D9 38 26
: 58 3A – 73 B7 72 48
; 59 3B – 88 A8 87 57
< 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40 – 72 B8 71 47
A 65 41 – 66 BE 65 41
B 66 42 –101 9B 100 64
C 67 43 – 83 AD 82 52
D 68 44 – 51 CD 50 32
E 69 45 – 35 DD 34 22
F 70 46 – 68 BC 67 43
G 71 47 – 84 AC 83 53
H 72 48 – 85 AB 84 54
I 73 49 – 38 DA 37 25
J 74 4A – 70 BA 69 45
K 75 4B – 71 B9 70 46
L 76 4C – 87 A9 86 56
M 77 4D –102 9A 101 65
N 78 4E – 86 AA 85 55
O 79 4F – 55 C9 54 36
P 80 50 – 56 C8 55 37
Q 81 51 – 17 EF 16 10

457

Key/ ASCII INKEY Internal Key No.
character dec. hex. dec. hex. dec. hex.

R 82 52 – 52 CC 51 33
S 83 53 – 82 AE 81 51
T 84 54 – 36 DC 35 23
U 85 55 – 54 CA 53 35
V 86 56 –100 9C 99 63
W 87 57 – 34 DE 33 21
X 88 58 – 67 BD 66 42
Y 89 59 – 69 BB 68 44
Z 90 5A – 98 9E 97 61
[91 5B – 57 C7 56 38
\ 92 5C –121 87 120 78
] 93 5D – 89 A7 88 58
^ 94 5E – 25 E7 24 18
_ 95 5F – 41 D7 40 28
£ 96 60
a 97 61
b 98 62
c 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
j 106 6A
k 107 6B
l 108 6C
m 109 6D
n 110 6E
o 111 6F
p 112 70
q 113 71
r 114 72
s 115 73
t 116 74
u 117 75
v 118 76
w 119 77
x 120 78
y 121 79
z 122 7A
{ 123 7B
| 124 7C
} 125 7D
~ 126 7E

458

Key/ ASCII INKEY Internal Key No.
character dec. hex. dec. hex. dec. hex.

ESCAPE 27 1B –113 8F 112 70
TAB 9 09 – 97 9F 96 60
CAPS LOCK – 65 BF 64 40
CTRL – 2 FE 1 01
SHIFT LOCK – 81 AF 80 50
SHIFT – 1 FF 0 00
DELETE 127 7F – 90 A6 89 59
COPY 135 87 –106 96 105 69
RETURN 13 0D – 74 B6 73 49
UP CURSOR 139 8B – 58 C6 57 39
DOWN CURSOR 138 8A – 42 D6 41 29
LEFT CURSOR 136 88 – 26 E6 25 19
RIGHT CURSOR 137 89 –122 86 121 79
f0 – 33 DF 32 20
f1 –114 8E 113 71
f2 –115 8D 114 72
f3 –116 8C 115 73
f4 – 21 EB 20 14
f5 –117 8B 116 74
f6 –118 8A 117 75
f7 – 23 E9 22 16
f8 –119 89 118 76
f9 –120 88 119 77

Start up option switch (on front of keyboard)

bit 0 9 09
bit 1 8 08
Bit2 7 07
Bit3 6 06
Bit4 5 05
Bit5 4 04
Bit6 3 03
Bit7 2 02

459

Appendix D – VDU Code Summary
dec hex CTRL +bytes function

0 00 @ 0 Does nothing
1 01 A 1 Send next character to printer only
2 02 B 0 Enable printer
3 03 C 0 Disable printer
4 04 D 0 Write text at text cursor
5 05 E 0 Write text at graphics cursor
6 06 F 0 Enable VDU drivers
7 07 G 0 Make a short beep (BEL)
8 08 H 0 Move cursor back one character
9 09 I 0 Move cursor forward one character
10 0A J 0 Move cursor down one line
11 0B K 0 Move cursor up one line
12 0C L 0 Clear text area
13 0D M 0 Carriage return
14 0E N 0 Paged mode on
15 0F O 0 Paged mode off
16 10 P 0 Clear graphics area
17 11 Q 1 Define text colour
18 12 R 2 Define graphics colour
19 13 S 5 Define logical colour
20 14 T 0 Restore default logical colours
21 15 U 0 Disable VDU drivers or delete current line
22 16 V 1 Select screen MODE
23 17 W 9 Re-program display character
24 18 X 8 Define graphics window
25 19 Y 5 PLOT K,X,Y
26 1A Z 0 Restore default windows
27 1B [0 ESCAPE value
28 1C \ 4 Define text window
29 ID] 4 Define graphics origin
30 1E ^ 0 Home text cursor to top left of window
31 1F _ 2 Move text cursor to X,Y
127 7F DEL 0 Backspace and delete

460

Appendix E – Plot Number Summary
0 Move relative to last point
1 Draw relative to last point in current foreground colour
2 Draw relative to last point in logical inverse colour
3 Draw relative to last point in current background colour
4 Move absolute
5 Draw absolute in current foreground colour
6 Draw absolute in logical inverse colour
7 Draw absolute in current background colour

Higher PLOT numbers have other effects which are related to
the effects given by the values above.

8–15 Last point in line omitted when ‘inverted’ plotting used

16–23 Using a dotted line

24–31 Dotted line, omitting last point

32–63 Reserved for Graphics Extension ROM

64–71 Single point plotting

72–79 Horizontal line filling

80–87 Plot and fill triangle

88–95 Horizontal line blanking (right only)

96–255 Reserved for future expansions

Horizontal line filling

These PLOT numbers start from the specified X,Y
co-ordinates. The graphics cursor is then moved left until the
first non-background pixel is encountered. The graphics
cursor is then moved right until the first non-background
coloured pixel is encountered on the right hand side. If the
PLOT number is 73 or 77 then a line will be drawn between
these two points in the current foreground colour. If the
PLOT number is 72 or 76 then no line is drawn but the cursor
movements are made (these may be read using OSWORD call
with A=&D/13, see chapter 9).

461

Horizontal line blanking right

These PLOT numbers can be used to ‘undraw’ an object on
the screen. They have an the opposite effect to those of the
horizontal line filling functions except that the graphics cursor
is moved right only. PLOT numbers 91 and 95 will cause a
line to be drawn from the specified co-ordinates to the nearest
background coloured pixel to the right in the background
colour. PLOT numbers 89 and 93 move the graphics cursor
but do not cause the line to be blanked.

462

Appendix F – Screen mode layouts

MODE 0 Screen layout

Graphics 640 x 256
Colours 2
Text 80 x 32

Registers

R0 Horizontal total &7F (127)
R1 Characters per line &50 (80)
R2 Horizontal sync position &62 (98)
R3 Horizontal sync width &08 (8)
 Vertical sync time &02 (2)
R4 Vertical total &26 (38)
R5 Vertical total adjust &00 (0)
R6 Vertical displayed characters &20 (32)
R7 Vertical sync position &22 (34)
R8 Interlace mode bits 0,1 &01 (1)
 Display delay bits 4,5 &00 (0)
 Cursor delay bits 6,7 &00 (0)
R9 Scan lines per character &07 (7)
R10 Cursor start, blink, type &67 (103)
 Cursor start (bits 0–4) &07 (7)
 Cursor blink (bit 6) &01 (1)
 Cursor type (bit 5) &01 (1)
R11 Cursor end &08 (8)
R12,R13 Screen start address Variable
R14,R15 Cursor position Variable
R16,R17 Light pen position Variable

463

MODE 0

 &3000 &3008 &3278
 &3001 &3009 &3279
 &3002 &300A &327A
 &3003 &300B &327B
 &3004 &300C &327C
 &3005 &300D &327D
 &3006 &300E &327E
 &3007 &300F &327F
 &3280
 &3281

 &7B06
 &7B07
 &7D80 &7D88 &7FF8
 &7D81 &7D89 &7FF9
 &7D82 &7D8A &7FFA
 &7D83 &7D8B &7FFB
 &7D84 &7D8C &7FFC
 &7D85 &7D8D &7FFD
 &7D86 &7D8E &7FFE
 &7D87 &7D8F &7FFF

 7 6 5 4 3 2 1 0
8 PIXELS

1 BIT/PIXEL

N.B. The screen layout is only shown after a clear screen,
it will change when the screen is hard scrolled.

464

MODE 1 Screen layout

Graphics 320 x 256
Colours 4
Text 40 x 32

Registers

R0 Horizontal total &7F (127)
R1 Characters per line &50 (80)
R2 Horizontal sync position &62 (98)
R3 Horizontal sync width &08 (8)
 Vertical sync time &02 (2)
R4 Vertical total &26 (38)
R5 Vertical total adjust &00 (0)
R6 Vertical displayed characters &20 (32)
R7 Vertical sync position &22 (34)
R8 Interlace mode bits 0,1 &01 (1)
 Display delay bits 4,5 &00 (0)
 Cursor delay bits 6,7 &00 (0)
R9 Scan lines per character &07 (7)
R10 Cursor start, blink, type &67 (103)
 Cursor start (bits 0–4) &07 (7)
 Cursor blink (bit 6) &01 (1)
 Cursor type (bit 5) &01 (1)
R11 Cursor end &08 (8)
R12,R13 Screen start address Variable
R14,R15 Cursor position Variable
R16,R17 Light pen position Variable

465

MODE 1

 &3000 &3008 &3278
 &3001 &3009 &3279
 &3002 &300A &327A
 &3003 &300B &327B
 &3004 &300C &327C
 &3005 &300D &327D
 &3006 &300E &327E
 &3007 &300F &327F
 &3280
 &3281

 &7B06
 &7B07
 &7D80 &7D88 &7FF8
 &7D81 &7D89 &7FF9
 &7D82 &7D8A &7FFA
 &7D83 &7D8B &7FFB
 &7D84 &7D8C &7FFC
 &7D85 &7D8D &7FFD
 &7D86 &7D8E &7FFE
 &7D87 &7D8F &7FFF

 7 6 5 4 3 2 1 0
4 PIXELS

2 BITS/PIXEL

N.B. The screen layout is only shown after a clear screen,
it will change when the screen is hard scrolled.

466

MODE 2 Screen layout

Graphics 160 x 256
Colours 16
Text 20 x 32

Registers

R0 Horizontal total &7F (127)
R1 Characters per line &50 (80)
R2 Horizontal sync position &62 (98)
R3 Horizontal sync width &08 (8)
 Vertical sync time &02 (2)
R4 Vertical total &26 (38)
R5 Vertical total adjust &00 (0)
R6 Vertical displayed characters &20 (32)
R7 Vertical sync position &22 (34)
R8 Interlace mode bits 0,1 &01 (1)
 Display delay bits 4,5 &00 (0)
 Cursor delay bits 6,7 &00 (0)
R9 Scan lines per character &07 (7)
R10 Cursor start, blink, type &67 (103)
 Cursor start (bits 0–4) &07 (7)
 Cursor blink (bit 6) &01 (1)
 Cursor type (bit 5) &01 (1)
R11 Cursor end &08 (8)
R12,R13 Screen start address Variable
R14,R15 Cursor position Variable
R16,R17 Light pen position Variable

467

MODE 2

 &3000 &3008 &3278
 &3001 &3009 &3279
 &3002 &300A &327A
 &3003 &300B &327B
 &3004 &300C &327C
 &3005 &300D &327D
 &3006 &300E &327E
 &3007 &300F &327F
 &3280
 &3281

 &7B06
 &7B07
 &7D80 &7D88 &7FF8
 &7D81 &7D89 &7FF9
 &7D82 &7D8A &7FFA
 &7D83 &7D8B &7FFB
 &7D84 &7D8C &7FFC
 &7D85 &7D8D &7FFD
 &7D86 &7D8E &7FFE
 &7D87 &7D8F &7FFF

 7 6 5 4 3 2 1 0
2 PIXELS

4 BITS/PIXEL

N.B. The screen layout is only shown after a clear screen,
it will change when the screen is hard scrolled.

468

MODE 3 Screen layout

Graphics Not available
Colours 2
Text 80 x 25

Registers

R0 Horizontal total &7F (127)
R1 Characters per line &50 (80)
R2 Horizontal sync position &62 (98)
R3 Horizontal sync width &08 (8)
 Vertical sync time &02 (2)
R4 Vertical total &1E (30)
R5 Vertical total adjust &02 (2)
R6 Vertical displayed characters &19 (25)
R7 Vertical sync position &1B (27)
R8 Interlace mode bits 0,1 &01 (1)
 Display delay bits 4,5 &00 (0)
 Cursor delay bits 6,7 &00 (0)
R9 Scan lines per character &09 (9)
R10 Cursor start, blink, type &67 (103)
 Cursor start (bits 0–4) &07 (7)
 Cursor blink (bit 6) &01 (1)
 Cursor type (bit 5) &01 (1)
R11 Cursor end &09 (9)
R12,R13 Screen start address Variable
R14,R15 Cursor position Variable
R16,R17 Light pen position Variable

469

MODE 3

 &4000 &4008 &4278
 &4001 &4009 &4279
 &4002 &400A &427A
 &4003 &400B &427B
 &4004 &400C &427C
 &4005 &400D &427D
 &4006 &400E &427E
 &4007 &400F &427F
 BLANK BLANK BLANK
 BLANK BLANK BLANK
 &4280
 &4281

 &7987
 BLANK BLANK BLANK
 BLANK BLANK BLANK
 &7C00 &7C08 &7E78
 &7C01 &7C09 &7E79
 &7C02 &7C0A &7E7A
 &7C03 &7C0B &7E7B
 &7C04 &7C0C &7E7C
 &7C05 &7C0D &7E7D
 &7C06 &700E &7E7E
 &7C07 &700F &7E7F
 BLANK BLANK BLANK
 BLANK BLANK BLANK

 7 6 5 4 3 2 1 0
8 PIXELS

1 BIT/PIXEL

N.B. The screen layout is only shown after a clear screen,
it will change when the screen is hard scrolled.

470

MODE 4 Screen layout

Graphics 320 x 256
Colours 2
Text 40 x 32

Registers

R0 Horizontal total &3F (63)
R1 Characters per line &28 (40)
R2 Horizontal sync position &31 (49)
R3 Horizontal sync width &04 (4)
 Vertical sync time &02 (2)
R4 Vertical total &26 (38)
R5 Vertical total adjust &00 (0)
R6 Vertical displayed characters &20 (32)
R7 Vertical sync position &22 (34)
R8 Interlace mode bits 0,1 &01 (1)
 Display delay bits 4,5 &00 (0)
 Cursor delay bits 6,7 &00 (0)
R9 Scan lines per character &07 (7)
R10 Cursor start, blink, type &67 (103)
 Cursor start (bits 0–4) &07 (7)
 Cursor blink (bit 6) &01 (1)
 Cursor type (bit 5) &01 (1)
R11 Cursor end &08 (8)
R12,R13 Screen start address Variable
R14,R15 Cursor position Variable
R16,R17 Light pen position Variable

471

MODE 4

 &5800 &5808 &5938
 &5801 &5809 &5939
 &5802 &580A &593A
 &5803 &580B &593B
 &5804 &580C &593C
 &5805 &580D &593D
 &5806 &580E &593E
 &5807 &580F &593F
 &5940
 &5941

 &7D86
 &7D87
 &7EC0 &7EC8 &7FF8
 &7EC1 &7EC9 &7FF9
 &7EC2 &7ECA &7FFA
 &7EC3 &7ECB &7FFB
 &7EC4 &7ECC &7FFC
 &7EC5 &7ECD &7FFD
 &7EC6 &7ECE &7FFE
 &7EC7 &7ECF &7FFF

 7 6 5 4 3 2 1 0
8 PIXELS

1 BIT/PIXEL

N.B. The screen layout is only shown after a clear screen,
it will change when the screen is hard scrolled.
&4000 should be subtracted from each screen location on a Model A.

472

MODE 5 Screen layout

Graphics 160 x 256
Colours 4
Text 20 x 32

Registers

R0 Horizontal total &3F (63)
R1 Characters per line &28 (40)
R2 Horizontal sync position &31 (49)
R3 Horizontal sync width &04 (4)
 Vertical sync time &02 (2)
R4 Vertical total &26 (38)
R5 Vertical total adjust &00 (0)
R6 Vertical displayed characters &20 (32)
R7 Vertical sync position &22 (34)
R8 Interlace mode bits 0,1 &01 (1)
 Display delay bits 4,5 &00 (0)
 Cursor delay bits 6,7 &00 (0)
R9 Scan lines per character &07 (7)
R10 Cursor start, blink, type &67 (103)
 Cursor start (bits 0–4) &07 (7)
 Cursor blink (bit 6) &01 (1)
 Cursor type (bit 5) &01 (1)
R11 Cursor end &08 (8)
R12,R13 Screen start address Variable
R14,R15 Cursor position Variable
R16,R17 Light pen position Variable

473

MODE 5

 &5800 &5808 &5938
 &5801 &5809 &5939
 &5802 &580A &593A
 &5803 &580B &593B
 &5804 &580C &593C
 &5805 &580D &593D
 &5806 &580E &593E
 &5807 &580F &593F
 &5940
 &5941

 &7D86
 &7D87
 &7EC0 &7EC8 &7FF8
 &7EC1 &7EC9 &7FF9
 &7EC2 &7ECA &7FFA
 &7EC3 &7ECB &7FFB
 &7EC4 &7ECC &7FFC
 &7EC5 &7ECD &7FFD
 &7EC6 &7ECE &7FFE
 &7EC7 &7ECF &7FFF

 7 6 5 4 3 2 1 0
4 PIXELS

2 BITS/PIXEL

N.B. The screen layout is only shown after a clear screen,
it will change when the screen is hard scrolled.
&4000 should be subtracted from each screen location on a Model A.

474

MODE 6 Screen layout

Graphics Not available
Colours 2
Text 40 x 25

Registers

R0 Horizontal total &3F (63)
R1 Characters per line &28 (40)
R2 Horizontal sync position &31 (49)
R3 Horizontal sync width &04 (4)
 Vertical sync time &02 (2)
R4 Vertical total &1E (30)
R5 Vertical total adjust &02 (2)
R6 Vertical displayed characters &19 (25)
R7 Vertical sync position &1B (27)
R8 Interlace mode bits 0,1 &01 (1)
 Display delay bits 4,5 &00 (0)
 Cursor delay bits 6,7 &00 (0)
R9 Scan lines per character &09 (9)
R10 Cursor start, blink, type &67 (103)
 Cursor start (bits 0–4) &07 (7)
 Cursor blink (bit 6) &01 (1)
 Cursor type (bit 5) &01 (1)
R11 Cursor end &09 (9)
R12,R13 Screen start address Variable
R14,R15 Cursor position Variable
R16,R17 Light pen position Variable

475

MODE 6

 &6000 &6008 &6138
 &6001 &6009 &6139
 &6002 &600A &613A
 &6003 &600B &613B
 &6004 &600C &613C
 &6005 &600D &613D
 &6006 &600E &613E
 &6007 &600F &613F
 BLANK BLANK BLANK
 BLANK BLANK BLANK
 &6140
 &6141

 &7CC7
 BLANK BLANK BLANK
 BLANK BLANK BLANK
 &7E00 &7E08 &7F38
 &7E01 &7E09 &7F39
 &7E02 &7E0A &7F3A
 &7E03 &7E0B &7F3B
 &7E04 &7E0C &7F3C
 &7E05 &7E0D &7F3D
 &7E06 &7E0E &7F3E
 &7E07 &7E0F &7F3F
 BLANK BLANK BLANK
 BLANK BLANK BLANK

 7 6 5 4 3 2 1 0
8 PIXELS

1 BIT/PIXEL

N.B. The screen layout is only shown after a clear screen,
it will change when the screen is hard scrolled.
&4000 should be subtracted from each screen location on a Model A.

476

MODE 7 Screen layout

Graphics TELETEXT graphics only
Colours TELETEXT
Text 40 x 25

Registers

R0 Horizontal total &3F (63)
R1 Characters per line &28 (40)
R2 Horizontal sync position &33 (51)
R3 Horizontal sync width &04 (4)
 Vertical sync time &02 (2)
R4 Vertical total &1E (30)
R5 Vertical total adjust &02 (2)
R6 Vertical displayed characters &19 (25)
R7 Vertical sync position &1B (27)
R8 Interlace mode bits 0,1 &03 (3)
 Display delay bits 4,5 &01 (1)
 Cursor delay bits 6,7 &02 (2)
R9 Scan lines per character &12 (18)
R10 Cursor start, blink, type &72 (114)
 Cursor start (bits 0–4) &12 (18)
 Cursor blink (bit 6) &01 (1)
 Cursor type (bit 5) &01 (1)
R11 Cursor end &13 (19)
R12,R13 Screen start address Variable
R14,R15 Cursor position Variable
R16,R17 Light pen position Variable

477

MODE 7

 &7C00 &7C01 &7C27

 &7C28

 &7FC0 &7FE7

N.B. The screen layout is only shown after a clear screen,
it will change when the screen is hard scrolled.
&4000 should be subtracted from each screen location on a Model A.

478

Appendix G – The American MOS differences
This Appendix outlines the fundamental differences between
the English and American BBC Microcomputers. The
hardware is basically the same in both machines, except for
minor changes in the video circuitry. The software in the
MOS is however somewhat different to cope with the
difference in television display frequency.

G.1 Text display

Both versions of the machine have eight screen modes. The
text resolution in each mode is:

Mode United States Britain
 columns x rows columns x rows

0 80 x 25 80 x 32
1 40 x 25 40 x 32
2 20 x 25 20 x 32
3 80 x 22 80 x 25
4 40 x 25 40 x 32
5 20 x 25 20 x 32
6 40 x 22 40 x 25
7 40 x 20 40 x 25

G.2 Graphics modes

In the U.K version, the MOS regards the screen as 1280 points
horizontally and 1024 points vertically in all modes.

In the U.S version, the MOS regards the screen as 1280 points
horizontally (the same as in the U.K) and 800 points vertically
(compared with 1024 in the U.K).

479

G.3 Actual graphics resolution

The graphics resolutions available on the screen in the various
modes are:

Mode United States Britain
 Horiz. x Vert. Horiz. x Vert.

0 640 x 200 640 x 256
1 320 x 200 320 x 256
2 160 x 200 160 x 256
3 text only text only
4 320 x 200 320 x 256
5 160 x 200 160 x 256
6 text only text only
7 Teletext Teletext

G.4 Video frame period

In the U.K. the frame sync occurs at 50Hz. In the U.S, the
video frame sync occurs at 60Hz.

G.5 Memory usage

The amount of memory used by the screen memory is
different between U.K and U.S machines in some modes. The
value of HIMEM (the top of user memory) is:

Mode United States Britain

0 &4000 &3000
1 &4000 &3000
2 &4000 &3000
3 &4000 &4000
4 &6000 &5800
5 &6000 &5800
6 &6000 &6000
7 &7C00 &7C00

480

Appendix H – Disc Upgrade
Ensure that the following ICs are present:–

IC 78 8271
ICs 79,80 7438
IC 82 74LS10
ICs 81,86 74LS393
ICs 83,84 CD4013B
IC 85 CD4020B
IC 87 74LS123

Disc Filing System in paged ROM socket
OS 1.00 or greater (IC 51)

On issue 1 or 2 circuit boards it will be necessary to connect
the two pads of link S8 with a wire link.

A switch-mode power supply must be present (i.e. not a
linear supply in a black case).

On issue 1, 2 or 3 boards, carefully cut the leg of IC 27, pin 9
(do not totally remove the leg). Cut the track connected to this
pin on the component side of the board between IC 27 and IC
89. Reconnect the cut IC leg to the east pad of link S9 with a
short length of insulated wire.

Ensure that the following link selections have been made:–

S18 – NORTH
S19 – EAST
S20 – NORTH
S21 – 2 x EAST/WEST
S22 – NORTH
S32 – WEST
S33 – WEST

On issue 4 boards onwards, remove the connector from S9.

481

For details of the power connections see the diagrams below.
Figure H.1 shows the power supply connector on the BBC
microcomputer. Figure H.2 shows a standard disc drive
connector.

Figure H.1 – Auxiliary power socket on BBC Micro

Figure H.2 – Typical disc drive power connector

TOP

BOTTOM

0V

+5 Volts
1.25 Amps

NO CONNECTION

0V

+12 Volts
1.25 Amps

-5 Volts
75mA

+5V 0V 0V +12V

PRINTED CIRCUIT BOARD

482

Appendix I – Link Options

Figure I – Link positions on circuit board

S
1

S
2S

3*

S
4

S
5*

S
6* S
7 S
8S

9

S
10

S
11

S
12

S
13

S
14

S
15

S
16

S
17

S
18

S
19

S
20

S
21

S
22

S
23

S
24

S
25

S
26

S
27

S
28

S
29

S
30

A

S
30

B

S
31

S
32

S
33

S
34

S
35

S
36

S
37

S
38

S
39

*
IS

S
U

E
 3

 O
N

LY

483

There are several options which can be selected using the
links on the main circuit board. These generally take one of
three forms, a printed circuit track, a soldered wire link or a
plug-in jumper. In the list which follows, the link positions
are described in points of the compass. On this basis NORTH
is the direction looking from the keyboard towards the back
of the BBC microcomputer. The default setting is marked
with a *. All of the link positions are illustrated in Figure I.

1. NORTH * selects printer strobe on printer
connector.

 SOUTH selects 6522 CA2 connected to printer
strobe

 TYPE circuit board track
 Note not fitted to issues 1–3

2. OPEN enables Econet NMI
 CLOSED * disables Econet NMI
 TYPE wire link
 Note NEVER fit this link with IC91 fitted

3. Selects the clock base frequency for
Econet. This bank of 9 links is only
fitted on issues 1–3

4. EAST * 5.25 inch disc select
 WEST 8 inch disc select
 TYPE circuit board track

5. NORTH enable Econet clock
 SOUTH disable Econet clock
 Note only fitted to issues 1–3

6. NORTH divide Econet clock by 2
 SOUTH divide Econet clock by 4
 Note only fitted to issues 1–3

7. WEST connects pin 30 of 8271 FDC chip to
+5 volts.

 EAST * connects pin 30 of 8271 FDC chip to 0
volts.

 TYPE circuit board track

484

8. OPEN disconnects disc head load signal from
PL8

 CLOSED * connects disc head load signal to PL8

9. OPEN enables disc NMI
 CLOSED * disables disc NMI
 Note this link must be OPEN when IC78 is

fitted.

10. WEST * select 5.25 inch disc
 EAST select 8 inch disc

11. This block of 8 links selects the Econet
ID. The NORTH connection is the least
significant bit. A different Econet ID
will be assigned to each station on an
Econet system. Refer to the Econet
manual for more details.

12. CLOSED connects ROM select line A to 0v
(model A)

 OPEN * ROM select line is driven by IC76
(model B)

 Note do NOT make this link with IC76
fitted

13. CLOSED connects ROM select line B to 0v
(model A)

 OPEN * ROM select line is driven by IC76
(model B)

 Note do NOT make this link with IC76
fitted

14. OPEN disables JIM, enables ROM output
from page &FD

 CLOSED * enables JIM, disables ROM output
from page &FD

 Note if link 14 is OPEN then link 15 must
be CLOSED and R72 must be fitted

485

15. OPEN enables fast access to page &FD via
 IC23
 CLOSED * disables fast access to page &FD
 Note link 15 must be CLOSED and R72

fitted when link 14 is OPEN.

16. OPEN enables fast access to page &FC via
IC23

 CLOSED * disables fast access to page &FC
 Note link 16 must be CLOSED and R73

fitted when link 17 is OPEN

17. OPEN disables FRED, enables ROM output
from page &FC

 CLOSED * enables FRED, disables ROM output
from page &FC

 Note if link 17 is OPEN then link 16 must
be CLOSED and R73 must be fitted

18. NORTH * fast access to IC100 memory chip
 SOUTH slow access to IC100 memory chip

19. WEST slow access to memory chips IC52,
IC88 and IC101

 EAST * fast access to memory chips IC52,
IC88 and IC101

 Note diodes D10, D11 and D12 can be
removed to speed up ROMs IC101,
IC88 and IC52 respectively when link
19 is in the WEST position.

20. NORTH * ROMSEL provides HIGH ROM select
bit to IC20

 SOUTH A13 provides HIGH ROM select bit to
IC20

21. NORTH/SOUTH IC51 = blocks &08–&0B
 x2 IC52, IC88, IC100 & IC101 = blocks

&0C–&0F
 EAST/WEST x2 IC51 = blocks &0C–&0F
 * IC52, IC88, IC100 & IC101 = blocks

&08–&0B

486

22. NORTH * ROMSEL provides the LOW ROM
select bit to IC20

 SOUTH A12 provides the LOW ROM select bit
to IC20

23. OPEN * RS423 DATA line not terminated
 CLOSED RS423 DATA line is terminated
 Note see Note for link 24

24. OPEN * RS423 CTS line not terminated
 CLOSED RS423 CTS line is terminated
 Note It is not normally necessary to

terminate the RS423 lines unless high
baud rates or long interconnecting
wires are being used.

25. NORTH * 32K RAM select (model B)
 SOUTH 16K RAM select (model A)

26. WEST * NORMAL video output
 EAST INVERTED video output

27. WEST * 5.25 inch disc 8MHz clock select
 EAST 8 inch disc 16MHz clock select

28. WEST * base baud rate select
 EAST 1200 baud rate select
 Note RS423 rate is affected with link 28 set

EAST

29. WEST 1200 baud rate select
 EAST * base baud rate select
 Note RS423 rate is affected with link 29 set

WEST

30a. used to ‘WIRE-OR’ two or more ROM
& select signals
30b.
 Note see links 34–38 and the circuit

diagram.

487

31. WEST * positive CSYNC to RGB video output
 EAST negative CSYNC to RGB video output

32. WEST * connects A13 to A13 pin of IC52 and
IC88

 EAST connects +5 volts to A13 pin of IC52
and IC88

33. WEST * connects A13 to A13 pin of IC100 and
IC101

 EAST connects +5 volts to A13 pin of IC100
and IC101

34. OPEN allows the OS ROM to be
‘WIRE-OR’ed

 CLOSED * use ordinary OS ROM select from
IC20

 Note see full circuit diagram for more
details

35. OPEN allows IC52 ROM to be ‘WIRE-OR’ed
 CLOSED * use ordinary IC52 ROM select from

IC20
 Note Link only available on issue 4.
 Replaced by R125 in issues 1–3.

36. OPEN allows IC88 ROM to be ‘WIRE-OR’ed
 CLOSED * use ordinary IC88 ROM select from

IC20
 Note Link only available on issue 4.
 Replaced by R142 in issues 1–3.

37. OPEN allows IC100 ROM to be
‘WIRE-OR’ed

 CLOSED * use IC100 ROM select from IC20
 Note Link only available on issue 4.

Replaced by R149 in issues 1–3.

488

38. OPEN allows IC101 ROM to be
‘WIRE-OR’ed

 CLOSED * use IC101 ROM select from IC20
 Note Link only available on issue 4.

Replaced by R153 in issues 1–3.

39. OPEN * standard monochrome monitor
output on BNC socket

 CLOSED colour output on BNC video socket

489

Appendix J – The keyboard circuit
The keyboard circuit is connected to the main printed circuit
board by two ribbon cables. The larger of these is fitted to all
BBC microcomputers and carries all key pressed and start-up
option data. The smaller one is connected directly to the
speech processor. With the speech system installed, this extra
connector allows serial ROMs to be plugged in to the hole on
the left hand side of the keyboard.

In the lower right hand corner of the keyboard printed circuit
board, there are two rows of eight holes. These are the
keyboard link options. The operation of these links is defined
by a made or unmade connection. The function of each link
bit is described under OSBYTE &FF. The diagram below
illustrates the layout of the links. If a user wishes to vary the
settings fairly often, it is a good idea to buy a standard 8 way
SPST switch in a 16 pin DIL package, and solder it onto the
keyboard.

Figure J – Illustration of the keyboard links

BIT
NUMBER

SWITCH
NUMBER

DESCRIPTION

7 6 5 4 3 2 1 0

1 2 3 4 5 6 7 8

NOT
USED

NOT
USED

DISC DRIVE
SPEED SELECT

DEFINES
ACTION OF
SHIFT +
BREAK

SCREEN MODE
AT POWER UP
AND AFTER RESET

CORNER OF KEYBOARD

1 2 3 4 5 6 7 8

KEYS

1
2

3
4

5
6

7
8

SWITCH ORIENTATION
ON TYPE 2 KEYBOARDS

490

Figure J.2 – Complete Keyboard Circuit Diagram

1M
H

z

P
A

3

P
A

2

P
A

1

P
A

0

K
B

 E
N

R
ST

P
A

7

P
L1 3 11 10 9 8 4 2 12

P
L2

R
O

M
C

A
R

TR
ID

G
E

U
P

G
R

A
D

E
O

N
LY

1 10 9 8 7 6 5 4 3 2

P
L1

P
A

6

P
A

5

P
A

4

C
A

2

+5
V

0V LE
D

 1

LE
D

 2

LE
D

 3

7 6 5 14 15 1 16 17 13

SW
1

0V

SK
1 1 2 6 7 8 9 10 11 12 13 14 15

1 2 6 7 8 9 10 11 12 13 14 15

SK
2

C
6

47
nF

C
6

47
nF

C
1

47
nF

C
2

47
nF

C
3

47
nF

C
4

22
nF

+5
V

0V
+5

V

LD
1

LD
2

LD
3

R
1

R
2

R
3

47
0

47
0

47
0

+5
V

2
7

10
1

11 12 13 14

6 5 4 3

9

D C B A

P
T

C
LR Q

D Q
C

Q
B Q
A

IC
1

74
LS

16
3

LO
A

D

+5
V R

11
10

K
Ω

11

+5
V

R
10

10
K
Ω

12

+5
V

R
9

10
K
Ω

1

+5
V

R
8

10
K
Ω

2

+5
V

R
7

10
K
Ω

3

+5
V

R
6

10
K
Ω

4

+5
V

R
5

10
K
Ω

5
+5

V

R
4

10
K
Ω

6

11 1

D
10

1N
41

16

10 2

D
9

1N
41

16

9 3

D
8

1N
41

16

7 4

D
7

1N
41

16

6 5

D
6

1N
41

16

5 6

D
5

1N
41

16

4 7

D
4

1N
41

16

3 8

D
3

1N
41

16

2

D
2

1N
41

16

1

ES
C

A
P

E
F1

F2
F3

F5
F6

F8
F9

¦ \

Q
3

4
5

F4
8

F7
= –

~ ^

1
2

D
R

6
U

O
P

{ [

SH
IF

T
LO

C
K

S
C

G
H

N
L

+ ;
}]

D
EL

ET
E

D
1

1N
41

16 2x
SH

IF
T

C
TR

L

9
8

7
6

5
4

3
2

1
0

IC
3

74
45

A
B

C
D

15
14

13
12

12
D

7

13
D

6

14
D

5

15
D

4

1
D

3

2
D

2

3
D

1

4
D

0

7
S

IC
2

74
LS

25
1

W C B A

6 9 10 11

FØ
W

E
T

7
I

9
Ø

£ —

C
A

P
S

LO
C

K
A

X
F

Y
J

K
@

* :
R

ET
U

R
N

TA
B

Z
SP

A
C

E
V

B
M

< ,
> .

? /
C

O
P

Y

IC
4

74
LS

308

SW
2

ST
A

R
T

U
P

 O
P

TI
O

N
S

491

Bibliography
Acorn User Magazine, published monthly, Addison Wesley

6502 Assembly Language Programming, L.A.Leventhal,
OSBORNE/McGraw Hill, Berkeley, California

BBC Microcomputer Application Note No.1 – 1MHz Bus, Kim
Spence-Jones, Acorn Computers Ltd., 1982

The BBC Microcomputer User Guide, John Coll, British
Broadcasting Microcomputer, London, 1982

Beebug Magazine, published every five weeks, BEEBUG, PO
Box 109, High Wycombe, Bucks.

HD6845 Cathode Ray Tube Controller Data Sheet, Hitachi

Disc System User Guide, Brian Ward, British Broadcasting
Corporation, London, 1982

Econet System User Guide, British Broadcasting Corporation,
London, 1982

8271 Floppy Disc Controller Data Sheet, Intel

Microprocessor & Memory Data Book, Thomson–EFCIS, 1981

NEC 1982 Catalogue (uPD7002), NEC Electronics (Europe)
GmbH, 1982

Programming the 6502, Rodnay Zaks, Sybex, 1980

Service Manual for the BBC Microcomputer, Acorn Computers
Ltd., Cambridge, 1982

SN76489N Sound Generator Data Sheet, Texas Instruments Inc.,
1978

Speech System User Guide, Acorn Computers Ltd., Cambridge,
1983

492

R6522 Versatile Interface Adapter Data Sheet, Rockwell
International, 1981

TTL Data Book, Texas Instruments Inc., 1980

TMS 6100 Voice Synthesis Memory Data Manual, Texas
Instruments Inc., 1980

TMS 5220 Voice Synthesis Processor Data Manual, Texas
Instruments Inc., 1981

493

Glossary
Address Bus – a set of 16 connections, each one of which can
be set to logic 0 or logic 1. This allows the CPU to address
&FFFF (65536) different memory locations.

Active low – signals which are ‘active low’ are said to be valid
when they are at logic level 0.

Analogue to digital converter (ADC) – this is a chip which
can accept an analogue voltage at one of its inputs and
provide a digital output of that voltage. The ADC in the BBC
microcomputer is a 7002.

Asynchronous – two devices which are operating
independently of one another are said to be operating
asynchronously.

Baud Rate – used to define the speed at which a serial data
link transfers data. One baud is equal to 1 bit of data
transferred per second. The standard cassette baud rate of
1200 baud is therefore equal to 1200 bits per second.

Bidirectional – a communication line is bidirectional if data
can be sent and received over it. The data bus lines are
bidirectional.

Bit of memory – this is the fundamental unit of a computer’s
memory. It may only be in one of two possible states, usually
represented by a 0 or 1.

Buffer – there are two types of buffer in the BBC
microcomputer. A software buffer is an area of memory set
aside for data in the process of being transferred from one
device or piece of software to another. A hardware buffer is
put into a signal line to increase the line’s drive capability. For
example, the printer port has buffered outputs which are
capable of supplying several milliamperes. The inputs to the
buffer could only supply microamperes.

494

Byte of memory – 8 bits of memory. Data is normally
transferred between devices one byte at a time over the data
bus.

Chip – derived from the small piece of silicon wafer or chip
which has all of the computer logic circuits etched into it. A
chip is normally packaged in a black plastic case with small
metal leads to connect it to the outside world.

Clock – since there are so many devices in the BBC
microcomputer, it is necessary to provide some master timing
reference to which all data transfers are tied. The clock
provides this synchronisation. A 2MHz clock is applied to the
CPU, but this can be stretched into a 1MHz clock when slow
peripherals such as the 6522s are being accessed. See chapter
28 on the 1MHz bus for more details about cycle stretching.

CPU (Central processing unit) – the 6502A in the BBC
microcomputer. It is this chip which does all of the computing
work associated with running programs.

Cycle – this is usually applied to the system clock. A complete
clock cycle is the period between a clock going high, low, then
high again. See ‘clock’.

Data bus – a set of eight connections over which all data
transactions between devices in the BBC microcomputer take
place.

Field – a space allocated for some data in a register, or in a
program listing. For example, in an Assembly language
program, the first few spaces are allocated to the line number
field, the next few spaces are allocated to the label field, and
so on.

Handshaking – this type of communications protocol is used
when data is being transferred between two asynchronous
devices. Two handshaking lines are normally required. One of
these is a ‘data ready’ signal from the originating device to the
receiving device. When the receiving device has accepted the
data, it sends a ‘data taken’ signal back to the originating
device, which then knows that it can send the second lot of
data and so on.

495

High – sometimes used to designate logic ‘1’

Interrupt – this signal is produced by peripheral devices and
is always directed to the 6502A CPU. Upon receiving an
interrupt, the 6502 will normally run a special interrupt
routine program before continuing with the task in hand
before it was interrupted.

Latch – a latch is used to retain information applied to it after
the data has been removed. It is rather like a memory location
except that the outputs from the bits within the latch are
connected to some hardware.

LED (Light emitting diode) – acts like a diode by only
allowing current to pass in one direction. Light is emitted
whilst current is passed.

Low – sometimes used to designate logic ‘0’.

Machine code – the programs produced by the 6502 BASIC
Assembler are machine code. A machine code program
consists of a series of bytes in memory which the 6502 can
execute directly.

Mnemonic – the name given to the text string which defines a
particular 6502 operation in the BASIC assembler. LDA is a
mnemonic which means ‘load accumulator’.

Opcode – the name given to the binary code of a 6502
instruction. For example, &AD is the opcode which means
‘load accumulator’.

Open Collector – this is a characteristic of a transistor output
line. It simply means that the collector pin of the transistor is
not driving a resistor load, ie it is ‘open’.

Operand – a piece of data on which some operation is
performed. Usually the operand will be a byte in the
accumulator of the 6502, or a byte in some memory location.

496

Page – a page of memory in the 6502 memory map is &100
(256) bytes long. There are therefore 256 pages in the entire
address space. 256 pages of 256 bytes each account for the
65536 bytes of addressable memory.

Parallel – parallel data transfers occur when data is sent along
two or more lines at once. The system data bus for example
has eight lines operating in parallel.

Peripheral – any device connected to the 6502 central
processor unit, such as the analogue port, printer port, econet
interface, disc interface etc., but not including the memory.

Poll – most of the hardware devices on the BBC
microcomputer generate interrupts to the 6502 CPU. If
interrupts have been enabled, the CPU has to find out which
device generated the interrupt. It does this by successively
reading status bytes from each of the hardware devices which
could have caused an interrupt. This successive reading of
devices is called ‘polling’.

RAM (Random access memory) – the main memory in the
BBC microcomputer is RAM because it can be both written to
and read from.

Refresh – all of the memories in the BBC microcomputer are
dynamic memories. This means that they have to be refreshed
every few milliseconds so that their data is not lost. The
refreshing function is performed by the 6845 as it accesses
memory regularly for video output.

Register – the 6502 and many of the peripheral devices in the
BBC microcomputer contain registers. These are effectively
one byte memory locations which do not necessarily reside in
the main memory map. All software on the 6502 makes
extensive use of the internal registers for programming. The
bits in most peripheral registers define the operation of a
particular piece of hardware, or tell the processor something
about that peripheral’s state.

497

Rollover – this is a function provided on the keyboard to cope
with fast typists. Two keys can be pressed at once. The
previous key with a finger being removed, and the next key
with the finger hitting the key. The software in the operating
system ensures that rollover normally operates correctly. It
doesn’t operate at all when the shift key is held down.

ROM (Read only memory) – as the name implies, ROM can
only be read from and cannot be modified by being written to.
The MOS and BASIC plus any resident software in the BBC
microcomputer are held in ROMs.

Serial – data transmitted along only one line is transmitted
serially. Serial data transmission is normally slower than
parallel data transmission, because only one bit instead of
several bits are transferred at a time.

Stack – a page of memory in the 6502 used for temporary
storage of data. Data is pushed onto a stack in sequence, then
removed by pulling the data off the stack. The last byte to be
pushed is the first byte to be pulled off again. The stack is
used to store return addresses from subroutines. Page &01 is
used for the stack in the BBC microcomputer.

Transducer – a device which converts some analogue quantity
such as temperature, humidity or gas concentration into
another quantity, usually voltage or current, which can be
measured by a computer.

Tristate – in the BBC microcomputer, it is often necessary to
connect the outputs of several chips together. At any one time
only one of the chips should have priority. If the other chips
were allowed to be in the opposite logic state, the power
supplies would effectively be shorted through the chips. A
special tristate level is therefore provided on some chips in
which the output doesn’t care if it is high or low.

ULA (Uncommitted logic array) – these are special chips
which contain a large number of logic gates. The connection
between the gates is defined when the chip is manufactured.
Acorn have produced two special ULAs, one containing most
of the serial circuitry, the other containing some of the video
circuitry.

498

499

Index
!BOOT 218
*. 12
*/ 12

OSFSC 343
*B. 12
*BASIC 12
*CAT 12

OSFSC 344
ROM filing system 349

*CO. 13
*CODE 13

user vector 256
*E. 14
*ENABLE 14

OSFSC 345
*EXEC 14

file closing 141
file handle 203
files closed at ESCAPE 149
OSFSC 344
paged ROM service call 324

*F. 15
*FX 15

summary table 111
*FX calls 109
*H. 15
*HELP 15

paged ROM service call 323
*KEY 15
*L. 18
*LI. 16
*LINE 16

user vector 256
*LOAD 18
*M. 18
*MOTOR 18, 161, 393
*O. 18
*OPT 18, 163

OSFSC 343
ROM filing system 349

*R. 19
*REMOTE 206
*RO. 19
*ROM 165, 192

filing system 19
paged ROM service calls 324
paged ROM software 330
ROM filing system 349

*RUN 19
address 13
OSFSC 344

*S. 19
*SAVE 19
*SP. 20

*SPOOL 20
file closing 141
file handle 204
OSFSC 344
paged ROM service call 324

*T. 20
*TAPE 20, 164, 192
*TAPE12 20
*TAPE3 20
*TV 20, 168

OS variable locations 272
*| 12
16032 second processor 435
1MHz bus see One megahertz bus
6502

break flag 42
bug 37
carry flag 41
decimal mode flag 42
instruction 43
instruction set 41
interrupt disable 41
mnemonics 43
negative flag 42
overflow flag 42
program counter 42
second processor 434
stack pointer 42
status register 41
unused flag 42
zero flag 41

6522
versatile interface adapter 395

6845
address register 360
characters per line 361
cursor blanking 366
cursor positions 367
cursor shape 366
display blanking 365
fast animation 373
horizontal sync 362
horizontal timing 361
interlace control 364
introduction 359
lightpen software 369
lightpens 367
number of character rows 363
programming 360
register summary 375
scan lines per character 366
screen display start address 370
scrolling 371
scrolling example 374
vertical sync 362, 363
vertical timing 362
wrap around 373

500

6850
IRQ bit mask 229

6850 ACIA
read/modify control register 175

76489
sound chip 419

A
Absolute addressing 36
Absolute, X or Y addressing 37
Accumulator 41
Accumulator addressing 35
Active low 493
Actual colours 382
ADC 493

conversion complete event 290
page two locations 273

ADC (Add with Carry) 44
ADC channel

read current channel 196
read maximum channel number 197

ADC channel read 151
ADC conversion forcing 133
ADC conversion type 198
ADC end of conversion 418
ADC number of channel select 132
Address bus 493
Addressable latch 419
Addressing

absolute 36
absolute, X or Y 37
accumulator 35
immediate 36
implicit 35
indexed 37
indirect 37
modes 35
post-indexed indirect 39
pre-indexed indirect 38
relative 40
zero page 36
zero page, X or Y 38

ADVAL 151
American MOS

differences from UK 478
Analogue to digital converter 429, 493

joystick connection 432
AND (Logical AND) 45
Animation

fast hardware 373
ARGSV

OSARGS 337
ASL (Arithmetic Shift Left) 46
Assemb1er

addressing modes 35
conditional assembly 29
delimiters 22
EQU 26

EQUB, EQUW, EQUD, EQUS 26
errors 24
forward referencing 25
from BASIC 21
label 23, 25
listing 24
location counter 25
macros 29
mnemonics 43
operand 23
OPT (options) 24
syntax 23
two pass 25

Asynchronous 493
Auto-repeat

countdown timer in zero page 270
countdown timer queue 273

Auto-repeat delay
keyboard 127

Auto-repeat rate 128
Available RAM 245

B
Backslash

in assembler programs 23
BASIC

level 1 21
level 2 21, 26
new 21
ROM socket with BASIC 195

Baud rate 493
Baud rate selection for RS423 123, 124
BCC (Branch on Carry Clear) 47
BCD 33
BCS (Branch on Carry Set) 48
BELL

channel 214
duration 217
frequency 216
sound 215

BEQ (Branch on result zero) 49
BGETV

OSBGET 338
Bibliography 491
Bidirectional 493
Binary 31
Binary Coded Decimal 33
Bit 493
BIT (Test memory bits) 50
BMI (Branch if negative) 51
BNE (Branch if not zero) 52
BPL (Branch on positive result) 53
BPUT

fast for Tube 176
BPUTV

OSBPUT 339

501

BREAK 166
effect control 205
intercept code 241
status of last BREAK 244

Break flag 42
Break vector 257
BRK

handling errors 28
paged ROM service call 322
pointer in zero page 272

BRK (errors)
reading active ROM after 194

BRK (Forced interrupt) 54
BRK vector 257
BRKV 257
Buffer 493

count/purge vector 264
examine status 171
flush class of buffer 131
flush specific buffer 138
input code interpretation 224
insert character 172
insert vector 263
insertion into 162
read status 151
remove vector 263
removing characters from 169
RS423 buffer limit 208

Buffer
page eight addresses 280

Buffer busy flags
page two locations 274

Buffer indices 274
Buffers

events 289
flushing at ESCAPE 149

Bug
in the 6502 37
in the cassette system 393

Bus 355
1MHz 437

Bus signals
clock 355
interrupt 355
read/write 355
reset 355

BVC (Branch if overflow clear) 55
BVS (Branch if overflow set) 56
Byte 494

C
CALL

from BASIC 28
Carry flag 32, 41, 89
Cassette

buffer storage 280
bug 393
interblock gaps 18

Cassette critical flag
zero page location 270

Cassette filing system see CFS
Cassette LED 393
Cassette motor

control of 161
Cassette Port

example input program 314
example output program 312
reading from user software 313
software control 311

Cassette relay 18, 393
Cassette tape format 347
Cassette RS423 selection flag 210, 393
Catalogue

*CAT 13
CFS 346

page three work space 278
page two work space 274
software select switch 192
tape format 347
timeout counter 185

CFS options byte
zero page location 269

CFS status byte 269
Character definition OSWORD 251
Chip 494
CLC (Clear carry flag) 57
CLD (Clear decimal flag) 58
CLI (Clear interrupt disable flag) 59
Clock see system clock
Clock (electronic) 494
Clocks in software 237
Closing files

OSFIND 342
CLV (Clear the overflow flag) 60
CMP (Compare memory with A) 61
CNPV 264
Colour code

selection in ULA 378
Colour palette

read OSWORD 251
selection in ULA 379
write OSWORD 252

Colours
actual 382
flashing 125, 126
logical 380

Command-line interpreter (CLI) 107
Command-line interpreter 11
Control codes

insertion into text 16
Countdown timer see interval timer
CPU (Central processing unit) 494
CPX (Compare memory with X) 63
CPY (Compare memory with Y) 64
CRC 348
CRTC video controller see 6845

502

CTRL G
channel 214
duration 217
frequency 216
sound 215

Cursor
editing status 233
position 367
position of text cursor 158
positions storage in page 3 275
reading graphics cursors 252
shape 366

Cursor control
in video ULA 379

Cursor editing 120
Cursor keys

defining as soft keys 120
Cycle (Clock) 494
Cycle numbers 334
Cyclic redundancy checking 348

D
Data bus 494
Data carrier detect 313
DCD see data carrier detect
DEC (Decrement memory by one) 65
Decimal flag 33, 90
Decimal mode flag 42
Default

messages 13
Default vector table 265
DEX (Decrement X by one) 66
DEY (Decrement Y by one) 67
Directories 333
Disc drive timings 246
Disc filing system 350
Disc upgrades 480

E
Econet

event 293
hardware 427
OS call interception status 211
read character status 211
write character status 211
zero page work space 267

Econet filing system 351
Econet vector 260
Editing status of cursor 233
Editing using the cursor 120
Electrical specification for 6522 398
End-of-conversion for ADC 418
End-of-file check 150
Envelope command OSWORD 250
EOR (exclusive OR memory with A) 68
EQU

in assembler programs 26

Error handling
after a BRK 28
BRK vectoring 257
using BRK 54

ESCAPE
effect control 205
event 172

Escape 292
flag 147

ESCAPE
providing escape action 227
read/write flags 228
returning an ASCII value 227

Escape character
insertion into text 16

ESCAPE character read/write 223
ESCAPE condition acknowledge 149
ESCAPE condition clear 147
ESCAPE condition set 148
ESCAPE flag

zero page location 272
Event

ESCAPE 172
keyboard 172

Event disable
ADC conversion complete 129
character entering buffer 129
ESCAPE pressed 129
input buffer full 129
interval counter crossing 0 129
network error 129
output buffer empty 129
RS423 error 129
start of vertical sync 129
user 129

Event enable
ADC conversion complete 130
character entering buffer 130
ESCAPE pressed 130
input buffer full 130
interval counter crossing 0 130
network error 130
output buffer empty 130
RS423 error 130
start of vertical sync 130
user 130

Event vector 258, 288
Events 287

ADC conversion complete 290
character entering input buffer 290
disabling 129
Econet error 293
enabling 130
ESCAPE condition detected 292
generator of using OSEVEN 107
handling routines 288
input buffer full 289
interval timer crossing zero 291

503

output buffer empty 289
page two flags 273
RS423 error 292
user 293
vertical sync 291

EVNTV 258, 288
Example

hardware scrolling 374
MODE 8 implementation 383

Exploding soft character RAM 136
Extended

messages 13, 18
Extended vector space 281
Extended vectors 326

F
Field 494
File attributes

OSFILE 336
File handle for *EXEC file 203
File handle for * SPOOL file 204
File options 163
Files 333
Files opening/closing

OSFIND 342
FILEV

OSFILE 335
Filing system

messages 18
Filing systems 333

control vector 343
cycle numbers 334
directories 333
files 333
initialise paged ROM call 325
paged ROM implementation 328
Tube 345
zero page work space 268

FINDV
OSFIND 342

Fire buttons on joysticks 418
Flag

6502 break 42
6502 carry 41
6502 interrupt disable 41
6502 negative 42
6502 overflow 42
6502 unused 42
6502 zero 41
carry 32, 89
decimal 33, 90
escape 147
indicating speech presence 231
indicating Tube presence 230
interrupt disable 59, 91
overflow 32, 60
printer destination 239
read RS423 control flag 200

RS423 input suppression 209
RS423 use 199
RS423/cassette selection 210
soft key consistency 238
user 117, 235

Flags
determining ESCAPE effects 228

Flashing
control in ULA 378

Flashing colours 173
duration of 1st colour 125
duration of 2nd colour 126
read/write flash counter 201
read/write mark period 201
read/write space period 201

Floppy disc
hardware 427
upgrade 480

Flushing buffers 131
Font

reading character definitions 251
storage 281

Font
flags on page 2 278

Font explosion
paged ROM service call 325
read definition state 191

FRED
expansion bus 437
reading and writing 170

Function keys
plus CTRL 225
plus SHIFT 225
plus SHIFT+CTRL 225
soft key status 225

G
Get Byte

OSBGET 338
Graphics

OS ROM table 282
Graphics byte mask

zero page location 268
Graphics colour bytes

zero page locations 268
Graphic colour cell 269
Graphics cursor OSWORD 252
Graphic origin

storage in page 3 275
GSINIT 105
GSREAD 106

H
Handshaking 494
Hard BRK 244
Hardware

introduction 353
screen wrap around 419

504

High order address 154
HIMEM 156
Host processor 433

I
I/O processor memory

read OSWORD 249
write OSWORD 249

Immediate addressing 36
Implicit addressing 35
INC (Increment memory by one) 69
Index registers 41
indexed addressing 37
Indirect addressing 37
INKEY 153
INKEY countdown timer

page two location 273
Input buffer (OSWORD 0)

zero page location 270
Input line OSWORD 248
input stream selection 118
Instruction

6502 43
cycle 43

Instruction set for the 6502 41
INSV 263
Interlace 168, 20
Internal key numbers table 142
Interrupt 495

bit masks 229
disable flag 41, 59, 91
forced 54
return from 86
unrecognised (paged ROM) 322

Interrupt vectors 258
Interrupts 297

example program 306, 307
interception 305
keyboard 187
maskable 296
non-maskable 296
OS processing 299
serial processing 300
system VIA 302
user VIA 304
vectors 298
VIAs 413
zero page accumulator storage 272

Interval timer
crossing zero event 291
page two address 272
read OSWORD 249
write OSWORD 249

INX (Increment X by one) 70
INY (Increment Y by one) 71
IRQ1V 258, 298
IRQ2V 258, 299

J
JIM

expansion bus 438
reading and writing 170

JMP (Jump to new location) 72
Joysticks

connections 432
fire buttons 418

JSR (Jump subroutine) 73

K
Key

read with time limit 153
Key number table 142
Key numbers

summary 456
Keyboard

auto-repeat delay 127
auto-repeat rate 128
buffer status 151
control vector 262
disable 206
empty keyboard buffer 138
event 172
function keys f0–f9 225
input buffer storage 279
input select 186
insert character in buffer 172
interrupts 187
LEDs 139
links 246
locking 206
read status 207
scan from 16 145
scanning 144
selection for input 18
semaphore 187
translation table 183
write status 207

Keyboard auto repeat count
page two location 273

Keyboard auto repeat timer
zero page location 270

Keyboard auto-repeat delay
read/write 202

Keyboard auto-repeat rate 202
Keyboard scan ignore character

zero page location 271
Keys

function keys f0–f9 225
Keys pressed information 142
KEYV 262

505

L
Label

in assembler programs 25
Language

zero page work space 267
Language ROM

entering 166
Language ROM number 243
Language workspace 279
Languages

in paged ROMs 327
paged ROM entry point 325
workspace available 328

Latch 495
LDA (Load A from memory) 74
LDX (Load X from memory) 75
LDY (load Y from memory) 76
LED 495

cassette motor 161
LEDs

on the keyboard 140
Lightpens

construction 368
software 369
strobe unit 418

Line input OSWORD 248
Link options 482
Load file

OSFILE 335
Location counter

in assembler programs 25
Logical colours 380
LPSTB signal 418
LSR (Logical Shift Right) 77

M
Machine code 495

arithmetic 31
Macros

in assembler programs 29
Maskable interrupts 296
Masks for interrupts 229
Memory mapped I/O

reading and writing from 170
Memory refresh 359
Memory usage 267
Messages

default 13
extended 13, 18
filing system 18

Mnemonic 495
Mnemonics 43
MODE 8

implementation 383

N
Negative flag 42
Negative numbers

in machine code 31
Net

printer 121, 260
station identity register 428

NETV 260
NMI 296

handling routine address 281
paged ROM service calls 323
zero page work space 267

Noise generator 421
Non maskable interrupts 296
NOP (No operation) 78

O
On error

abort 18
prompt for re-entry 18

One megahertz bus
cleaning up 444
FRED—for peripherals 437
hardware requirements 447
introduction 437
JIM—memory expansion 438
signal definitions 440
timing 447

Opcode 495
Open collector 495
Open files

OSBGET 338
OSBPUT 339
OSFILE 337
OSGBPB 339

Opening files
OSFIND 342

Operand 495
Operating system

OSBYTES 109
version number 116

Operating system 101
GSINIT 105
GSREAD 106
input 101
non-vectored OSRDCH 103
non-vectored OSWRCH 102
OSASCI 104
OSCLI 107
OSEVEN 107
OSNEWL 103
OSRDCH 102
OSRDRM 106
OSWRCH 101
output 101
VDU character output 104

506

Operating system high-water mark 136, 155
OPT 24
Options

on files 163
Options at start up 246
ORA (OR A with memory) 79
OS command

paged ROM activation 321
unrecognised command 321

OS command, unrecognised
OSFSC 344

OS commands
paged ROMs 11
zero page text pointer 271
zero page work space 268

OS ROM tables 282
OS variables

read start address of 180
OS version number 15
OSARGS 337

CFS 346
OSASCI 104
OSBGET 338

CFS 346
OSBPUT 339

CFS 346
ROM filing system 349

OSBYTE
paged ROM service call 322
summary table 111
zero page register storage 271

OSBYTES 109
OSCLI 107
OSEVEN 107
OSFILE 335

CFS 346
filing system 349

OSFIND
CFS 346
ROM filing system 349

OSFSC 343
CFS 346

OSGBPB 339
CFS 346

OSHWM 136, 154, 188
read 189
write 189

OSNEWL 103
OSRDCH 102
OSRDRM 106
OSWORD 247

envelope command 250
paged ROM service call 322
parameter block 247
read character definition 251
read graphics cursor positions 252
read I/O processor memory 249
read interval timer 249

read line 248
read palette 251
read pixel value 250
read system clock 248
sound command 250
summary 247
unrecognised 256
user 256
write I/O processor memory 249
write interval timer 249
write palette 252
write system clock 249
zero page register storage 271

OSWRCH 101, 104
Output stream selection 119
Output stream status 232
Overflow flag 32, 42, 60, 232

P
Page 496
Page mode 220
Paged ROM select register

zero page RAM copy 271
Paged ROMs

*HELP service call 323
*ROM software 330
absolute workspace claim 320
address pointer 271
auto boot 321
BRK service call 322
claim static work space 323
copyright string 319
EXEC/SPOOL closure warning 324
expanded vectors location 281
filing systems 328
font explosion warning 325
information table 273
initialise filing system 325
language entry point 325
language ROMs 327
NMI service calls 323
OS command 321
OS commands 11
private work space addresses 281
private work space claim 321
read byte 106
read ROM info table address 182
read ROM pointer table address 181
recognition bytes 317
ROM filing system 324
ROM type byte 317
select register 393
service call entry 320
service call types 320
service request 167
sockets 395
title string 319
Tube service calls 325

507

unrecognised interrupt 322
unrecognised OSBYTE 322
unrecognised OSWORD 322
vectored entry 326
vectors claimed service call 324
version number 319
version string 319

Palette
read OSWORD 251
write OSWORD 252

Palette selection
in video ULA 379

Parallel 496
Parallel printer 121
Parameter block 28
Parasite processor 434
Pass

in assembling programs 25
Peripheral 496
PHA (Push A onto stack) 80
PHP (Push status onto stack) 81
Phrase ROM

logical number storage 271
Physical colours 382
Pixel value OSWORD 250
PLA (Pull A from stack) 82
PLOT numbers

expansions 261
summary 460

PLP (Pull Status from stack) 83
POINT

read pixel value 250
Poll 496
POS 158
Post-indexed indirect addressing 39
Power up 356
Pre-indexed indirect addressing 38
Printer

buffer status 151
destination flag 239
empty printer buffer 138
ignore character 122
ignored character 240
networked 260
output enabled by VDU 2 139
port 425
select output destination 121
sections for output 119
user defined 258

Printer driver
going dormant warning 146

Printers
RS423 309

Program counter 42
Put Byte

OSBPUT 339

R
RAM 496
RAM available 245
Raster scan display 359
Read byte from an open file

OSBGET 338
OSGBPB 339

Read byte in paged ROM 106
Read character (OSRDCH) 102
Read character from string 106
Read file attributes

OSARGS 337
OSFILE 335

Read I/O processor memory 249
Read line OSWORD 248
Read user flag 117
Refresh 496
Register 496
Relative addressing 40
Relay for cassette motor 393
REMV 263
REPORT 21, 28
Reset

soft keys 134
ROL (Rotate Left) 84
Rollover 497
Rollover on keyboard input 142
ROM 497

current language ROM number 243
number containing BASIC 195

ROM active at last BRK 194
ROM filing system 165, 349

address pointer 271
data format 349
logical ROM number storage 271
paged ROM service calls 324
software select switch 192

ROM information table 182
ROM pointer table 181
ROR (Rotate Right) 85
Row multiplication table

zero page locations 269
RS423

buffer storage 280
controlling the cassette Port 311
DCD 313
empty input buffer 138
empty output buffer 138
error detected event 292
example program 311
handshaking extent 208
input buffer status 151
input select 186
input suppression flag 209
insert character in buffer 172
interrupt processing 301
output buffer status 151
printer output 121

508

printers 309
read control flag 200
read/write mode 190
read/write use flag 199
receive baud rate 123
RTS 312
selection for input 118
selection for output 119
terminals 310
transmit baud rate 124

RS423 timeout counter
zero page location 270

RS423/cassette selection flag 210, 393
RTI (Return from interrupt) 86
RTS 312
RTS (Return from subroutine) 87

S
Save file

OSFILE 335
SBC (Subtract memory from A) 88
Screen

selection for output 119
vertical position 20
wrap around 373

Screen display see 6845 and video ULA
Screen format 360
Screen mode

storage in page 3 276
Screen mode at power up 246
Screen modes 359

layouts 462
Screen positioning 168
Scrolling

disabling 139
example 374
hardware 371
paged scroll selected 139
soft scrolling selected 139

SEC (Set Carry flag) 89
Second processor

16032 435
6502 434
Z80 435

SED (Set Decimal mode) 90
SEI (Set interrupt disable flag) 91
Select input stream 118
Select output stream 119
Serial 497
Serial ROM

reading of 177
Serial ULA

read register 236
Service call entry

paged ROMs 320
Service call types 320

SHEILA
address &20 428
address &30 395
addresses &00–&07 356
addresses &08–&1F 385
addresses &20–&21 377
addresses &40–&7F 397
addresses &80–&BF 427
addresses &C0–&C2 429
addresses &E0–&FF 433
introduction 356
reading and writing 170

SHIFT+BREAK action 246
Slow data bus 417
Sockets for paged ROMs 395
Soft BREAK 166, 244
Soft character

RAM allocation 136
Soft character explosion state 191
Soft character RAM explosion 188
Soft key

*KEY 15
buffer storage 281
string length 219

Soft keys
11–15 120
consistency flag 238
function key status 225
page two expansion pointer 273
plus CTRL 225
plus SHIFT 225
plus SHIFT+CTRL 225
resetting 134
using TAB key 222

Sound
buffer storage 280
channel status 151
chip 419
empty a sound channel buffer 138
input on 1MHz bus 442
suppression status 213

Sound command OSWORD 250
Sound semaphore

page two location 274
Spare vectors 264
Speech

buffer status 151
buffer storage 280
empty speech buffer 138
presence flag 231
processor 418, 423
read from speech processor 177
suppression status 212
write to speech processor 178

Spooling
selection of 119

509

STA (Store A in memory) 92
Stack 497

position in memory 272
Stack pointer 4
Start up message 218
Start up options 246
String processing 105
STX (Store X in memory) 93
STY (Store Y in memory) 94
Subroutine

jump to 73
return from 87

Syntax
in assembler programs 35

System 6522 see system VIA
System clock

page two address 272
read OSWORD 248
write OSWORD 249

System VIA
hardware 417
interrupt processing 302
IRQ bit mask 229

T
TAB key definition 222
Tape filing system

selection of 164
Tape format

CFS 347
TAX (Transfer A to X) 95
TAY (Transfer A to Y) 96
Terminals

RS423 310
Text colour bytes

zero page locations 268
Text cursor

read character from 159
Text cursor position 158
Timer see interval timer
Timer switch 237
Tone generators 420
Transducer 497
Tri state 497
TSX (Transfer S to X) 97
Tube

16032 second processor 435
6502 second processor 434
fast BPUT 176
filing systems 345
introduction 433
paged ROM service calls 325
presence flag 230
Read I/O processor memory 249
ULA 433
Write I/O processor memory 249
Z80 second processor 435

Two key roll-over
zero page locations 270

Two's complement 31
TXA (Transfer X to A) 98
TXS (Transfer X to S) 99
TYA (Transfer Y to A) 100

U
ULA 497

video 377
Uncommitted logic array 497
Upgrading to discs 480
UPTV 258
US MOS

difference from UK 478
User

vector 13, 16
zero page 30

User 6522
IRQ bit mask 229

User defined characters 136
User defined keys

*KEY 15
User event 293
User flag 117, 235
User port 425
User print routine 121
User print routines 258
User print vector 258
User vector 256

indirect via USERV 160
User VIA

interrupt processing 304
USERV 160, 256

*CODE 13
*LINE 16
use through OSWORDs 247, 256

USR
from BASIC 28

V
VDU

page three work space 274
read VDU variable value 179
unrecognised codes 261

VDU character output
entry point 104

VDU codes
summary 459

VDU driver
zero page work space 268

VDU extension vector 261
VDU queue 221

storage in page 3 276
VDU status 139

zero page location 268
VDU variables

read origin of table 184

510

VDUV 261
Vector 253

break (BRK) 257
buffer count/purge 264
buffer insert 263
buffer remove 263
default table 265
extended 326
extended vector storage 281
keyboard control 262
network 260
spare 264
user 13, 16, 254
user printer 258
user supplied routines 254
VDU extension 261

Vectors
filing system control 343
OSFSC 343
paged ROM service call 324

Versatile interface adapter see VIA
Version

operating system 15
Version number 116
Vertical sync

event 291
wait 135

VIA
counter 404
data direction registers 400
handshaking 403
interrupts 408
printer 425
pulse counting 408
register summary 399
shift register 408
system 417
user 425

Video RAM start address
for any screen mode 157
for currently selected mode 156

Video subsystem see 6845 and Video ULA
Video ULA 377

characters per line control 378
colour mode selection 378
cursor control 379
flash control 378
palette register 379
read registers 193
teletext selection 378
write control register 173
write palette register 174

Volume control 420
VPOS 158

W
Wait until vertical sync 135
Windows

storage in page 3 275
Wrap around for screen 419
Write a new line (OSNEWL) 103
Write byte to an open file

OSBPUT 339
OSGBPB 339

Write character (OSWRCH) 101
Write file attributes

OSARGS 337
OSFILE 335

Write I/O processor memory 249
Write user flag 117

Z
Z80 second processor 435
Zero flag 41
Zero flag

OS usage 267
user 30

Zero page addressing 36
Zero page, X or Y addressing 38

THE ADVANCED USER GUIDE
FOR THE BBC MICROCOMPUTER
This book is an essential supplement to the ‘User Guide’ provided with the
BBC microcomputer. A vast amount of useful information has been laid out
within these pages to provide the user of the BBC micro with an invaluable
reference guide, and thorough indexing and cross referencing makes all this
new data highly accessible.

The three authors are members of Cambridge University and between them
have extensive experience of using, programming and writing about the
BBC micro in a wide range of applications. Instead of merely complaining
about the lack of a well written, accurate book containing advanced
programming information, the authors decided to write it.

Information contained in ‘The Advanced User Guide’ covers both the
software and the hardware of the BBC microcomputer. Some of the many
areas covered are:

l The BASIC assembler

l A full 6502 machine code reference section

l A complete description of ALL the *FX/OSBYTE calls

l How to implement paged ROM software

l Use of events and interrupts

l A complete description of operating system workspace

l Programming the video circuitry including how to implement a 10K, 16
colour graphics mode (model A or B)

l Full descriptions of the video and serial ULAs

l Full interfacing details including use of the user port, 1 MHz bus,
analogue port and the Tube

l A comprehensive description of the BBC micro’s internal hardware

l A full circuit diagram

No serious programmer of the BBC micro can consider not owning a copy
of this invaluable reference material.

	Introduction
	1. New to machine code
	2. Operating System commands
	3. The BASIC Assembler
	4. Machine Code Arithmetic
	5. Addressing Modes
	6. The 6502 Instruction Set
	7. Operating System calls
	8. *FX and OSBYTE calls
	9. OSWORD calls
	10. Vectors
	11. Memory usage
	12. Events and Event Handling
	13. Interrupts
	14. The RS423 serial system
	15. Paged ROMs
	16. Filing systems
	17. Introduction to Hardware
	18. The 6845 CRTC
	19. The video ULA
	20. The serial system
	21. Paged ROM select register
	22. The 6522 VIAs
	23. The System VIA
	24. The User/Printer VIA
	25. Floppy Disc and Econet
	26. Analogue to Digital converter
	27. The Tube
	28. The One Megahertz bus
	Appendix A - *FX/OSBYTE call index
	Appendix B - OS calls summary
	Appendix C - Key Values Summary
	Appendix D - VDU Code Summary
	Appendix E - Plot Number Summary
	Appendix F - Screen mode layouts
	Appendix G - US MOS differences
	Appendix H - Disc Upgrade
	Appendix I - Link Options
	Appendix J - The keyboard circuit
	Bibliography
	Glossary
	Index

