
BASIC ROM
USER GUIDE
FOR THE BBC MICROCOMPUTER

AND ACORN ELECTRON
MARK PLUMBLEY

ADD E R

The
BASIC ROM
User Guide

for the BBC microcomputer
and Acorn Electron

Mark D. Plumbley BA,
Churchill College,
Cambridge University

Published by Adder Publishing, Cambridge
ADD E R

Published in the United Kingdom by:
Adder Publishing,
PO Box 148,
Cambridge CB1 2EQ

ISBN 0 947929 04 5

Copyright © 1984 Adder Publishing
First published August 1984
First revision October 2017

The Author would like to thank Adrian Dickens, Nigel Dickens, Tim Gleeson, Ken Vail,
Leycester Whewell, Albert Williams and everyone else who helped in the production of
this book.

All rights reserved. This book is copyright. No part of this book may be copied or stored
by any means whatsoever whether mechanical, photographic or electronic, except for
private or study use as defined in the Copyright Act. All enquiries should be addressed to
the publishers. While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of information contained herein.

The Author would like to thank Rockwell International for their permission to reproduce
diagrams from their R650X data sheet. These diagrams remain copyright of Rockwell
International.

Please note that within this text the terms Tube, Econet, Atom and Electron are
registered tradenames of Acorn Computers Limited. All references in this book to the
BBC Microcomputer refer to the computer produced for the British Broadcasting
Corporation by Acorn Computers Limited.

This book was prepared using the Acornsoft VIEW wordprocessor on the BBC
Microcomputer and then computer typeset by Parker Typesetting Service, Leicester.
Book production by Adder Publishing.

Printed in Great Britain by The Burlington Press Ltd., Foxton, Cambridge.

3

Contents
Introduction 5

The Operation of BASIC

1 The 6502 Microprocessor 7
1.1 The 6502 registers 7
1.2 Machine code arithmetic 10
1.3 The instruction set 14
1.4 Addressing modes 19
1.5 Addressing mode groups 23
1.6 The BASIC assembler 26

2 The BASIC System 28
2.1 An overview of BASIC 28
2.2 The BASIC ‘CPU’ 30
2.3 Tokenising 37
2.4 Program storage 44
2.5 Executing statements 45

3 Memory Use 47
3.1 Variables and the HEAP 47
3.2 The BASIC STACK 59
3.3 Workspace 60

4 Expression Evaluation 63
4.1 Operator precedence 63
4.2 Top-down analysis 63

5 Program Control Mechanisms 68
5.1 GOTO 68
5.2 GOSUB…RETURN 69
5.3 PROCs and FNs 70
5.4 IF…THEN…ELSE 75
5.5 REPEAT…UNTIL 76
5.6 FOR…NEXT 77
5.7 ON…GOTO/GOSUB 80
5.8 ON ERROR 81

6 Assembling and Disassembling 83
6.1 The assembler 83
6.2 The disassembler 86

4

Enhancing BASIC

7 Adding New Commands 98
7.1 Trapping BRK 98
7.2 The ‘Mistake’ error 100
7.3 A single character statement 103
7.4 Recognising keywords 107
7.5 A renumber utility 115

8 Overlaying Procedures 128
8.1 The ‘No such FN/PROC’ error 128
8.2 Static overlaying 130
8.3 Dynamic overlaying 134

9 Trapping other Errors 143
9.1 Bad MODE recover 143
9.2 Bad program salvage 147
9.3 Error listing 155

10 ROM Routines 162
10.1 Restarting BASIC 169
10.2 Program handling 172
10.3 Statement handling 182
10.4 Expression evaluation 187
10.5 Variable/FN/PROC management 193
10.6 STACK management 207
10.7 Input/output 216
10.8 Type conversion 222
10.9 Integer routines 228
10.10 Floating point routines 237
10.11 Function entry points 262

11 Errors and Error Recovery 264
11.1 The BASIC BRK handler 264
11.2 Numbered errors 267
11.3 Fatal errors 311

Appendices

A Syntax definition 319
B BASIC ROM summary 327
C 6502 instruction set summary 334
D Keyword summary 336
E Operating system calls and vectors 338
F OSBYTE/*FX call summary 339
G Variable locations 344

Bibliography 345

Glossary 346

Index 351

5

Introduction
Many books have been written explaining how to program in
BBC BASIC, or how to program in 6502 machine code. Most
people therefore know BASIC or machine code without really
understanding what BASIC itself is up to. This book fills in that
gap by providing a complete description of BASIC as a system.

Although BASIC is a very large machine code program, it is
essentially very simple, as it is very structured: once you can see
the overall structure of the system, it is very easy to delve deeper
and deeper into its workings, to find out exactly what is
happening. This book explains that overall structure: program
storage, variable storage, expression evaluation, etc., right down
to the mechanisms used by a FOR…NEXT loop or a procedure
call. Armed with this knowledge, and the disassembler in chapter
6, you can probe right down to the machine code level of BASIC.

Understanding the operation of a large machine code program
such as BBC BASIC has many advantages: not only does it point
the way for writing large machine code programs yourself, but it
also allows you to write your BASIC programs much more
efficiently. Once you know what BASIC has to do to interpret a
program, it is possible to write faster programs if you need to, by
using resident integer variables wherever possible, using PROCs
and FNs rather than GOSUBs, and so on.

The second part of this book describes how to add routines on to
BASIC to expand the capabilities of your machine, mainly by
trapping the errors that it generates. Adding new commands,
overlaying procedures, etc., are all covered, together with how to
get back into BASIC to continue afterwards. The examples also
show you how to use some of the ROM routines to save space and
time in your own machine code programs.

The example programs are complete in that you can type them in
and run them, and many of them are useful utilities. However,
they also indicate the possibilities available to the adventurous
programmer — don’t be afraid to chop them about, and use them
as a basis to put your own ideas into practice. Chapter 10 provides
a comprehensive listing of the BASIC ROM entry points (for both
BASIC1 and BASIC2), so that you can experiment with other
ideas for new utilities.

6

Of course, using ROM routines directly will mean that your
programs might not work on the Tube, Econet, or with a
different BASIC; in fact, the BASIC ROM may not even be
‘paged in’ when you try to use it. For experimenting with your
own machine, however, this doesn’t really matter. Commercial
programs should never use any of these ROM routines; the
program might find itself running in a situation you did not allow
for. For such programs, or any others which are not restricted to a
particular system configuration, only the officially documented
facilities should be used.

Note that all Electrons, and the later BBC microcomputers, have
BASIC2: the earlier BBC microcomputers have BASIC1. If you
are not sure which version of BASIC is in your machine, typing
REPORT after BASIC has just started up (after a BREAK or
*BASIC), will print the copyright message. If the date is 1981,
BASIC1 is fitted; if it is 1982, you have BASIC2. American
machines, or those with a second processor, may have US BASIC
or HIBASIC: the ROM routines will not be in the same place for
these ROMs.

Armed with this book, and plenty of coffee, you should have
many happy nights programming. Have fun!

7

1 The 6502
Microprocessor
At the heart of any microcomputer is the microprocessor. In the
BBC micro and Electron this is the 6502, which provides the
computer with all its processing power.

By itself, the 6502 is a very simple machine; but it can be made to
perform relatively complex tasks (like interpreting programs
written in BASIC) by stringing together many of its simple
instructions into a machine code program.

This section is not really a tutorial on machine code
programming, but more an introduction to the 6502 to give an
idea of how the rest of the BASIC system operates around it.

1.1 The 6502 registers
The 6502 has 6 registers altogether: the accumulator A, the index
registers X and Y, the program counter PC, the stack register S,
and the processor status register P. These are shown in the
programming model, fig 1.1.

Figure 1.1 – The 6502 programming model.

A

7 0

Y

7 0

X

7 0

PCL

7 0

PCH

15

S

7 08

1

ACCUMULATOR A

INDEX REGISTER Y

INDEX REGISTER X

PROGRAM COUNTER “PC”

STACK POINTER “S”

 N V 1 B D I Z C
7 0

PROCESSOR STATUS REG “P”

CARRY 1 = TRUE

ZERO 1 = RESULT ZERO

IRQ DISABLE 1 = DISABLE

DECIMAL MODE 1 = TRUE

BRK COMMAND 1 = BRK

OVERFLOW 1 = TRUE

NEGATIVE 1 = NEG

8

The accumulator A

The accumulator A is used for all of the arithmetic and logical
operations done by the 6502, as well as just loading it from
memory and storing it back into memory again. It is the only 6502
register which can be used for adding, subtracting, ANDing, etc.
of numbers, and so tends to be used rather a lot. It is 8 bits (1
byte) wide, so it can only hold 256 (&100) different numbers
altogether.

As an example, the instruction:

 AND &80

ANDs the 8-bit number in the accumulator with the 8-bit number
in location &80 (i.e. ?&80), leaving the result in the accumulator.

The index registers X and Y

Either of these can be used a counter, or as an offset into a table
in memory. They can also be loaded from and stored into
memory. Again they are only 8 bits wide, so they can only count
up to 255 (&FF).

As an example, the instruction:

 LDA &2000,Y

loads the accumulator from the location at &2000+Y. Thus if the
Y register contained &2A, the accumulator would be loaded with
the contents of location &202A.

The program counter PC

This is the register which tells the 6502 where to get its next
instruction from. In a machine code program, the instructions are
stored one after another in memory, and the program counter
steps through these while they are executed. In practice, you don’t
really notice the program counter much (just as you don’t notice
the text pointers that BASIC uses to step through its program).
The program counter is the only 16-bit register that the 6502 has,
and allows it to address 65536 (&10000) locations.

9

As an example, the instruction:

 JMP &8000

jumps to location &8000 (in a similar way to the GOTO
statement) by loading the number &8000 into the program
counter.

The stack pointer S

This register points into a stack in page 1, from &100 to &1FF.
Numbers can be pushed on the top of the stack, to save them until
later, and then pulled (or popped) again to get back the last
number that was pushed. This is called a last in first out (LIFO)
structure, because the first thing that you get out was the last
thing that you put in.

When a single byte number is pushed on the stack, it is placed in
memory at the location pointed to by the stack pointer (&1F0,
say, if the S register contains &F0), and the stack pointer is
decremented to point to the location below it in memory. When a
byte is pulled, the opposite takes place: the stack pointer is
incremented, and the number loaded from the location in page 1
which it points to.

As an example, the instruction:

 PHA

pushes the contents of the accumulator on the 6502 stack.

The processor status register P

This register contains the flags that the 6502 needs for its
arithmetic and system operations.

N This is the negative flag. It is set whenever the top bit is set
in the 8-bit number just calculated or loaded from memory
(see section 1.2 for negative number representation).

V This is set if an overflow occurred the last time an 8-bit
signed add or subtract operation was performed (see
section 1.2).

10

B This is the BRK flag. It is set when a BRK instruction is
executed (see section 1.3).

D This is the decimal flag. It can be set if any binary coded
decimal arithmetic is to be performed (see section 1.2).

I This is the interrupt flag. It can be set to prevent the 6502
from being interrupted by a hardware IRQ.

Z This is the zero flag. It is set whenever the 8-bit number
just calculated or loaded from memory is zero.

C This is the carry flag. The ADC and SBC instructions use
this to indicate whether there was a ‘carry over’ from the
calculation just performed (see section 1.2). It is also used
by the shift instructions (section 1.3).

Some of these flags can be tested so that parts of the machine
code program are executed conditionally. For example the
instruction:

 BCS carry

will branch to the location ‘carry’ if the carry flag is set: otherwise
the program will continue with the instruction after the ‘BCS’.
The use of these flags is explained more with the instructions in
section 1.3.

1.2 Machine code arithmetic
As the 6502 accumulator is only 8 bits wide, it can only represent
one of 256 different numbers. Hexadecimal notation is
convenient to represent numbers in a byte, because each
hexadecimal digit represents 4 bits, so 2 digits represent a whole
byte, from &00 to &FF. What the 256 different numbers are used
to represent is fairly arbitrary: they can represent positive
numbers, negative numbers, or part of a larger number.

11

1.2.1 Negative numbers

A single byte can be used to represent the positive integers from 0
to 255. This is convenient for counting; but for arithmetic, some
way of representing negative numbers is really needed.

If you add the single byte number &04 to &FC, you get &00
(ignoring any carry out of the byte). So, in this case, &FC seems
to be behaving as if it was −4 (as ‘−4’ is ‘the number which you
add to 4 to get 0’). However, it can also represent the positive
number 252. The answer is that with only 8 bits, you can’t tell the
difference between ‘252’ or ‘252 − 256’ or ‘252 + 256’ or ‘252 +
any number of 256s’.

So if you want half of the 256 numbers you can represent in a byte
to be negative, all you have to do is leave &00 to &7F to be the
positive numbers 0 to 127, and let &80 to &FF represent the
negative ones. These negative ones will have the same
representation as the positive numbers which you get by adding
256 to them, so ‘−4’ will be the same as ‘−4+256’ (252), i.e.
&FC.

Choosing the numbers above &80 to be negative is very
convenient, because it means that all the numbers with the top bit
of the byte set will be negative, while all the numbers with the top
bit zero will be positive. Thus the top bit of a signed number like
this is the sign bit of the number. This is what the N flag in the
6502 is for: it indicates the sign bit of the number which has just
been operated on.

This representation is often called 2’s complement representation.
This is because the negative of a number can be found by
changing all the ‘1’s in the binary representation to ‘0’, and all the
‘0’s to ‘1’s (one’s complement), and then adding 1 to it. For
example, 4 is ‘00000100’, so inverting all the bits we get
‘11111011’, and adding 1 we get ‘11111100’, or &FC. What
you’re really doing when you invert all the bits of a single byte
number, is subtracting it from 255 (i.e. ‘11111111’), so by adding
the extra 1 again, you get the number subtracted from 256.

12

1.2.2 Larger numbers

At first, it may seem a bit restrictive only to be able to represent
256 different numbers in a single byte. However, in decimal, a
single digit can only represent one of 10 different numbers (0 to
9), but larger numbers are written down with more than 1 digit,
like ‘59’. In exactly the same way, large numbers can be stored in
memory in several bytes, so 1000 (&03E8) can be stored as &03
in one byte (the most significant byte, or MSB) and &E8 in the
other (the least significant byte, or LSB).

When addition is performed in decimal, the least significant digits
are added first. Then the next digits are added, together with any
carry from the first ones, if there was any. The same can be done
to add a pair of large numbers in memory: for example, to add
1000 (&03E8) to 25 (&0019) the following operations will take
place:

1 Add the LSB of the first number (&E8) to the LSB of the
second number (&19). This gives the result &01 with a 1 to
carry over to the next byte.

2 Add the MSB of the first number (&03) to the MSB of the
second number (&00), with an extra 1 carried over from
the last addition. This gives the result &04, with no carry.

The final result of the addition is then &0401, or 1025 in decimal.

The carry over from one byte to the next is done by the C (carry)
flag in the 6502 status register. If this is set, the 6502 ADC (add
with carry) instruction will automatically add an extra 1 to the
addition it is about to do. To add the LSBs together, the carry flag
must be cleared first (with the CLC instruction), or an extra 1 may
be added where you didn’t want one.

Subtraction of larger numbers is done in a very similar way,
except the C flag is used as a ‘borrow’: if it is cleared, the last
subtraction needed to borrow 1 from the next byte up, so 1 extra
will be subtracted when the next subtraction is performed. To
subtract the LSBs, the carry flag must be set first (with the SEC
instruction), so the extra 1 is not subtracted.

13

1.2.3 Overflow

If the single-byte 2’s complement number &50, representing 80,
is added to the number &33, representing 51, we get &83, which
represents −125. Clearly this is not right: the number we should
have got was 131. However, 131 is too big to be represented by
our singlebyte 2’s complement number: only the numbers −128
to +127 are allowed. When this happens the result has overflowed.

The V (overflow) flag in the 6502 is set if the last add or subtract
instruction caused an overflow, and the result which was obtained
is not a correct 2’s complement representation of the answer.

After an addition, the overflow flag will be set if:

(a) a carry occured from bit 6 to bit 7 of the byte, without a
carry out of the byte; or

(b) a carry occurred out of the byte without a carry from bit 6
to bit 7.

In other words:

(a) the numbers being added were both positive, but the result
is negative; or

(b) the numbers being added were both negative, but the result
is positive.

For subtraction, the overflow flag will be set in the corresponding
situations, as though you were adding the negative of the number
being subtracted.

1.2.4 Binary coded decimal

If the D flag of the 6502 is set it will operate in its binary coded
decimal mode, where the 8-bit byte is used to represent two
decimal digits, one in each nybble (4 bits). Thus the decimal
number 26 will be represented by the hexadecimal number &26.
When operating in this mode, all add and subtract operations will
automatically adjust the result to ensure that it is in binary coded
decimal form again.

14

This mode is not used very often, although sometimes it is useful
for representing decimal numbers exactly.

The decimal flag must never be set when using any operating
system or BASIC routines, as they expect to operate in standard
binary mode.

1.3 The Instruction Set
The 6502 has 56 different instructions. This section lists them in
groups of similar actions, giving the operation of the instruction,
and the flags affected by it. Section 1.4 gives the addressing
modes which can be used with these instructions. Appendix C
gives a list of these instructions in alphabetical order.

Load/store operations

LDA The accumulator is loaded with the contents of the
specified memory location. Flags affected: N,Z.

LDX The X register is loaded with the contents of the specified
memory location. Flags affected: N,Z.

LDY The Y register is loaded with the contents of the specified
memory location. Flags affected: N,Z.

STA The contents of the accumulator are stored in memory.
The flag bits are unaffected.

STX The contents of the X register are stored in memory. The
flag bits are unaffected.

STY The contents of the Y register are stored in memory. The
flag bits are unaffected.

Register transfer operations

TAX Copy the contents of the accumulator to the X register.
The contents of A are unaffected. Flag bits affected: N,Z.

TAY Copy the contents of the accumulator to the Y register.
The contents of A are unaffected. Flag bits affected: N,Z.

15

TSX Copy the contents of the stack pointer to the X register.
The contents of S are unaffected. Flags bits affected: N,Z.

TXA Copy the contents of the X register to the accumulator.
The contents of X are unaffected. Flags affected: N,Z.

TXS Copy the contents of the X register to the stack pointer.
The contents of X and the status register are unaffected.

TYA Copy the contents of the Y register to the accumulator.
The contents of Y are unaffected. Flag bits affected: N,Z.

Stack operations

PHA The contents of the accumulator are pushed on the stack.
The stack pointer is updated to point to the next available
location. Flag bits are unaffected.

PHP The contents of the processor status register are pushed on
the stack, and the stack pointer is updated. Flag bits are
unaffected.

PLA The byte on top of the stack is transferred to the
accumulator and the stack pointer is updated. Flag bits
affected: N,Z.

PLP The byte on top of the stack is transferred to the P register
and the stack pointer is updated. All flag bits are affected.

Arithmetic and logical operations

ADC Add the contents of the specified memory location with the
carry flag to the accumulator. Result is left in the
accumulator. Flags affected: N,V,Z,C.

SBC The specified data is subtracted from the accumulator with
a borrow if the carry flag is clear. The result is left in A. C
is cleared if a borrow was required else it is set. Flags
affected: N,V,Z,C

CMP The contents of the specified memory location are
subtracted from the accumulator, setting the flags, but not
storing the result. A is unaffected. Flags affected: N is set

16

to bit 7 of the result, Z is set if the result is zero. C is set if
the unsigned number in the accumulator is greater than or
equal to the data, otherwise cleared (as for the SBC
instruction).

CPX The contents of the specified memory location are
subtracted from the X register but the result is not stored.
The flags are set in the same way as for CMP.

CPY The contents of the specified memory location are
subtracted from the Y register but the result is not stored.
The flags are set in the same way as for CMP.

AND Performs the bit by bit logical AND of the accumulator and
the specified memory location. Result is left in the
Accumulator. Flags affected: N,Z.

ORA The bit by bit logical ORing takes place between the
accumulator and the memory location, the result is left in
A. Flags affected: N,Z.

EOR The contents of the accumulator are exclusive-ored on a bit
by bit basis with the specified data, the result is left in A.
Flags affected: N,Z.

BIT The logical AND of the accumulator and memory is
performed but is not stored. Flag bits affected: Z is set if
the result was zero, V and N are set to bits 6 and 7 of the
memory location respectively.

Increment/decrement operations

DEC The number in the specified memory location is
decremented by 1. Flags affected: N,Z

DEX The number in the X register is decremented by 1. Flags
affected: N,Z.

DEY The number in the Y register is decremented by 1. Flags
affected: N,Z.

INC The number in the specified memory location is
incremented by 1. Flags affected: N,Z.

17

INX The number in the X register is incremented by 1. Flags
affected: N,Z.

INY The number in the Y register is incremented by 1. Flags
affected: N,Z.

Shift and rotate operations

ASL The contents of the accumulator or the memory location
are shifted one bit to the left. Bit 7 falls in to the carry flag,
and bit 0 is set to 0. Flags affected: N,Z,C.

LSR The contents of the accumulator or the memory location
are shifted to the right by 1 bit. 0 is placed in bit 7, and bit
0 transferred to C. Flags affected: N is cleared, Z,C.

ROL The contents of the accumulator or the memory location
are rotated by one bit to the left. The carry flag is shifted
into bit 0, and bit 7 is shifted in to the carry flag. Flags
affected: N,Z,C.

ROR The contents of the accumulator or the memory location
are rotated by one bit to the right. The carry flag is shifted
into bit 7, and bit 0 is shifted in to the carry flag. Flags
affected: N,Z,C.

Program control operations

JMP The program counter is loaded with a new address and the
program continues from that point. Flags are unaffected.

JSR The contents of the program counter + 2 are pushed on the
stack and a new program counter is loaded from the
argument. This is called a subroutine call. Flags are
unaffected.

RTS The program counter is pulled off the stack and
incremented by one, to return from the subroutine. The
stack pointer is updated. Flags bits are unaffected.

Conditional branch operations

BCC If the C flag is 0 then branch to the new location, otherwise
continue with the next instruction. Flag bits are unaffected.

18

BCS If the C flag is 1 then branch to the new location, otherwise
continue with the next instruction. Flag bits are unaffected.

BEQ If the Z flag is 1 then branch to the new location, otherwise
continue with the next instruction. Flag bits are unaffected.

BNE If the Z flag is 0 then branch to the new location, otherwise
continue with the next instruction. Flag bits are unaffected.

BMI If the N flag is 1 then branch to the new location, otherwise
continue with the next instruction. Flag bits are unaffected.

BPL If the N flag is 0 then branch to the new location, otherwise
continue with the next instruction. Flag bits are unaffected.

BVC If the V flag is 0 then branch to the new location, otherwise
continue with the next instruction. Flag bits are unaffected.

BVS If the V flag is 1 then branch to the new location, otherwise
continue with the next instruction. Flag bits are unaffected.

Flag operations

CLC The Carry flag is cleared, no other flags are affected.

CLD The Decimal flag is cleared, no other flags are affected.
This puts the 6502 in binary mode.

CLI The Interrupt flag is cleared, no other flags are affected.
This enables interrupts from the IRQ input.

CLV The Overflow bit is cleared, no other flags are affected.

SEC C is set. Other flags remain unaffected.

SED D is set. The ADC and SBC instructions will now operate
in the BCD mode. Other flags remain unaffected.

SEI I is set. No IRQs will be acknowledged until it is cleared.
Other flag bits are unaffected.

19

System control operations

BRK This causes an interrupt to be generated and is not
maskable. Flags affected: B is set.

NOP The processor does nothing for two cycles.

RTI This pulls the processor status and then the program
counter off the stack. The stack pointer is updated. This is
used to terminate an interrupt. All flags affected.

1.4 Addressing modes
The addressing mode is used to specify how the data needed by an
instruction is to be accessed from memory. Most instructions
have a single-byte opcode, which tells the 6502 which instruction
and addressing mode it is, followed by one or two bytes of data to
be used by the instruction. Chapter 6 has a table of all the
possible opcodes.

Altogether, the 6502 has 13 different addressing modes: these are
listed in this section.

Implied addressing

No extra data is required by the instruction. For example:

 TAX

will transfer the contents of the accumulator to the X register,
and doesn’t need any other information.

Accumulator addressing

No extra data is required by the instruction: it operates on the
accumulator. For example:

 ASL A

will shift the accumulator left 1 bit.

20

Immediate addressing

The single-byte number following the opcode is to be used
directly by the instruction. This addressing mode is marked by a
‘#’ in front of the data. For example:

 ORA #&80

will logically OR the contents of the accumulator with the single-
byte number ‘&80’ (128).

Absolute addressing

The 2-byte number following the opcode gives the memory
location of the data to be used by the instruction. For example:

 LDY &2000

will load the Y register with the contents of memory location
&2000.

Zero page addressing

The single-byte number following the opcode gives the memory
location in page zero (&0000 to &00FF) of the data to be used by
the instruction. This is similar to absolute addressing, except that
the MSB of the address is always zero. This is faster than absolute
addressing, and takes up only 2 bytes instead of 3 (including the
opcode). For example:

 STA &70

will store the contents of the accumulator into the zero page
memory location &70.

Absolute indexed addressing

The unsigned contents of the specified index register are added to
the 2-byte absolute address following the opcode, to give the
location of the data to be used by the instruction. The index
register used may be either X or Y, depending on which is
allowed with the particular instruction. This addressing mode is

21

marked by a ‘,Y’ or a ‘,X’ following the data. It is useful for
accessing tables or reading characters in from a line. For
example:

 DEC &3000,X

will decrement the location at &3000+X by 1. If the X register
contained &54, the contents of location &3054 will be
decremented.

Zero page indexed addressing

The contents of the specified index register are added to the
single byte following the opcode, to give the page zero location of
the data to be used by the instruction. The carry generated by this
addition is ignored: the accessed location is always in page zero.
For example:

 INC &80,X

will increment the contents of the location whose LSB is given by
&80+X, and whose MSB is &00. Thus if X contains &04, the
contents of zero page location &84 will be incremented; if X
contains &FE, the contents of zero page location &7E will be
incremented.

Relative addressing

The 2’s complement byte following the opcode is added to the
program counter to give the location to be used by the
instruction. This is only used by the conditional branch
instructions. It means that the branch instructions only take up 2
bytes altogether, but the location which is being branched to must
be a maximum of −128 to +127 away from the location of the
instruction following the branch instruction. For example:

.loop BEQ loop

will branch back to the same location if the Z flag is set. The byte
following the opcode will be &FE (−2) for this instruction,
because the branch instruction is 2 bytes back from the next
instruction which would be executed if the branch did not take
place.

22

Indirect addressing

The 2-byte absolute address following the opcode points to two
consecutive bytes which contain the LSB and the MSB of the
location to be used. The two bytes are stored LSB first, MSB
second. This addressing mode is only used by the JMP
instruction. For example:

 JMP (&0200)

will jump to the location whose address is contained in &0200
(LSB) and &0201 (MSB).

Pre-indexed indirect addressing

The contents of the X register are added to the single byte
following the opcode, to give the zero page location of two
consecutive bytes (LSB first) which contain a pointer to the data.
For example:

 LDA (&50,X)

will use the number in &50+X (LSB) and &51+X (MSB) as a
pointer to the number to be loaded into the accumulator. Thus if
X contained &20, location &70 contained the number &34, and
location &71 contained the number &12, the number in location
&1234 would be loaded into the accumulator.

Post-indexed indirect addressing

The single byte following the opcode gives the zero page location
of a 2-byte pointer (LSB first). The unsigned contents of the Y
register are added to this pointer, to give the address to be used
by the instruction. This instruction mode is very useful for
pointing into memory: a pair of page zero locations hold the base
of a pointer into memory, and Y holds the offset from that
pointer. For example:

 CMP (&2A),Y

will compare the accumulator with the byte pointed to by the base
pointer in &2A (LSB) and &2B (MSB), offset by Y. Thus if &2A
contains &00, and &2B contains &40, and Y contains &45, the
accumulator will be compared with the contents of location
&4045.

23

1.5 Addressing mode groups
A table of allowed addressing modes for each instruction is given
on page 508 of the BBC User Guide, and the Electron User Guide
details them in chapter 29. This section summarises the groups of
instructions which use the same (or nearly the same) set of
addressing modes.

These addressing mode groups are used extensively by the built-in
assembler in BASIC. See chapter 6 for more on this.

Implied group

These instructions only use implied addressing. The instructions
are:

BRK, CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP,
PHA, PHP, PLA, PLP, RTI, RTS, SEC, SED, SEI, TAX,
TAY, TSX, TXA, TXS, TYA.

Relative branch group

These instructions only use relative addressing. The instructions
are:

BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS.

Accumulator operation group

The instructions in this group are:

ADC, SBC, CMP, AND, EOR, ORA, LDA, STA.

These instructions all operate on the accumulator, and allow the
following addressing modes:

 Immediate (not STA)
 Zero page Absolute
 Zero page,X
 Absolute,X
 Absolute,Y
 (Indirect,X)
 (Indirect),Y

24

Shift group

The instructions in this group are:

ASL, LSR, ROL, ROR

and they allow the following addressing modes:

 Accumulator
 Zero page
 Absolute
 Zero page,X
 Absolute,X

Count group

The instructions in this group are:

DEC, INC

and they allow the following addressing modes:

 Zero page
 Absolute
 Zero page,X
 Absolute,X

Test group

The instructions in this group are:

BIT, CPX, CPY

and they allow the following addressing modes:

 Immediate (not BIT)
 Zero page
 Absolute

25

Index load group

The instructions in this group are:

LDX, LDY

and they allow the following addressing modes:

 Immediate
 Zero page
 Absolute
 Zero page,X (‘,Y’ for LDX)
 Absolute,X (‘,Y’ for LDX)

Index store group

The instructions in this group are:

STX, STY

and they allow the following addressing modes:

 Zero page
 Absolute
 Zero page,X (‘,Y’ for STX)

Jump group

The instructions in this group are:

JMP, JSR

and they allow the following addressing modes:

 Absolute
 (Indirect) (not JSR)

26

1.6 The BASIC assembler
The BBC User Guide and the Electron User Guide give an
adequate description of the use of the built-in assembler, so I
won’t cover it again here. However, BBC micro owners may not
be aware of the extra facilities available on the assembler in
BASIC 2, over that in BASIC 1 (which is the one described in the
User Guide). These extra facilities are remote assembly, and the
EQU directive.

1.6.1 Remote assembly
The OPT directive controls the action of the assembler while it is
in operation. The OPT is followed by a number whose lower 3
bits (only 2 bits in BASIC 1) set the assembler options. These bits
are as follows:

Bit Option
 0 assembly listing if set
 1 errors enabled if set
 2 remote assembly if set

Remote assembly allows a machine code program to be
assembled to run in one part of memory, but the code put in
another. For example, an assembler routine which will be in a
paged ROM can be assembled correctly for &8000 onwards, but
the code can be placed at &2000 onwards, say, where there is
RAM.

If this is being used, P% should be set up to point to the location
where the routine will end up (&8000 in the above example), but
O% should point to the location where the generated code is to
be stored.

1.6.2 The EQU directives
This allows data to be incorporated as part of a machine code
program, without having to leave the assembler. The directives
available are:

EQUB equate byte reserves 1 byte
EQUW equate word reserves 2 bytes
EQUD equate double word reserves 4 bytes
EQUS equate string reserves a string

27

Note that the EQUS directive only reserves the space for the
characters of the string; if a carriage return or CRLF is needed on
the end, this must be done separately with an EQUB directive.

For example:

 EQUB &40
 EQUS "HI"
 EQUW &1234

Will reserve and initialise the following bytes in memory:

 &40
 &48 ("H")
 &49 ("I")
 &34
 &12

Using the EQU directive is not only more convenient than using
the BASIC equivalent, but it also makes the program much more
readable. Many of the programs in this book use the EQU
directive, although where it has been used, the alternative BASIC
form is available for BASIC 1 users.

28

2 The BASIC System
The BBC microcomputer system has been designed to allow
many different languages (like LISP or FORTH) to be used with
it. However, the language that all BBC micros and Electrons start
with is BBC BASIC.

2.1 An overview of BASIC
When BASIC is initialised, it takes control of the computer. It
prints ‘BASIC’ on the screen, and prompts for a line to be input.
You then type in programs, RUN them, edit and RUN them
again until they work, and continue until the power is switched
off.

Beneath all of this is 16K of 6502 machine code, in a paged ROM
sitting between &8000 and &BFFF, beavering away trying to
work out what to do with the line that you just typed in. It is
really a whole system all by itself, editing programs, interpreting
program statements, evaluating expressions, handling variables;
in fact it does everything except actually input and output to the
hardware (it leaves that to the Machine Operating System).

Fig 2.1 shows a general overview of BASIC, with its main
component parts. The first major section of the BASIC system is
the command handler and the statement interpreter. When a line
is input at the keyboard, the command handler tokenises it, and
decides whether to insert it into the program (if it starts with a
line number), or to send it to the statement interpreter. The
statement interpreter is also used to handle program statements.
The action of the command handler and statement interpreter is
described in sections 2.3 and 2.4.

The other major section of the BASIC system shown in fig 2.1 is
the expression evaluator. This is called by most of the statement
handlers (or function handlers) when they want a number or a
string to operate on. For example, the MODE statement handler
calls the expression evaluator to get the number of the MODE
that is to be used. The expression evaluator is described in more
detail in chapter 4.

29

Figure 2.1 – The BASIC system.

KEYBOARD VDU

I/O HANDLER

COMMAND
HANDLER TOKENISER

STATEMENT
INTERPRETER

PROGRAM
STATEMENT
HANDLERS

IF

GOTO

ASSIGNMENT
HANDLERASSEMBLER

MEMORY

HEAP/STACK
HANDLER

EXPRESSION
EVALUATOR

SIN

FN

FUNCTION
HANDLERS

ARITHMETIC
MODULE

HARDWARE

OPERATING
SYSTEM

BASIC

30

The arithmetic module is a collection of routines which is used to
perform the calculations required by the expression evaluator
(and by the statement and function handlers). Most of these have
to be floating point routines, as real numbers are more difficult
for the computer to handle than integers or strings. These
routines are detailed in chapter 10.

The HEAP/STACK handler is another collection of routines, but
these deal with variables and other use of memory by BASIC
while the program is running (dynamic memory use). Variables,
and BASIC’s memory use are described in chapter 3.

2.2 The BASIC ‘CPU’
The 6502 CPU is a versatile machine, but on its own it is a bit
limited. Its 8-bit accumulator, A, can only handle single byte
integers; it can’t deal with real numbers or strings; it can’t allocate
space for BASIC variables, and its stack is only 255 bytes deep.
To get round this, BASIC has a software ‘layer’ on top the 6502,
to provide a more versatile service.

This new ‘layer’ has a collection of page 0 locations as ‘registers’,
which are manipulated by the 6502. These registers (together
with the routines to handle them) make up the ‘Central
Processing Unit’ of the BASIC system. Fig 2.2 compares the 6502
registers with BASIC’s registers.

Figure 2.2 – 6502/BASIC registers.

A (8 bits) PC (16 bits)

X (8 bits) S (8 bits)

Y (8 bits)

6502

IntA (32 bits) PTRA (16+8 bits)

BASIC

FPA (40 bits) PTRB (16+8 bits)

StrA (255 bytes)

TEMP
AREA

(23 bytes)

HEAP ptr. (16 bits)

STACK ptr. (16 bits)

31

2.2.1 BASIC Integers

Where the 6502 only allows 8-bit integers to be used, most of
BASIC’s integer work is done with 32-bit (4-byte) integers. For
this it has a 4-byte integer accumulator, IntA, stored in page zero
at &2A to &2D. The format of the 4-byte integers stored in this
accumulator is shown in fig 2.3.

Figure 2.3 – Integer format.

Note that the least significant byte (LSB) is stored first, at &2A,
with the most significant byte (MSB) at &2D. This means that a
single-byte (positive) value at &2A can be converted into a 4-byte
integer starting at &2A, by setting the 3 most significant bytes (in
&2B, &2C and &2D) to zero.

2.2.2 Real numbers

One of the major advantages of the BASIC ‘CPU’ over the 6502
equivalent is its ability to deal with real numbers, rather than just
integers. For this, it has 2 floating point accumulators, FPA and
FPB. For those not familiar with binary floating point
representation, here is a brief description.

Decimal integers can be written in binary form, like

9 (decimal) can be written as: 1001 (binary).

Fractions can be written in decimal by using a decimal point, like
‘9.6’, and binary numbers can be written in a similar form. Thus
‘0.1’ (binary) represents 1/2 (0.5 decimal), ‘0.01’ (binary)
represents 1/4 (0.25 decimal), and so on. As an example,

3.625 (decimal) can be written as: 11.101 (binary)

LOCATION &2A &2B &2C &2D

LSB

MSB

32

Using this would give a way to represent numbers on a computer;
by holding the integer part as one number, and the fractional part
as another. In practice, though, for many applications this is just
too limited.

In decimal, for talking about a much wider range of numbers,
scientific form or standard form can be used. For this, the number
to be expressed is written down as a number between 1 and 10
(this is the mantissa), multiplied by ‘10 to the power of’ another
number (this is the exponent). Thus 273 can be written as
2.73×102 (or 2.73E2).

For the binary representation of real numbers, BASIC uses a
similar form to the decimal one: the number to be expressed is
written as a number between 1/2 and 1 (not equal to 1),
multiplied by ‘2 to the power of’ another number. Thus 11.101
(binary) can be written as 0.11101×22 (the exponent is in decimal
for clarity). This is often called floating point representation, as
the actual position of the binary point in the number is not fixed
to a particular position (in integers, for example, the binary point
is always just beneath the least significant bit).

When floating point numbers are stored in variables, they occupy
5 bytes, and are stored as shown in fig 2.4.

Figure 2.4 – Floating point packed format.

The exponent is stored offset by &80 – i.e. &80 represents 20,

BYTE 0 1 2 3 4

EXPONENT

BINARY POINT

SIGN BIT

MANTISSA

MSB LSB

33

&81 represents 21, and so on. This allows the number zero to be
represented by a floating point number with all its bytes set to 0.
Note that zero doesn’t fit in to this floating point representation:
it is smaller than 2−127, yet it is larger than −2−127. It has to be
represented as a special case.

The position of the binary point in the mantissa is just above the
most significant bit.

The mantissa is always a number between 1/2 (0.1 binary) and 1
(but not equal to 1), so the top bit of the mantissa is always a ‘1’.
This means that this bit position is not needed for the mantissa (it
can always be retrieved by ORing the MSB of the mantissa with
&80), so this bit is used to store the sign bit of the number (the
top bit of the mantissa will not be a ‘1’ if the number being
represented is zero)

The mantissa occupies 4 bytes. This means that 4-byte integers
can be converted to floating point format, and back again,
without loss of accuracy. The bytes are stored MSB first, LSB
last; the opposite order to integers. The mantissa is stored as a
positive number, and not in 2’s complement format (so the
representation for ‘6’ is just the same as the representation for
‘−6’, except the sign bit will be changed).

When a ‘packed’ floating point number is loaded into one of the
floating point accumulators, FPA or FPB, it is unpacked into 8
bytes. The format of these accumulators is shown in fig 2.5.

Figure 2.5 – Floating point accumulator format.

BYTE 0 1 2 3 4 5 6 7

SIGN BYTE

EXPONENT

BINARY POINT

MANTISSA

MSB LSB

34

The exponent has been expanded into 2 bytes; the high-order
byte of the exponent is set to zero when the number is loaded in.
This allows results of calculations to temporarily overflow (i.e.
the exponent becomes too large for the 5-byte representation to
handle), providing that they end up in the correct range before
being written out to memory again in the 5-byte packed format.
The exponent is still offset by &80.

The mantissa has been expanded to 5 bytes instead of 4. This
allows for extra accuracy in the middle of calculations. Before the
number is written back out to memory, this extra byte is used to
round the rest of the mantissa.

The sign bit has been removed to a whole byte by itself, and the
top bit of the mantissa has been restored to ‘1’. For calculations,
this ‘1’ is needed in the top bit where it is supposed to be.

Often during a calculation, the top bit does not stay set (perhaps
due to a number almost equal to it being subtracted from it). If
this is the case, the value of the number is still given correctly (as
the mantissa multiplied by ‘2 to the power of’ the exponent), but
the mantissa is now much less than 1/2. Before the number can be
written out into memory, the number must be ‘normalised’ by
repeatedly multiplying the mantissa by 2 (i.e. shifting it up by 1
bit), and decrementing the exponent (dividing that part of the
representation by 2) to compensate, until the top bit of the
mantissa becomes set again.

If this happens, some of the accuracy of the number may have
been lost, as some of the bits of the number may have ‘fallen off
the bottom’ before the number was shifted back up again.

Floating point numbers do have certain limitations:

(a) The largest number which can be represented (in the 5-byte
format) is just less than 1.0×2127 (1.7×1038).

(b) The smallest number (in magnitude) which can be
represented (apart from zero) is 1.0×2−128 (2.9×10−39).

(c) Because just 32 bits are used to hold the mantissa of the
number, the representation is only accurate to 1 part in 232

35

(1 part in 4×109). This means that if any number stored in
this format is printed out in decimal, it will only be
accurate to the first 9 decimal digits.

(d) Calculations involving floating point numbers take longer
than those involving integers.

The actual format of the floating point accumulators is:

FPA FPB USE

&2E &3B sign byte
&2F &3C exponent overflow byte
&30 &3D binary exponent (offset &80)
&31 &3E mantissa (MSB)
&32 &3F mantissa
&33 &40 mantissa
&34 &41 mantissa (LSB of 5-byte format)
&35 &42 mantissa low-order rounding byte.

2.2.3 Strings

For string handling, BASIC has a string ‘accumulator’, StrA. All
of page 6 is allocated to the string accumulator; the characters of
StrA are stored from &600 onwards, with location &36 in page
zero used to hold the length of the string.

This makes string handling relatively simple, although it does
take up a lot of memory.

2.2.4 General workspace

In addition to these accumulators, BASIC has a general
workspace area, between &37 and &4E, which it uses for general
pointers (instead of the 6502 X and Y registers) and for other
different purposes, depending on which part of the system is in
operation at the time. FPB is actually in this area, and several
routines which do not need to do any floating point calculations
may use the same memory that it occupies.

36

2.2.5 Program pointers

Instead of the Program Counter (PC) of the 6502, BASIC has two
pointers, PTRA and PTRB, which it uses to scan through a
BASIC program (or a line typed in at the keyboard). Both of
these pointers are composed of a 2-byte base pointer, and a
single-byte offset from that base. PTRA is mainly used to read
the first part of a statement until the statement token is
recognised, and PTRB is mainly used for scanning expressions.
The format of these pointers is:

 &B,&C PTRA base
 &A PTRA offset

 &19,&1A PTRB base
 &1B PTRB offset

2.2.6 Dynamic memory pointers

The 6502 only has one way of dynamically allocating space
during a program: its stack. This works downwards in page 1
with a maximum size of 256 bytes (i.e. from &1FF down to
&100).

Rather than using this, BASIC has a STACK which works
downwards in memory from HIMEM. It uses this to hold
temporary results from calculations, or when a FN or PROC is
called. BASIC also has a HEAP which works upwards in memory
from LOMEM (usually the TOP of the program), which is where
it puts any variables (apart from resident integers). Together, the
BASIC STACK and the HEAP can use up all of the memory
between the TOP of the program and the bottom of the screen.
Chapter 3 describes how variables are stored, and the use of the
HEAP and the STACK.

37

2.3 Tokenising
When a line is typed in at the keyboard, it is inserted into
BASIC’s keyboard buffer in page 7 (from &700 onwards). From
here, the command handler sends the line to the tokeniser, so
that the keywords can be tokenised. This involves looking
through the line and replacing occurrences of keywords (and their
abbreviations) in the line by a single byte token, with a value
between &80 and &FF. This saves memory when the line is put
into a program (as, for example, PRINT takes up only 1 byte
instead of 5), and it makes it a lot easier (and faster) to recognise
the keyword when it is to be interpreted.

2.3.1 Keyword tokenising

The keyword table is stored at &806D (BASIC1) or &8071
(BASIC2), in roughly alphabetical order. The format of each
entry is:

 Keyword
 Single-byte token
 Flag byte

Table 2.1 gives a list of the keyword tokens, and the address
where they JMP to when recognised, in token value order. From
this it can be seen that the tokens are divided up into several
groups:

&80 to &84 operators
&85 to &8C auxiliary tokens
&8D line number token (see section 2.3.2)
&8E ‘OPENIN’ for BASIC2
&8F to &93 pseudo-variable functions
&94 to &BC numeric-valued functions
&BD to &C4 string-valued functions
&C5 ‘EOF’
&C6 to &CD commands
&CE (not used)
&CF to &D3 pseudo-variable statements
&D4 to &FF statements

The tokeniser does not simply tokenise the line: it obeys certain
rules, and can be in several states. The flag byte is used to give

38

instructions to the tokeniser about how to continue tokenising the
rest of the line, or how to tokenise this keyword. The flags are
used as follows:

Bit 0 Conditional flag. If this is set, this tells the tokeniser not to
tokenise this keyword if it is followed by an alphanumeric
character. This means, for example, that ‘TIMER’ can be
used as a variable name, as the ‘TIME’ part of it will not be
tokenised.

Bit 1 Middle flag. If this is set, this tells the tokeniser to go to
‘middle of statement’ mode after this token.

Bit 2 Start flag. If this flag is set, this tells the tokeniser to go to
‘start of statement’ mode. The tokeniser must know if it is
at the start of a statement or not, because a ‘*’ at the start
of a statement will cause tokenising to be abandoned so
that the rest of the line can be sent to OSCLI untokenised.
If a ‘*,’ is found in the middle of a statement, it will be in
the middle of an expression, so the rest of the line should
be tokenised. It also needs to know if a pseudo-variable
found is a statement or a function.

Bit 3 FN/PROC flag. If this flag is set (as it is for FN or PROC),
this tells the tokeniser not to tokenise the name
immediately following the token. This means, for example,
that the ‘ERROR’ part of ‘PROCERROR’ will not be
tokenised.

Bit 4 Line number flag. If this flag is set, it tells the tokeniser to
start tokenising line numbers after this token. This flag is
set for keywords like ‘GOTO’ or ‘RENUMBER’. Line
number tokenising is usually turned off after any other
symbol apart from a ‘,’, a HEX number, or a string.

Bit 5 REM flag. If this is set, it tells the tokeniser to stop
tokenising the rest of the line. This flag is used by the
‘DATA’ and ‘REM’ tokens.

Bit 6 Pseudo-variable flag. If this is set, it tells the tokeniser to
add &40 to this token if it is found at the start of a
statement. This is how the tokeniser decides whether a
pseudo-variable is a statement or a function. Note that the

39

pseudo-variable statement entry in the token table is not
used by the tokeniser; it uses the function entry and
converts it to the statement token if it is at the start of a
statement. The statement entry is used by ‘LIST’ when the
tokens are being printed out.

Bit 7 (not used)

Other symbols
Special symbols found in the input line which affect tokenising
are:

& scans the following hex number
” scans the following string constant
: goes to ‘start of statement’ state
* prevents tokenising if at the start of a statement

2.3.2 Line number tokenising

Line numbers can also be tokenised, as well as keywords.
However, they will be left alone unless they are found at the start
of a line, or after a token with the ‘tokenise line numbers’ flag set.

Note that the tokenised line number at the start of the line is not
inserted into the program (see section 2.4 for program storage).

Tokenising line numbers speeds up the use of GOTOs or
GOSUBs in a program, because the numbers are simpler to
decode than an ASCII string of digits; but it does not really save
very much memory, as each tokenised line number takes up 4
bytes. Fig 2.6 shows how line numbers are tokenised, once the
ASCII digits have been read in and converted to a 16-bit integer
(it is actually a 15-bit integer, as line numbers greater than 32767
are not allowed).

The bytes after the &8D line number token must be less than
&80, or they may look like another token. If this was not the
case, one of them may look like an ‘ELSE’ token, and it may be
latched on to by the ‘IF’ statement as something to do if it got a
FALSE result (see section 5.4).

Also, the bytes after the line number token must not be allowed
to be a control character (i.e. less than &20). If this was not the

40

case, the byte may look like a &0D (carriage return), which
marks the end of a line in a program.

The simplest way to ensure that both of these conditions are met,
is to fix the top 2 bits of each byte to ‘01’ so that it is in the range
&40 to &7F.

Figure 2.6 – Line number tokenising.

So to convert a 16-bit integer to the tokenised line number
format:

1 Set byte 0 to the &8D line number token.

2 Transfer the bottom 6 bits of the LSB of the integer into
byte 2 of the tokenised line number, setting bits 7 and 6 to
‘01’.

3 Transfer the bottom 6 bits of the MSB of the integer into
byte 3 of the tokenised line number, setting bits 7 and 6 to
‘01’.

4 Set byte 1 of the tokenised line number to ‘01000000’
(binary).

5 Transfer bits 7 and 6 of the LSB of the integer into bits 5
and 4 of byte 1 of the tokenised line number, inverting bit
6 before it is inserted into bit 4.

7 0

MSB

7 0

LSB

&8D

BYTE 0 BYTE 1 BYTE 2

0 1 0 0 01

BYTE 3

01

16-BIT INTEGER

NOT

NOT

TOKENISED LINE NUMBER

41

6 Transfer bits 7 and 6 of the MSB of the integer into bits 3
and 2 of byte 1 of the tokenised line number, inverting bit 6
before it is inserted into bit 2.

The line number is now tokenised. It is a bit easier to get the line
number out of the tokenised form:

1 Shift byte 1 of the tokenised line number up 2 bits, load it
into A, and mask off the bottom 6 bits.

2 EOR this with byte 2 of the tokenised line number. A now
contains the LSB of the number.

3 Shift byte 1 of the tokenised line number up by a further 2
bits, and load it into A (the bottom 6 bits are all 0)

4 EOR this with byte 3 of the tokenised line number. A now
contains the MSB of the number.

Table 2.1 – Keyword Tokens

Token BASIC1 BASIC2
 Keyword Flags Addr Keyword Flags Addr

80 AND -------- ---- AND -------- ----
81 DIV -------- ---- DIV -------- ----
82 EOR -------- ---- EOR -------- ----
83 MOD -------- ---- MOD -------- ----
84 OR -------- ---- OR -------- ----
85 ERROR -----S-- ---- ERROR -----S-- ----
86 LINE -------- ---- LINE -------- ----
87 OFF -------- ---- OFF -------- ----
88 STEP -------- ---- STEP -------- ----
89 SPC -------- ---- SPC -------- ----
8A TAB(-------- ---- TAB(-------- ----
8B ELSE ---L-S-- ---- ELSE ---L-S-- ----
8C THEN ---L-S-- ---- THEN ---L-S-- ----
8D line no. -------- ---- line no. -------- ----
8E --- -------- ---- OPENIN -------- BF78
8F PTR -P----MC BF50 PTR -P----MC BF47
90 PAGE -P----MC AEEF PAGE -P----MC AEC0
91 TIME -P----MC AEE3 TIME -P----MC AEB4
92 LOMEM -P----MC AF2B LOMEM -P----MC AEFC
93 HIMEM -P----MC AF32 HIMEM -P----MC AF03
94 ABS -------- AD8D ABS -------- AD6A
95 ACS -------- A8C6 ACS -------- A8D4
96 ADVAL -------- AB56 ADVAL -------- AB33
97 ASC -------- ACC4 ASC -------- AC9E

42

98 ASN -------- A8CC ASN -------- A8DA
99 ATN -------- A907 ATN -------- A907
9A BGET -------C BF78 BGET -------C BF6F
9B COS -------- A989 COS -------- A98D
9C COUNT -------C AF26 COUNT -------C AEF7
9D DEG -------- ABE7 DEG -------- ABC2
9E ERL -------C AFCE ERL -------C AF9F
9F ERR -------C AFD5 ERR -------C AFA6
A0 EVAL -------- AC12 EVAL -------- ABE9
A1 EXP -------- AAB4 EXP -------- AA91
A2 EXT -------C BF4F EXT -------C BF46
A3 FALSE -------C AEF9 FALSE -------C AECA
A4 FN ----F--- B1C4 FN ----F--- B195
A5 GET -------- AFE8 GET -------- AFB9
A6 INKEY -------- ACD3 INKEY -------- ACAD
A7 INSTR(-------- AD08 INSTR(-------- ACE2
A8 INT -------- AC9E INT -------- AC78
A9 LEN -------- AF00 LEN -------- AED1
AA LN -------- A804 LN -------- A7FE
AB LOG -------- ABCD LOG -------- ABA8
AC NOT -------- ACF7 NOT -------- ACD1
AD OPENIN -------- BF85 OPENUP -------- BF80
AE OPENOUT -------- BF81 OPENOUT -------- BF7C
AF PI -------C ABF0 PI --------C ABCB
B0 POINT(-------- AB64 POINT(-------- AB41
B1 POS -------C AB92 POS --------C AB6D
B2 RAD -------- ABD6 RAD -------- ABB1
B3 RND -------C AF78 RND --------C AF49
B4 SGN -------- ABAD SGN -------- AB88
B5 SIN -------- A994 SIN -------- A998
B6 SQR -------- A7B4 SQR -------- A7B4
B7 TAN -------- A6C9 TAN -------- A6BE
B8 TO -------- AF0B TO -------- AEDC
B9 TRUE -------C ACEA TRUE -------C ACC4
BA USR -------- ABFB USR -------- ABD2
BB VAL -------- AC55 VAL -------- AC2F
BC VPOS -------C AB9B VPOS -------C AB76
BD CHR$ -------- B3EE CHR$ -------- B3BD
BE GET$ -------- AFEE GET$ -------- AFBF
BF INKEY$ -------- B055 INKEY$ -------- B026
C0 LEFT$(-------- AFFB LEFTS(-------- AFCC
C1 MID$(-------- B068 MID$(-------- B039
C2 RIGHT$(-------- B01D RIGHT$(-------- AFEE
C3 STR$ -------- B0C3 STR$ -------- B094
C4 STRING$(-------- B0F1 STRING$(-------- B0C2
C5 EOF -------C ACDE EOF -------C ACB8
C6 AUTO ---L---- 905F AUTO ---L---- 90AC
C7 DELETE ---L---- 8ECE DELETE ---L---- 8F31
C8 LOAD ------M- BF2D LOAD ------M- BF24
C9 LIST ---L---- B5B5 LIST ---L---- B59C
CA NEW -------C 8A7D NEW -------C 8ADA
CB OLD -------C 8A3D OLD -------C 8AB6

43

CC RENUMBER ---L---- 8F37 RENUMBER ---L---- 8FA3
CD SAVE ------M- BEFA SAVE ------M- BEF3
CE --- -------- 9839 --- -------- 982A
CF PTR -------- BF39 PTR -------- BF30
D0 PAGE -------- 9239 PAGE -------- 9283
D1 TIME -------- 927B TIME -------- 92C9
D2 LOMEM -------- 9224 LOMEM -------- 926F
D3 HIMEM -------- 9212 HIMEM -------- 925D
D4 SOUND ------M- B461 SOUND ------M- B44C
D5 BPUT ------MC BF61 BPUT ------MC BF58
D6 CALL ------M- 8E6C CALL ------M- 8ED2
D7 CHAIN ------M- BF33 CHAIN ------M- BF2A
D8 CLEAR -------C 9326 CLEAR -------C 928D
D9 CLOSE ------MC BF9E CLOSE ------MC BF99
DA CLG -------C 8E57 CLG -------C 8EBD
DB CLS -------C 8E5E CLS -------C 8EC4
DC DATA --R----- 8AED DATA --R----- 8B7D
DD DEF -------- 8AED DEF -------- 8B7D
DE DIM ------M- 90DD DIM ------M- 912F
DF DRAW ------M- 93A5 DRAW ------M- 93E8
E0 END -------C 8A50 END -------C 8AC8
E1 ENDPROC -------C 9310 ENDPROC -------C 9356
E2 ENVELOPE ------M- B49C ENVELOPE ------M- B472
E3 FOR ------M- B7DF FOR ------M- B7C4
E4 GOSUB ---L--M- B8B4 GOSUB ---L--M- B888
E5 GOTO ---L--M- B8EB GOTO ---L--M- B8CC
E6 GCOL ------M- 932F GCOL ------M- 937A
E7 IF ------M- 9893 IF ------M- 98C2
E8 INPUT ------M- BA62 INPUT ------M- BA44
E9 LET -----S-- 8B57 LET -----S-- 8BE4
EA LOCAL ------M- 92D5 LOCAL ------M- 9323
EB MODE ------M- 935A MODE ------M- 939A
EC MOVE ------M- 93A1 MOVE ------M- 93E4
ED NEXT ------M- B6AE NEXT ------M- B695
EE ON ------M- B934 ON ------M- B915
EF VDU ------M- 93EF VDU ------M- 942F
F0 PLOT ------M- 93AE PLOT ------M- 93F1
F1 PRINT ------M- 8D33 PRINT ------M- 8D9A
F2 PROC ----F-M- 92B6 PROC ----F-M- 9304
F3 READ ------M- BB39 READ ------M- BB1F
F4 REM --R----- 8AED REM --R----- 8B7D
F5 REPEAT -------- BBFF REPEAT -------- BBE4
F6 REPORT -------C BFE6 REPORT -------C BFE4
F7 RESTORE ---L--M- BB00 RESTORE ---L--M- BAE6
F8 RETURN -------C B8D5 RETURN -------C B8B6
F9 RUN -------C BD29 RUN -------C BD11
FA STOP -------C 8A59 STOP -------C 8AD0
FB COLOUR ------M- 9346 COLOUR ------M- 938E
FC TRACE ---L--M- 9243 TRACE ---L--M- 9295
FD UNTIL ------M- BBCC UNTIL ------M- BBB1
FE WIDTH ------M- B4CC WIDTH ------M- B4A0
FF --- -------- 9839 OSCLI ------M- BEC2

44

2.4 Program storage
Once the line has been tokenised, the command handler checks
to see if it starts with a line number. If it is, it is inserted into the
program (and the old line with the same number, if there is one,
is deleted). The format of each line is as follows:

00 MSB of line number
01 LSB of line number
02 length byte (= ‘XX’)
03 first character of line text
04 etc.

XX−1 &0D (carriage return) line terminator.
XX start of next line

The length byte is used so that searching for a line number (for a
‘GOTO’ or ‘GOSUB’ statement) is much faster. If this length
byte is not set up correctly, BASIC will give a ‘Bad program’
error (see section 9.2 for a salvage routine).

The first character in memory at PAGE is a carriage return
character: this gives something to ‘latch on to’ when BASIC
checks for a ‘Bad program’. The routine that checks this also sets
TOP to point to the next free location after the end of the
program.

The end of the program is marked by a byte with the top bit set
(i.e. &80 or greater) in the position which would be the MSB of
the line number of the next line. This is why line numbers greater
than 32767 are not allowed: if one got in, the MSB of its line
number would just mark the end of the program.

For example, the program ‘10PRINT A’ would be stored as (if
PAGE = &1900).

&1900 &0D carriage return at start of program
&1901 &00 MSB of line number
&1902 &0A LSB of line number (10)
&1903 &07 length byte
&1904 &F1 ‘PRINT’ token
&1905 &20 space character

45

&1906 &41 ‘A’
&1907 &0D carriage return end of line marker
&1908 &FF end of program marker

2.5 Executing statements
If the line input to the command handler did not start with a line
number, it passes it on to the statement interpreter to decide what
to do with it.

The statement interpreter is also used to RUN programs, as well
as just interpreting statements and commands typed in command
mode. The command handler has a special entry point to the
statement interpreter, so that commands (like ‘OLD’) can only
be executed in command mode, and not in the middle of a
program.

The action of the statement interpreter is as follows:

1 It looks at the first character of the statement (skipping any
spaces). If it is the token of a BASIC statement keyword
(or a command keyword if we came from the command
handler), then go to the corresponding statement handler
(there is one of these for each statement or command)
where the rest of that particular statement will be
interpreted.

 The action address of a particular token (the address to
which the statement interpreter jumps when a token is
found) is stored in the following format:

BASIC1 BASIC2

 &82CB+T &82DF+T LSB of action address
 &833C+T &8351+T MSB of action address

 where T is the number of the token (see table 2.1).

2 If the first character of the statement was not a statement
keyword token, the statement interpreter checks to see if it
is a variable name. If it is, it jumps to the assignment
handler. This tries to assign the variable to the expression

46

found after the ‘=’ sign. If there wasn’t an ‘=’ after the
variable name, it generates a ‘Mistake’ error (error number
4).

3 If the first character of the statement wasn’t a variable
name either, the statement interpreter checks to see if it is
one of the other special symbols which can be at the start
of a line. If it is a ‘*’, it passes the rest of the line to the
Operating System Command Line Interpreter (OSCLI) to
be acted on. If it is a ‘[’, it jumps into the assembler. If it is
an ‘=’, it jumps to the FN return statement handler (as this
is the FN return statement).

4 If it wasn’t any of those, it checks to see if the first
character of the statement actually marks the end of the
statement – in other words we have an empty statement. If
it was, it goes back to stage 1 to interpret the next
statement (or go to command mode if we have run out of
statements to interpret). Most of the statement handlers
jump to here when they have finished, to check that the text
pointer is set up to point to the next statement.

5 Finally, if the character wasn’t a statement delimiter either
(a character marking the end of the statement), the
statement interpreter gives up, and generates a ‘Syntax
error’ (error number 16).

47

3 Memory Use
Fig 3.1 shows the memory map as seen by BASIC. The memory
that BASIC uses can be split up into 3 major areas: workspace,
program storage, and dynamic storage (the HEAP and STACK).

The workspace includes most of the general memory used by
statements and functions. This is described in more detail in
section 3.3.

Program storage has already been described in section 2.4.

Dynamic storage is allocated while a program is actually running;
whereas workspace and the program occupy fixed areas while this
is going on. Dynamic storage includes the storage of variables on
the HEAP, and the use of the STACK for storing temporary
results, and saving things during FN or PROC calls. The HEAP
and STACK are described in more detail in the next sections.

3.1 Variables and the HEAP
3.1.1 The resident integer variables

The resident integer variables, @% and A% to Z%, are not
stored on the HEAP where the rest of the variables are: they
occupy the lower half of page 4. Because each one occupies a
fixed location, they are very fast to access. They are stored in the
following format:

 &400 to &403 @%
 &404 to &407 A%
 etc.

 &468 to &46B Z%

They are stored in standard 4-byte integer format (i.e. LSB first,
MSB last). Here is a short program to list the resident integer
variables, and their values (in HEX).

48

Figure 3.1 – The BASIC memory map.

MOS ROM

BASIC ROM

screen

STACK

HEAP

BASIC
program

OS workspace

keyboard buffer

StrA

control stacks

variables area

OS workspace

user workspace

(not used)

BASIC workspace

&FFFF

&C000

&8000

HIMEM

LOMEM

TOP

PAGE
OSHWM

&0800

&0700

&0600

&0500

&0400

&0090

&0070

&004F

&0000

49

 5 REM Prints out the resident integer variables
 10
 90 vbase = &400
 100 FOR char = ASC"@" TO ASC"Z"
 110 offset = (char AND &1F)*4
 120 value% = vbase!offset
 130 PRINT CHR$(char);"% = &";~value%
 140 NEXT char

3.1.2 Dynamic variables

The rest of the variables used by BASIC are dynamic variables,
because it allocates space for them when it needs it (i.e. when
they are first set). These are stored on the HEAP, which works
upwards in memory from LOMEM. To get at the variables once
it has put them on the HEAP, BASIC uses a series of linked lists.

A linked list starts with a base pointer, which points to the first
item in the list. The first item in the list has a pointer which points
to the second item in the list, and so on. The end of the list is
usually marked by the pointer to the next item being 0. So, if the
linked list doesn’t contain any items, the base pointer is 0 (a null
pointer). Fig 3.2 shows a linked list of three items.

Figure 3.2 – A linked list.

BASE
POINTER

ITEM 1

ITEM 2

NULL
POINTER

ITEM 30

50

One of the advantages of a linked list is that the items don’t need
to be in any set pattern in memory, as long as the pointers still
point to the next item in the list. This can be very useful for
variable storage, as different types of variables occupy a different
number of bytes (especially arrays).

In fact, BASIC uses a separate linked list for each possible first
letter of a variable name. Although these linked lists are
separate, they all use the HEAP in the same way, and the lists
link round each other. Using these separate linked lists means
that searching for variables is much faster (unless your variable
names all start with the same letter!).

The base pointers, which point to the first variable in each
particular list, are stored in the upper half of page 4 in the
following format:

 &482,&483 base pointer for the ‘A’ list
 etc.
 &4B4,&4B5 base pointer for the ‘Z’ list
 etc.
 &4F4,&4F5 base pointer for the ‘z’ list

A similar linked list is used to store the locations of PROCs and
FNs, once they have been called, so that BASIC doesn’t have to
search through the whole program to find them again. The base
pointers for these are:

 &4F6,&4F7 base pointer for the PROC list
 &4F8,&4F9 base pointer for the FN list

Figure 3.3 – A variable information block.

LINK POINTER

NAME

VALUE

0

51

Each variable (or PROC/FN) on the HEAP is stored as a
Variable Information Block (fig 3.3). This Variable Information
Block is composed of 3 fields:

The pointer field (2 bytes).

 This is the pointer which points to the next item in the list
(with the same first letter). If this item is at the end of the
list, then the MSB of this pointer must be zero (the next
item can’t be in page zero, so only checking that the MSB
is zero saves time).

The name field.

 This holds the name of the variable, with a zero byte to
mark the end of the name. For a variable, this name field
does not include the first character of the name, because
that was used to choose which base pointer to use. It does
contain the ‘$’, ‘%’ or ‘(’ characters on the end of the name
(if there are any), as this gives the type of the variable.

 For a PROC or FN, the first character of the name is
included, as there is only one list for all PROCs, and one
for all FNs.

The value field.

 This starts with the first byte after the zero byte at the end
of the name field. For a variable, the format of this field
depends on the type: these are detailed in section 3.1.3.

 For a PROC or FN, this field contains a 2-byte pointer to
the PROC or FN where it is defined. It points to the first
character after the name of the PROC or FN (i.e. to the ‘(’
character if it uses any parameters).

As an illustration of the way variables are stored on the HEAP,
the program below will go through the current active variables,
printing their names and values. It can be used to print out
variables other than those used by the program itself, by setting
them up first, and using ‘GOTO 90’ to start the program (if
‘RUN’ is used, all variables are cleared first).

52

The program follows the linked list for each initial letter of
variable names, using the variable ‘addr’ to hold the current
pointer.

PROCvar prints out the name and value of the variable whose
Variable Information Block (VIB) is at ‘addr’. The last character
of the variable gives its type, and this is used to prevent the
program from printing out arrays. To print out the value of the
variable, it ‘cheats’ by giving the name of the variable to EVAL
rather than extracting it directly. Section 7.4 gives a machine code
version of this routine.

 5 REM ****** VRPRINT ******
 10 REM Prints out variables used by the program.
 15 REM If any others are to be printed, use
 20 REM "GOTO 90" so they won't be cleared.
 30
 90 @%=0
 100 PRINT'"Variable"TAB(15)"Value"'
 110 FOR char = ASC("A") TO ASC("z")
 120 addr = &400+2*char :REM Get pointer address
 130 addr = !addr AND &FFFF
 131 :REM Get ptr to 1st VIB
 140 IF (addr DIV &100)=0 THEN GOTO190
 141 :REM Exit if null pointer
 150 REPEAT
 160 PROCvar :REM Print variable
 170 addr = !addr AND &FFFF :REM Get ptr to next VIB
 180 UNTIL (addr DIV &100)=0 :REM Exit if null pointer
 190 NEXT char
 200 END
 990
 998
 999 REM *** Print variable name and value ***
 1000 DEFPROCvar
 1010 name$ = CHR$(char) :REM First character of name
 1020 nptr = 2 :REM Ptr to name in VIB
 1030 IF addr?nptr=0 THEN GOTO1100
 1031 :REM End of name?
 1040 REPEAT
 1050 name$ = name$+CHR$(addr?nptr)
 1051 :REM Add next char to name
 1060 nptr = nptr+1
 1070 UNTIL addr?nptr=0 :REM Exit if end of name
 1100 PRINT name$,TAB(15);
 1105 typ$ = RIGHT$(name$,1) :REM Get type of variable
 1110 IF typ$="(" THENPRINT"<array>" ELSEPRINT EVAL(name$)
 1111 :REM Print value if not array
 1130 ENDPROC

53

3.1.3 Variable value formats

When writing programs in BASIC, variables can be one of 3
types: 4-byte integers, floating point numbers, or strings (these
are called dynamic strings, as BASIC allocates memory for them
as it is required). However, the indirection operators (‘?’, ‘!’ and
‘$’) can be used to manipulate 8-bit bytes, 4-byte integers, and
static strings (i.e. strings at a fixed address in memory).

Once BASIC has found the location of the variable, these bytes
and static strings are treated like just like two more variable types
(4-byte indirected integers are stored the same as named 4-byte
integer variables). To pass variables between routines, a Variable
Descriptor Block (not to be confused with the Variable
Information Block) is used, which is usually left in IntA (the
integer accumulator). The format of this is:

&2A,&2B pointer to the location of the variable value
&2C type of the variable

This Variable Descriptor Block is used, for example, in the
Parameter Block passed by the BASIC ‘CALL’ statement (when
any parameters are passed to it). This means that a user routine
can read or set any of the variables passed as parameters to the
CALL statement.

The format of the different variable types are:

Type number &00: 8-bit byte

Format:

00 8-bit byte 1 byte

This is just a single byte at the specified location. This type
of variable can only be accessed by using the ‘?’ operator;
either as ‘?M’ to mean ‘the byte pointed to by M’, or as
‘M?3’ to mean ‘the byte at location M+3’.

54

Type number &04: 32-bit integer

Format:

00 32-bit integer 4 bytes

This is a 4-byte integer at the specified location. It is stored
LSB first, MSB last. This type of variable can be accessed
as a named integer variable, like ‘A%’ or ‘integer%’, or by
using the ‘!’ operator.

If a named variable is used, the location of the value has to
be found first, either by looking it up in the table of
resident integer variables, or by searching through one of
the linked lists for it. The name field of the Variable
Information Block in the linked list has the ‘%’ on the end
of it, so that it is identifiable as an integer.

If the ‘!’ operator is used, the location of the variable is
taken as the number following the ‘!’ (for the unary
version); or the sum of the variable before the ‘!’, and the
number after it (for the binary version).

Type number &05: 40-bit floating point number

Format:

00 exponent (offset &80) 1 byte
01 mantissa 4 bytes
(bit 7 of byte 01 holds the sign bit)

This is a floating point number at the specified location.
The mantissa is stored MSB first, LSB last (the opposite
order to 4-byte integers). The top bit of the mantissa is
used to hold the sign bit, as this would always be a ‘1’ (see
section 2.2.2 for a description of floating point numbers).

This type of variable can only be accessed as a named
variable stored on the HEAP; there is no floating point
indirection operator. The location of the variable is found
by searching through one of the linked lists for it. There is
no symbol on the end of the name field of a floating point
variable.

55

Type number &80: static string

Format:

00 ASCII characters of string nn bytes
nn &0D terminating character 1 byte

This is a static string at the specified location. It can only
be accessed by using the ‘$’ string indirection operator: the
location of the string is taken to be the number after the ‘$’.
The carriage return (&0D) terminating character is not
counted as one of the characters of the string: it is only
used to mark the end.

Space can be allocated for a string of this type, by using the
‘reserve space’ form of the DIM statement: ‘DIM A 20’
will allocate space for a string at A of maximum size 20
characters, plus 1 for the terminator.

Type number &81: dynamic string

Format:

00 pointer to string on HEAP 2 bytes
02 space allocated 1 byte
03 current length 1 byte

This is the String Information Block of the dynamic string:
these 4 bytes will occupy the value field of the Variable
Information Block of a string variable. This type of
variable can only be accessed as a named variable. The
name field of the Variable Information Block has the ‘$’
symbol on the end, so it is identifiable as a string.

When a dynamic string is first assigned, the Variable
Information Block is created and linked into one of the
lists, to hold the name and String Information Block of the
string. Then space is allocated on the HEAP for the
characters of the string itself, and the String Information
Block is set up to point to first character of that string. The
string itself does not need a carriage return to mark the end,
as the String Information Block holds the length of it.

56

If the string is empty, no space needs to be allocated for it
at all. If the string is a ‘small’ string (less than 8 characters),
just the correct number of bytes is allocated on the HEAP
for it. If it is a ‘large’ string, an extra 8 bytes are reserved
for it, to allow some room for expansion (if this would take
the allocated space over 255 characters, 255 bytes are
reserved).

Whenever a dynamic string exceeds the space which has
been allocated, a new area is reserved for it on the HEAP
(using the same rules as above). The ‘gap’ left in the HEAP
where the string used to be cannot be recovered (BBC
BASIC has no ‘garbage collector’): so if memory is not to
be wasted, it is usually a good idea to set strings, at the start
of a program, to the largest size that they are likely to
become.

The amount of memory wasted in this manner is not
usually a great deal, but certain operations tend to use
quite a lot (for example, a loop which adds one character
on the end of a string each time round). In BASIC2 this has
been improved by checking to see if the string is on top of
the HEAP: if it is, it can be extended without having to
throw away the old area.

3.1.4 Array storage

Arrays are stored in the same kind of Variable Information Block
as ordinary variables, but the value field of an array is usually
much bigger than that of an ordinary variable. The value field of
an array has to hold the number of dimensions, and the size of
each dimension, as well as the the value of each cell in the array.

The Variable Information Block for an array is linked into the list
when it is dimensioned: any attempt to read from or write to an
array which does not exist will result in the ‘Array’ error (error
number 14) being generated.

The name field in the Variable Information Block for an array has
the ‘(’ symbol on the end, so that it is identifiable as an array. It
also has the ‘%’ or ‘$’ symbol before that, if it is an integer array
or a string array.

57

The format of the value field of an array with D dimensions is:

00 offset of start of cells (nn) 1 byte
01 size of dimension 1 2 bytes
03 size of dimension 2 2 bytes
05 etc.

nn−2 size of dimension D 2 bytes
nn start of cells

The first byte of the value field gives the offset of the start of the
cells from the start of the value field, rather than the number of
dimensions of the array. If the number of dimensions is D, this
offset will be 2*D+1 bytes (2 for the size of each dimension, and
1 for the offset byte itself). This will be 3 for single-dimension
arrays.

The size of each dimension is stored as the maximum allowed
subscript.

Each cell is in the same format as the equivalent variable: if it is
an integer array, each cell will contain a 32-bit integer (type
number &04); if it is a floating point array, each cell will contain a
40-bit floating point number (type number &05); and if it is a
string array, each cell will contain a 4-byte String Information
Block (type number &81). The actual strings for a string array are
stored separately on the HEAP (as for dynamic string variables),
as soon as they are first set.

The order of the cells is probably best explained by an example.
For the array A(1,1,1) the order of the cells will be:

cell 0 A(0,0,0)
cell 1 A(0,0,1)
cell 2 A(0,1,0)
cell 3 A(0,1,1)
cell 4 A(1,0,0)
cell 5 A(1,0,1)
cell 6 A(1,1,0)
cell 7 A(1,1,1)

58

The following algorithm can be used to find the required element
of an array:

C = 0
start at first dimension
REPEAT

C = (C * size) + subscript
move on to next dimension

UNTIL no more dimensions left

where ‘size’ is one more than the maximum subscript for the
dimension of interest (allowing for the subscript 0); and
‘subscript’ is the required subscript of the dimension of interest.

At the end of that algorithm, C will give the cell number of the
required element.

Taking the example of the array A(1,1,1) again, if the element
required was A(1,1,0), the successive values of C after each
iteration of the loop in the algorithm would be:

after 1 pass: C = 1
after 2 passes: C = 3
after 3 passes: C = 6

This means that the element A(1,1,0) is cell number 6 of the array
A(1,1,1). This agrees with the list given above.

To get the location of the cell, the cell number must be multiplied
by the size of each cell: 4 bytes for an integer or a string, or 5
bytes for a floating point number. This gives the offset (in bytes)
of the required cell from the start of the cells.

Once the location of the element has been found, this can be put in
the Variable Descriptor Block, together with the type of the
element (integer, floating point, or string). The array element can
now be handled inside BASIC as if it was just another variable in
memory.

59

3.2 The BASIC STACK
The BASIC STACK works downwards from HIMEM. The
STACK pointer is held in page zero, at &4,&5. It is used to save
temporary results in the middle of calculations, and to save the
6502 stack and parameters when a FN or PROC is called (see
section 5.3).

For example, to evaluate the expression:

2 + 5 * 3

the ‘2’ must be saved while the ‘5 * 3’ is being calculated. The
6502 stack could be used for this, but it is very small, and would
not allow very complex expressions without overflowing
(especially when there are FNs to be dealt with).

Before anything is pushed on the STACK, a check is made to
ensure that there is enough room for the new item: otherwise
there may be a clash with the HEAP which is growing in the
opposite direction, upwards from LOMEM (see fig 3.1). If there
is not enough room, the ‘No room’ error is generated.

There are routines to push any of BASIC’s accumulators IntA,
FPA, and StrA (and pull them again); these are used quite a lot in
the expression evaluator. Chapter 4 describes the expression
evaluator in more detail.

The other main use of the BASIC STACK is by PROCs and FNs.
When one of these is entered, the 6502 stack is transferred onto
the BASIC STACK. If this was not done, the small 6502 stack
would soon overflow with return addresses for JSRs if the
recursion of the PROCs or FNs went very deep (i.e. the PROC or
FN called itself).

PROCs and FNs also need to make sure that LOCAL variables
and parameters used in the PROC or FN are returned to their
original values when the call is finished. When the call is started,
the values of the parameters in the PROC or FN definition are
pushed on the STACK, together with the Variable Descriptor
Block for the parameter. That gives the location and type of the
variable, so it can be restored after the call. Section 5.3 gives
more detail on the action of PROCs and FNs.

60

3.3 Workspace
This section lists the workspace used by BASIC. In many cases,
the use of particular locations may be described in more detail
elsewhere.

Page Zero

&00 – &01 LOMEM
&02 – &03 HEAP pointer (section 3.1)
&04 – &05 STACK pointer (section 3.2)
&06 – &07 HIMEM

&08 – &09 ERL

&0A PTRA offset
&0B – &0C PTRA base (section 2.2.5)

&0D – &11 psuedo-random number for RND

&12 – &13 TOP

&14 PRINT field width
&15 PRINT hex flag (HEX if bit 7 set)

&16 – &17 ON ERROR pointer (section 5.8, chapter 11)

&18 MSB of PAGE (LSB is always zero)

&19 – &1A PTRB base
&1B PTRB offset (section 2.2.5)

&1C – &1D DATA pointer (points before next DATA item)

&1E COUNT (no of characters printed on line)

&1F LISTO mask: bit 0: space after line no.
 bit 1: indent FORs
 bit 2: indent REPEATs

&20 TRACE flag (&00 = OFF, &FF = ON)
&21 – &22 TRACE maximum line number

61

&23 WIDTH (or &FF if WIDTH 0 used)

&24 REPEAT stack pointer (section 5.5)
&25 GOSUB stack pointer (section 5.2)
&26 FOR stack pointer (section 5.6)

&27 Temp for expression evaluator

&28 OPT mask: bit 0: produce listing
 bit 1: give errors
 bit 2: relocate (BASIC2)

&29 opcode slot for assembler

&2A – &2D IntA (section 2.2.1)
&2E – &35 FPA (section 2.2.2)
&36 StrA length (characters from &600 on)

Page Zero multi-purpose workspace

&37 – &4E Main uses are:

&37 – &38 general pointer
&39 name length/variable type
&39 – &40 integer for division and multiplication
&3B – &42 FPB for floating point routines
&43 – &46 floating point multiply/divide workspace
&3F – &47 PRINT hex digit build area
&48 no. of constants for series evaluator
&49 flag for string/number conversion
&4A exponent for string/number conversion
&4B – &4C floating point memory pointer
&4D – &4E pointer for series evaluator

&4F – &8F (not used)

OS workspace

&90 – &3FF OS workspace

62

Page 4 workspace

&400 – &46B resident integer variables (section 3.1.1)

&46C – &470 floating point temp 1
&471 – &475 floating point temp 2
&476 – &47A floating point temp 3
&47B – &47F floating point temp 4

&480 – &4F5 variable list base pointers (section 3.1.2)

&4F6 – &4F7 PROC list base pointer (section 3.1.2)
&4F8 – &4F9 FN list base pointer (section 3.1.2)

&4FA – &4FF (not used)

Page 5 workspace

&500 – &595 FOR stack (section 5.6)
&596 – &5A3 (not used)
&5A4 – &5CB REPEAT stack (section 5.5)
&5CC – &5FF GOSUB stack (section 5.2)

Page 6 workspace

&600 – &6FF characters of StrA (section 2.2.3)

Page 7 workspace

&700 – &7FF keyboard input buffer

63

4 Expression Evaluation
One of the major sections of the BASIC interpreter is the
expression evaluator. Virtually every statement uses it to get the
number or numbers that it is going to work with. For example the
‘HIMEM’ statement uses it to find the new value that HIMEM is
to be set to.

4.1 Operator precedence
When expressions are to be evaluated, some operators take
precedence over others. For example, multiplication is always
done before addition, unless the addition is surrounded by
brackets. This makes expression evaluation somewhat more
complex than it would otherwise be, as you can’t just scan along
the line, doing every operation as you come across it.

In fact, many old electronic calculators did just scan along the line
like this. If you pressed:

 2 + 3 * 5 =

you would get the answer ‘25’. This is not particularly satisfactory
for an expression evaluator in BASIC, because if ‘2 + 3 * 5’
appears as an expression, it is assumed that the multiplication will
be done first, giving the answer ‘17’. Somehow, BASIC must
identify that the addition must be done after the multiplication,
save the ‘2’ while the ‘3’ and ‘5’ are being multiplied together,
and then add the ‘2’ on afterwards.

4.2 Top-down analysis
To get these operator priorities right, BASIC uses a method
called top-down analysis, where the expression evaluation is
divided up into several levels. The top levels deal with the low
priority operators, and these call the bottom levels (which deal
with the high priority operators) for the items to operate on. This
means that the high priority operations will be performed first, by
the bottom levels of the expression evaluator, before the results
of those operations are passed back to the top levels, for the low
priority operations to be performed.

64

Taking the example of ‘2 + 3 * 5’ again, the top level would deal
with the addition, and call the bottom level to get the values for it
to add. The bottom level would deal with the multiplication,
before passing the result back to the top level.

If we call the top level <expression>, and the bottom level
<term>, we can see how this would operate:

1 <expression> calls <term> to get the first item to
operate on.

2 <term> gets the number ‘2’ from the line.

3 There is not a ‘*’ or a ‘/’ after the ‘2’, so <term> passes
‘2’ up to <expression>.

4 <expression> finds that there is a ‘+’ after the item
that <term> had evaluated, so it saves the ‘2’ and calls
<term> again to get the item to add to it.

5 <term> gets the number ‘3’ from the line.

6 There is a ‘*’ following the ‘3’, so <term> saves the ‘3’
and gets the number ‘5’ from the line.

7 The ‘5’ is multiplied by the saved ‘3’, to give the result ‘15’.

8 There is not a ‘*’ or a ‘/’ after the last number just read (the
‘5’), so <term> passes the ‘15’ up to <expression>.

9 <expression> retrieves the ‘2’ that it had saved at
stage 4, and adds it to the ‘15’ passed up from <term>,
giving the result ‘17’.

10 There is not a ‘+’ or a ‘−’ after the item that <term> had
evaluated (the ‘3*5’), so it passes the ‘17’ up as the result of
the <expression>.

The levels in this simple expression evaluator can be expressed
using Backus-Naur Form, or BNF (see appendix A). It is
expressed as follows:

<expression> ::= <term> {+|- <term>}
<term> ::= <number> {*|/ <number>}

65

::= means ‘is defined as’

{} surround items which can appear zero or more times

| separates alternatives

So an <expression> can consist of just a <term> or any
number of <term>s with each one separated by a ‘+’ or a ‘−’.
Similarly a <term> can be just a <number>, or it can be any
number of <number>s with each one separated by a ‘*’ or a ‘/’.

In the example ‘2 + 3 * 5’:

the <expression> is ‘2 + 3 * 5’

the first <term> is ‘2’
the second <term> is ‘3 * 5’

The BASIC program below shows a simple expression evaluator
with the <expression>, <term>, and <number>
levels.

FNexpr evaluates an <expression>, calling FNterm to get
the <term>, and FNnumber is used to get the <number>.
Spaces are not allowed in expressions evaluated by this program.

The program uses one character look-ahead, where the next
character is always kept in the variable ‘char$’. This allows the
character not recognised by FNterm, say, to be passed to FNexpr
in case it was a ‘+’ or a ‘−’. If this were not done,
<expression> would have to re-read the character from the
line, before testing it for one of its operators. If a character is
recognised, the next one must be read into char$ before another
routine is called (for example, on line 1030).

 5 REM Simple expression evaluator to demonstrate the
 10 REM "top-down" method of expression analysis
 15 REM (spaces not allowed in expressions)
 20 REM
 90 REM *** Main loop ***
 100 REPEAT
 110 INPUT"EXPRESSION :"line$
 120 lptr = 1
 130 PRINT"VALUE IS :";FNexpr
 140 UNTILFALSE

66

 990
 1000 DEF FNexpr :REM Get <expression> from line
 1005 PROCgetchar :REM Get char into char$
 1010 value = FNterm :REM Call <term> to get first item
 1015 REPEAT
 1030 IF char$="+" THEN PROCgetchar:value = value+FNterm
 1040 IF char$="-" THEN PROCgetchar:value = value-FNterm
 1045 UNTIL char$<>"+" AND char$<>"-"
 1050 = value :REM Final result
 1990
 2000 DEF FNterm :REM Get <term> from line
 2010 value = FNnumber :REM Call <number> to get first item
 2025 REPEAT
 2030 IF char$="*" THEN PROCgetchar:value =value*FNnumber
 2040 IF char$="/" THEN PROCgetchar:value =value/FNnumber
 2042 UNTIL char$<>"*" AND char$<>"/"
 2050 = value :REM Result of <term>
 2990
 3000 DEF FNnumber :REM Read in <number> from line
 3020 IF char$>"9" OR char$<"0" PRINT "NO NUMBER":STOP
 3035 number = 0
 3040 REPEAT
 3050 digit = ASC(char$)-&30
 3060 number = number*10 + digit
 3070 PROCgetchar
 3090 UNTIL char$>"9" OR char$<"0"
 3100 = number :REM Value of <number>
 3990
 4000 DEF PROCgetchar :REM Get character from line
 4030 char$ = MID$(line$,lptr,1)
 4040 lptr = lptr+1
 4060 ENDPROC

The expression evaluator in BASIC has eight levels, rather than
just the 2 in the simple model. The levels, and their associated
operators, are as follows (lowest priority at the top):

Level Operators

<testable-condition> OR, EOR
<logical-expression> AND
<relnl-expression> =, <, <=, <>, >, >=
<expression> +, -
<term> *, /, MOD, DIV
<sub-term> ^
<factor> +, - (unary operators)
<primitive>

67

Note that <testable-condition> is the same as
<numeric> (see chapter 33 of the BBC User Guide, or
chapter 25 of the Electron User Guide). Numbers, functions and
variables appear at the <primitive> level. A
<primitive> could also be a <testable-
condition> in brackets, causing the expression evaluator to
recurse down from the top level again. For a more complete
definition of the expression evaluator, and the rest of BASIC, see
appendix A.

Most functions enter the expression evaluator at the
<factor> level rather than at the top; this means that
variables or numbers can be given to a function without brackets,
but an <expression> must be included in (round) brackets.
So, for example, the expression ‘SIN2+5’ will be evaluated as
‘(SIN2)+5’.

When finished, each level of the expression evaluator leaves its
result in IntA, FPA, or StrA (depending on the type), with the
type in the 6502 accumulator. The type bytes are:

&00 real (floating point) number
&40 integer
&FF string

Note that these are not the same as the variable types described in
section 3.1.

Each level can check this type byte returned to it by a lower level,
and do any conversions necessary (or generate an error if a type
mismatch has occurred). The particular ROM routines in section
10.4 give more details of the use of these type numbers.

No check is made to see if the expression evaluator is running out
of 6502 stack (due to all the subroutines it is calling). This means,
for example, that if more that 17 levels of nested brackets are
used, the stack will overflow, and the expression will not be
evaluated properly (it may even generate an obscure error). In
practice, this number of brackets is hardly ever used, so the
problem never arises.

68

5 Program Control
Mechanisms
Normally in a BASIC program, the statements are executed one
after the other, working through the program. However, several
statements are provided which allow this normal flow of control
of the program to be changed, either by jumping to another part
of the program, or by conditionally executing a series of
statements.

BASIC keeps a text pointer, PTRA, which it uses to point to the
statement currently being executed, in a similar way to the
program counter (PC) in the 6502 (see section 2.2.5). Whenever
any of these program control statements, like GOTO, change the
flow of control of the program, this pointer is changed to point to
the start of the new statement where execution of the program is
to continue. When the interpreter continues, it will then start
reading in from the statement pointed to by PTRA.

This section details the program control statements in BASIC,
and describes the mechanisms that they use to operate.

5.1 GOTO
This is the simplest of the program control statements in BASIC.
It just passes control from one part of the program to another.

The action of the BASIC GOTO statement is:

1 Get the line number or <numeric> following the GOTO
token.

2 Search the program from the beginning to find a line with
that line number; if it is not found, generate a ‘No such
line’ error (error number 41).

3 If the line was found, then point the text pointer PTRA at
the start of the first statement on that line. When the
BASIC interpreter continues, it will execute statements
from there onwards.

69

5.2 GOSUB…RETURN
The GOSUB statement is similar to the GOTO statement in that it
passes control to another part of the program; but it also allows
control to RETURN to the statement after the GOSUB statement
when the subroutine has finished.

The GOSUB statement has to remember where to RETURN to
after the end of the subroutine. A ‘GOSUB stack’ is used to hold
the location of the statement following the GOSUB statement, so
that the RETURN statement on the end of the subroutine can pass
control back to that part of the program. The format of the
GOSUB stack is:

&05CC+GSP LSB of return address
&05E6+GSP MSB of return address
&25 GOSUB stack pointer (GSP)

The action of the GOSUB statement is:

1 Get the line number or <numeric> following the GOSUB
token, and set PTRA to point to the end of the statement.

2 Search the program to find a line with that line number; if
it is not found, generate a ‘No such line’ error (error
number 41).

3 If the GOSUB stack pointer is more than 25, there are
already 26 return addresses (0 to 25) on the stack. In this
case, generate a ‘Too many GOSUBs’ error (error number
37), to prevent the GOSUB stack from overflowing (it only
has room for 26 entries).

4 If we get here, the GOSUB stack is not full, so push the
base of PTRA, which now points to the end of the GOSUB
statement, on to the the GOSUB stack. Increment the
GOSUB stack pointer (GSP), ready for the next one.

5 Point the text pointer PTRA at the start of the first
statement on the line found. When the BASIC interpreter
continues, it will execute statements from there onwards.

70

When a RETURN statement is encountered, it has to retrieve the
old value of PTRA, so that it can go back to the statement after
the GOSUB which called it.

The action of the RETURN statement is:

1 If the GOSUB stack pointer is 0, the GOSUB stack is
empty, and there is no address to return to. In this case,
generate the ‘No GOSUB’ error (error number 38).

2 Pop the return address from the GOSUB stack,
decrementing the GOSUB stack pointer to remove it. This
return address is then put into PTRA. When the interpreter
continues, it will execute statements from there onwards
(i.e. starting with the statement after the GOSUB which
called the subroutine).

5.3 PROCs and FNs
The ability to call PROCs and FNs is a very powerful feature of
BBC BASIC, although as far as the interpreter is concerned it is
just a more complex version of the GOSUB statement. With
PROC and FN calls, not only does the return address have to be
saved, so that control can be returned when the call is finished,
but the values of parameters and local variables have to be saved
so that they can be restored also.

Once a FN or PROC has been called, its name and location is
added to a linked list on the BASIC HEAP, one list for FNs, and
one for PROCs. This means that once a FN or PROC has been
used, BASIC does not have to search through the whole of the
program to find it again (like it does with the line numbers given
to a GOTO or GOSUB statement). See section 3.1 for the format
of these liked lists.

After the FN or PROC has been found, any parameters which
need to be passed are handled. In the description below, formal
parameter refers to the parameter used in the FN or PROC
definition; and actual parameter refers to the parameter which is
passed to it.

71

Although PROC is a statement and FN is a function (and hence
returns a value), the mechanism which is used when they are
called is very similar. To deal with both of them, there is a
standard FN/PROC handler which is called by both the FN
function and the PROC statement.

The PROC statement has to copy PTRA into PTRB before
calling this handler, and then use PTRB (rather than PTRA) to
check that it is at the end of the statement when the call has
returned. The FN/PROC handler must not alter PTRA, because
this is not used in the expression evaluator (and hence the FN
function must not change it). The FN function does not need to
do any of this (as PTRB will be set up correctly for it), and the
FN/PROC handler returns directly to the code which called the
FN when it has finished.

The action of the FN/PROC handler is:

1 Save the contents of the 6502 stack on the BASIC stack
(with a byte to give the old 6502 stack pointer), and reset
the 6502 stack pointer to &1FF. The 6502 stack works
downwards in page 1, and the stack pointer points to the
next available byte, so it is now empty (fig 5.1 (b)). The
6502 stack is not very big – only 256 bytes – and saving it
in this manner allows deep recursion of FNs and PROCs
without overflowing the small 6502 stack.

Figure 5.1 – FN/PROC stack use.

HIMEM
BASIC
STACK

OLD
6502 STACK

OLD
6502 STACK

SAVED
PARAMETERS

&1FF
6502 STACK FN/PROC TOKEN

PTRA

NUMBER OF
PARAMETERS

PTRB

6502 STACK
EMPTY

(a) (b) (c)

72

2 Save the FN or PROC token as the first item on the 6502
stack, at &1FF. The FN token is &A4, and the PROC
token is &F2. This allows the ENDPROC or FN return
statement (‘=’) to check that it is inside the correct type of
call before it exits.

3 Save PTRA on the 6502 stack.

4 Scan the name of the FN/PROC call. If there is not one
immediately following the FN or PROC token, generate a
‘Bad call’ error (error number 30).

5 Search for the name of the FN or PROC in the list of
already used calls. If it is found, don’t bother to look
through the program for it.

6 If the FN or PROC was not in the list, look through the
program from the beginning until a DEF FN or a DEF
PROC is found with the correct type and name. This search
uses PTRA to look through the program (which is why it
was saved at stage 3). If it is found, add it to the list;
otherwise, restore the base of PTRA from the 6502 stack
(this will tell the error handler on which line the error
occurred), and generate a ‘No such FN/PROC’ error.

7 Set PTRA to point to the location found by the search (or
found in the list). This will point to the first character
following the name after the DEF FN or DEF PROC. If
there are any parameters, this character will be an opening
bracket, ‘(’.

8 If there are any parameters in the definition, check that
they match with those in the call. If they do, push the value
and the variable descriptor block of each formal parameter
on the BASIC STACK (i.e. the one in the definition), and
assign the new value to it given by the value of the actual
parameter in the call. Saving the value and variable
descriptor block allows the formal parameters to be
restored to their original values after the call has returned.
If the parameters do not match, restore the base of PTRA
from the 6502 stack (for the error handler), and generate
an ‘Arguments’ error (error number 31).

73

9 Push the number of parameters on the 6502 stack, so that
the correct number can be restored when returning from
the call. If there were no parameters, this will be 0.

10 Save PTRB on the 6502 stack. This points to the next part
of the line to be interpreted, and will need to be restored
after the call has returned. The stacks are now in the state
shown in fig 5.1(c).

11 Start off the call by executing a JSR to the statement
interpreter, which will start executing statements from
PTRA. This leaves this return address on the 6502 stack
ready for a FN return statement or an ENDPROC
statement (all other statements JMP back to the statement
interpreter when they have finished; only the ENDPROC
and FN return statements finish by executing an RTS).

12 When we get here, the FN or PROC has finished. If it was
a FN, then the result type will be in &27, and the value
will be in IntA, StrA, or FPA as appropriate.

13 Restore PTRB from the 6502 stack. This points to the
place in the line where interpreting should continue.

14 Pull the number of parameters from the 6502 stack. If there
were any, restore the old value of each one by pulling its
variable descriptor block and value from the BASIC
STACK.

15 Restore PTRA from the 6502 stack. The only thing left
now on the stack, is the FN or PROC token, which was
used to tell the ENDPROC or FN return statement which
type of call it was in.

16 Recover the old 6502 stack from the BASIC stack. The
stacks are now back to the state that they were when the
FN/PROC handler was called (fig 5.1(a)).

17 Retrieve the type of the result from &27 into A, in case
this is a FN. If it is a PROC, this stage is not needed, but
does no harm.

74

18 Execute an RTS to return to the code which called the
FN/PROC caller. In the case of a FN, this returns to the
expression evaluator, with the type of the result of the FN
in A, and the result itself in IntA, FPA, or StrA. In the
case of a PROC, this returns to the PROC statement
handler, which sets PTRA to point to the next statement
(using PTRB to find out where the FN/PROC handler had
got up to), and jumps back to the statement interpreter to
continue execution after the PROC.

By trapping the ‘No such FN/PROC’ error generated if the DEF
FN or DEF PROC is not found in stage 6 above, procedures and
functions can be overlayed from disc (or tape, but it’s not so
useful). There is more on overlaying FNs and PROCs in
chapter 8.

The LOCAL statement inside a FN or PROC has to save the old
value of variables in a similar way to parameters passed to the
call. Each variable in the LOCAL statement has its value pushed
on the BASIC STACK, followed by its variable descriptor block;
and the ‘Number of parameters’ byte on the 6502 stack is
incremented. The current value of the variable is then set to zero.
Saving it in this manner means that its old value will be restored
as if it was just another parameter, when the call returns.

The ENDPROC statement and the ‘=’ (FN return) statement
check the state of the stack before they return (just returning
could have disastrous results if they didn’t). If they find that there
are not at least 4 items on the 6502 stack (there won’t be any if it
isn’t in a PROC or a FN), they generate a ‘No FN’ or ‘No PROC’
error. Also, if the token at &1FF (the bottom of the stack) does
not match (i.e. a PROC token for ENDPROC, or a FN token for
the FN return statement), this error is also generated. Otherwise,
if everything is OK, then they execute an RTS (after evaluating
the <numeric> in the case of the FN return statement) to return
to the FN/PROC handler at stage 12 above.

When executing statements inside a FN or PROC, the 6502 S
register contains &F5 (i.e. the next available byte on the stack is
at &1F5), and the state of the stack is as follows:

75

&1F6 RTS addr for FN/PROC handler 2 bytes
&1F8 PTRB base MSB 1 byte
&1F9 PTRB base LSB 1 byte
&1FA PTRB offset 1 byte
&1FB number of parameters 1 byte
&1FC PTRA base MSB 1 byte
&1FD PTRA base LSB 1 byte
&1FE PTRA offset 1 byte
&1FF Bottom: FN/PROC token (&A4/&F2) 1 byte

Note that when the FN/PROC handler gets back at stage 12, the
RTS address has been removed from the top.

5.4 IF…THEN…ELSE
This construction allows the statements after the THEN or the
ELSE parts to be executed conditionally, depending on the value
of the <testable-condition> found after the IF part.

The action of the IF statement is:

1 Evaluate the <testable-condition> following the IF token
(i.e. the <numeric> after the IF token: they are just the
same).

2 If the <testable-condition> evaluated to be 0 (i.e. false),
then scan through the line until an ELSE token or the end
of the line is found. If no ELSE was found on the line, then
continue execution on the next line. Otherwise, set PTRA
to point to the character after the ELSE token, and
continue at stage 4.

3 If the <testable-condition> evaluated to be anything other
than 0 (i.e. true), check for a THEN token. If there isn’t
one, JMP to the statement interpreter to continue executing
the rest of the line after the <numeric> (you don’t have to
use a THEN). If there is a THEN token, set PTRA to point
to the character after it, and continue at stage 4.

4 Check for a (tokenised) line number following the THEN
or ELSE; if there is one, execute a GOTO to that line
number. Otherwise, JMP to the statement interpreter to
continue executing the rest of the line.

76

Note that once the IF statement has decided that the THEN
section is to be executed, the IF statement does not prevent it
from ‘falling into’ the ELSE clause; this is done by the general
statement interpreter itself. If it discovers that there is an ELSE
token on the end of the statement it has just executed, it will just
skip the rest of the line instead (as if it was a REM statement).
This means that lines like:

PRINT "HELLO" ELSE MISTAKE

will not give an error, but the ELSE clause will never be
executed.

5.5 REPEAT…UNTIL
This is the simplest of BASIC’s two loop structures, the other
being the FOR…NEXT loop. Using this loop, control is
repeatedly passed back to the statements following the REPEAT
until the UNTIL clause is satisfied.

This loop structure uses a stack in page 5 to save the location of
the start of the statement after the REPEAT, so that the UNTIL
statement knows where to pass control back to if it is not
satisfied. The format of the REPEAT stack is:

&5A4+RSP LSB of repeat address
&5B8+RSP MSB of repeat address

&24 REPEAT stack pointer (RSP)

The action of the REPEAT statement is:

1 Check that the REPEAT stack pointer (RSP) is less than
20 (&14). If it isn’t, the REPEAT stack is full, so generate
a ‘Too many REPEATs’ error (error number 44).

2 PTRA points to the character after the REPEAT token, so
push that address on the REPEAT stack, incrementing the
REPEAT stack pointer.

3 JMP to the statement interpreter to continue execution with
the statements after the REPEAT token.

77

The action of the UNTIL statement is:

1 Evaluate the <testable-condition> following the UNTIL
token, checking that it is at the end of the statement (if it
isn’t at the end of the statement, a ‘Syntax error’ is
generated).

2 Check that the REPEAT stack is not empty (i.e. the
REPEAT stack pointer is not 0). If it is, generate a ‘No
REPEAT’ error (error number 43).

3 If the <testable-expression> evaluated in stage 1 was zero,
get the address of the statement following the REPEAT
from the REPEAT stack, leaving it on there for the next
time this UNTIL statement is encountered. Set PTRA to
this address, and JMP to the statement interpreter to
continue execution at the statement after the REPEAT.

4 If the <testable-expression> was not zero, remove the top
entry from the REPEAT stack by decrementing the
REPEAT stack pointer, and JMP to the statement
interpreter to continue execution with the statements
following the UNTIL statement.

5.6 FOR…NEXT
This loop structure allows a series of statements to be performed
a set number of times, with a different value of the control
variable each time. This is a more complex loop than the
REPEAT…UNTIL loop, as far as the interpreter is concerned,
because it takes more time to set up, and there is more to do
every time it goes round the loop.

This loop has to save the address and type of the control variable,
the STEP size, the TO limit, and the address of the statement
after the FOR statement. For this, it has a stack in page 5 in the
following format:

78

&500–50E First 15-byte FOR entry
&50F–51F etc.

&587–595 Tenth 15-byte FOR entry

&26 FOR stack pointer (FSP) (multiple of 15)

The FOR stack pointer is an offset from &500 to the next
available 15-byte FOR slot. The format of each 15-byte entry is:

&00 Address of control variable 2 bytes
&02 Type of control variable 1 byte
&03 STEP size 5 bytes
&08 TO limit 5 bytes
&0D Address after FOR statement 2 bytes

If the control variable is an integer, it only uses 4 of the 5 bytes
allocated for the STEP size and TO limit.

The action of the FOR statement is:

1 Get the variable following the FOR token; this is going to
be the ‘control variable’. If it is invalid, or a string variable,
generate a ‘FOR variable’ error (error number 34).

2 Check for an equals sign (‘=’) following the variable; if
there isn’t one, generate a ‘Mistake’ error (error
number 4).

3 Evaluate the <numeric> after the equals sign, and set the
value of the control variable to this.

4 If the FOR stack pointer is &96 (150) or more, there are
already 10 FOR loops in operation and the FOR stack is
full. If this is the case, generate a ‘Too many FORs’ error
(error number 35).

5 Save the address and type of the variable (i.e. its variable
descriptor block) on the FOR stack.

6 If the next character on the line is a TO token, evaluate the
<numeric> after it (making sure it is the same type – real
or integer – as the control variable), and save that on the

79

FOR stack. If it isn’t a TO token, generate a ‘No TO’ error
(error number 36).

7 If the next character is a STEP token, get the <numeric>
following that to use as the step size (making sure it is of
the correct type again). If it isn’t a STEP token, use 1 as
the STEP size instead.

8 Check that we are now at the end of the statement, and set
PTRA to point to the next statement.

9 Save PTRA on the FOR stack, to tell NEXT where to
return to, and move the FOR stack pointer up by 15 bytes
to cover this new FOR entry.

10 Finally, JMP to the statement interpreter to continue
execution with the statements after the FOR statement.

The action of the NEXT statement is:

1 Look for a variable name after the NEXT token. If there is
one, get its variable descriptor block and look down the
FOR stack, throwing away the top entry, until the same
variable is found. If the FOR stack was empty, generate a
‘No FOR’ error (error number 32); if the FOR stack wasn’t
empty, but a FOR loop could not be found with the same
control variable, then generate a ‘Can’t match FOR’ error
(error number 33).

2 If there was no variable after the NEXT, check that the
FOR stack is not empty (generate a ‘No FOR’ error if it is
empty).

3 Get the type and address of the control variable, so that
real and integer loop variables can be handled separately.
Note, however, that NEXT does not differentiate between
single-byte and 4-byte integers (although FOR does), so a
single byte variable like ‘?A%’ may give unpredictable
results if used as a control variable.

4 Add the STEP size to the control variable.

80

5 If the new value of the control variable is inside the TO
limit (less than or equal if STEP is positive; greater than or
equal if STEP is negative) set PTRA to the address of the
statement after the FOR statement (from the FOR stack),
and JMP to the statement interpreter to continue execution
with those statements.

6 If the new value of the control variable is outside the TO
limit, move the FOR stack pointer down by 15 bytes to
remove the top entry.

7 Set PTRA to point to the next character of the NEXT
statement. If it is a comma (‘,’), go back to stage 1 as if it
was a new NEXT statement (i.e. we have a multiple NEXT
statement). Otherwise, JMP to the statement interpreter to
continue execution with the statements following the
NEXT statement.

5.7 ON…GOTO/GOSUB
This program control statement allows control to be passed to
different parts of the program, depending on the value after the
ON.

The action of the ON statement is:

1 If the first character after the ON token is an ERROR
token, then go to the ON ERROR handler (section 5.8).

2 Evaluate the <numeric> following the ON token.

3 If the next character is not a GOTO or a GOSUB token,
generate an ‘ON syntax’ error (error number 39).

4 Save the GOTO or GOSUB token on the 6502 stack.

5 If the value of the <numeric> was less than zero or greater
than 255, give up trying to match it; otherwise, count along
the list of line numbers to try to find the entry
corresponding to the ON control value. If the entry was
found, pop the GOTO or GOSUB token from the 6502
stack, and jump into the GOTO or GOSUB routine

81

(depending on the token) to pass control to that line
number.

6 If no match was made, remove the token from the 6502
stack, and look to see if there is an ELSE token on the line.
If there is, handle it as if it was an ELSE in an IF statement
(i.e. if there is a line number after the ELSE token, GOTO
it, otherwise continue execution with the statements after
the ELSE token).

7 If there is no ELSE token on the line, generate an ‘ON
range’ error (error number 40).

In BASIC1, the token is not popped from the 6502 stack at stage
6; so if an ELSE clause is found and executed, the 6502 stack
state has been messed up. If the ON statement was inside a FN or
PROC (which keeps its return address on the 6502 stack), this
will cause BASIC to crash on the FN or PROC return. The ON
statement works correctly without the ELSE clause; and this bug
has been cured in BASIC2 anyway.

5.8 ON ERROR
This statement does not directly change control of the program
execution like the other program control mechanisms, but it does
still involve using the pointers in a similar way. It changes the
BASIC statements that the error handler executes when an error
is generated.

BASIC keeps an ON ERROR pointer in page zero at &16,&17.
This points to the start of a section of BASIC which will be
executed when an error occurs.

In BASIC1 the default error handler (stored as 2 lines in the ROM
starting at &B443) is:

 REPORT:IF ERL<>0 PRINT" at line ";ERL;
 0 PRINT:END

In BASIC2 the default error handler (only 1 line at &B433) is:

REPORT:IF ERL PRINT" at line ";ERL:END ELSE PRINT:END

82

The action of the ON ERROR statement is:

1 If the first character after the ERROR token is an OFF
token, set the ON ERROR pointer to point to the default
error handler, and JMP to the statement interpreter to
continue with the statements after the ON ERROR OFF
statement.

2 If the character was not an OFF token, then set PTRA to
point to the first character after the ON ERROR, and set
the ON ERROR pointer to point to this. This means that,
should an error occur, these statements will be executed as
the error handler.

3 Finally, skip the rest of the line as if it was a REM
statement (we don’t want to execute the error handler yet),
and continue execution of the program on the next line.

83

6 Assembling and
Disassembling
6.1 The Assembler
The built-in 6502 assembler in BASIC is a very useful tool,
allowing both large and small machine code routines to be written
easily. Being a part of BASIC itself, it is very easy to use BASIC
variables and functions, conditional assembly (with some sections
of the assembly code in IF…THEN statements), or macros
(assembly sections in a GOSUB or FN/PROC).

The assembler is written very efficiently, and in total only
occupies just over 1K of the 16K BASIC ROM.

The assembler mnemonics in the ROM are stored in a
compressed format to save space. Only the least significant 5 bits
of each mnemonic character are used, so that the whole
mnemonic can be compressed into 15 bits of a 2-byte number.
This also means that both upper case or lower case mnemonics
will be recognised (or a mixture of the two). Fig 6.1 shows how
the characters are packed.

Figure 6.1 – Mnemonic compression.

MNEMONIC CHARACTERS

FIRST SECOND THIRD

MSB LSB

COMPRESSED FORMAT

84

A further byte is used for each mnemonic, to hold the ‘base value’
of the opcode. For instructions which can only have one
addressing mode (such as the instructions which employ implied
or relative addressing), this is the actual opcode used; for other
instructions, this base value is modified by the actual addressing
mode used.

The mnemonic and base opcode are stored as follows:

BASIC1 BASIC2
&843B+M &8450+M MSB mnemonic
&8474+M &848A+M LSB mnemonic
&84AD+M &84C4+M base opcode

where M is the mnemonic number. Table 6.1 shows the
mnemonic and base opcode value for each mnemonic number, as
stored in the ROM table. Note that the directives OPT and EQU
are stored the same as mnemonics, but they need no base opcode.
The EQU directive is not implemented in BASIC1.

By comparing this table with fig 6.2, it can be seen that the
mnemonics are grouped together with others which allow the
same addressing modes. The assembler has a different section of
machine code which is used for each of the different groups of
mnemonics, to decide which addressing modes to allow. Section
1.5 gives these mnemonic groups.

Table 6.1 – Assembler Mnemonics

No. Mnemonic Base No. Mnemonic Base

&01 BRK &00 &0F RTI &40
&02 CLC &18 &10 RTS &60
&03 CLD &D8 &11 SEC &38
&04 CLI &58 &12 SED &F8
&05 CLV &B8 &13 SEI &78
&06 DEX &CA &14 TAX &AA
&07 DEY &88 &15 TAY &A8
808 INX &E8 &16 TSX &BA
809 INY &C8 &17 TXA &8A
&0A NOP &EA &18 TXS &9A
&0B PHA &48 &19 TYA &98
&0C PHP &08 &1A BCC &90
&0D PLA &68 &1B BCS &B0
&0E PLP &28 &1C BEQ &F0

85

No. Mnemonic Base No. Mnemonic Base

&1D BMI &30 &2C ROR &66
&1E BNE &D0 &2D DEC &C6
&1F BPL &10 &2E INC &E6
&20 BVC &50 &2F CPX &E0
&21 BVS &70 &30 CPY &C0
&22 AND &21 &31 BIT &20
&23 EOR &41 &32 JMP &4C
&24 ORA &01 &33 JSR &20
&25 ADC &61 &34 LDX &A2
&26 CMP &C1 &35 LDY &A0
&27 LDA &A1 &36 STA &81
&28 SBC &E1 &37 STX &86
&29 ASL &06 &38 STY &84
&2A LSR &46 &39 OPT ---
&2B ROL &26 &3A EQU ---

Figure 6.2 – 6502 op-code matrix.

 BRK ORA ORA ASL PHP ORA ASL ORA ASL

 Implied (Ind,X) ZP ZP Implied Imm Accum Abs Abs

 1 7 2 6 2 3 2 5 1 3 2 2 1 2 3 4 3 6

 BPL ORA ORA ASL CLC ORA ORA ASL

 Relative (Ind),Y ZP,X ZP,X Implied Abs,Y Abs,X Abs,X

 2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

 JSR AND BIT AND ROL PLP AND ROL BIT AND ROL

 Absolute (Ind,X) ZP ZP ZP Implied Imm Accum Abs Abs Abs

 3 6 2 6 2 3 2 3 2 5 1 4 2 4 1 2 3 4 3 4 3 6

 BMI AND AND ROL SEC AND AND ROL

 Relative (Ind),Y ZP,X ZP,X Implied Abs,Y Abs,X Abs,X

 2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

 RTI EOR EOR LSR PHA EOR LSR JMP EOR LSR

 Implied (Ind,X) ZP ZP Implied Imm Accum Abs Abs Abs

 1 6 2 6 2 3 2 5 1 3 2 2 1 2 3 3 3 4 3 6

 BVC EOR EOR LSR CLI EOR EOR LSR

 Relative (Ind),Y ZP,X ZP,X Implied Abs,Y Abs,X Abs,X

 2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

 RTS ADC ADC ROR PLA ADC ROR JMP ADC ROR

 Implied (Ind,X) ZP ZP Implied Imm Accum Indirect Abs Abs

 1 6 2 6 2 3 2 5 1 4 2 2 1 2 3 5 3 4 3 6

 BVS ADC ADC ROR SEI ADC ADC ROR

 Relative (Ind),Y ZP,X ZP,X Implied Abs,Y Abs,X Abs,X

 2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

 STA STY STA STX DEY TXA STY STA STX

 (Ind,X) ZP ZP ZP Implied Implied Abs Abs Abs

 2 6 2 3 2 3 2 3 1 2 1 2 3 4 3 4 3 4

 BCC STA STY STA STX TYA STA TXS STA

 Relative (Ind),Y ZP,X ZP,X ZP,Y Implied Abs,Y Implied Abs,X

 2 2** 2 6 2 4 2 4 2 4 1 2 3 5 1 2 3 5

 LDY LDA LDX LDY LDA LDX TAY LDA TAX LDY LDA LDX

 Imm (Ind,X) Imm ZP ZP ZP Implied Imm Implied Abs Abs Abs

 2 2 2 6 2 2 2 3 2 3 2 3 1 2 2 2 1 2 3 4 3 4 3 4

 BCS LDA LDY LDA LDX CLV LDA TSX LDY LDA LDX

 Relative (Ind),Y ZP,X ZP,X ZP,Y Implied Abs,Y Implied Abs,X Abs,X Abs,Y

 2 2** 2 5* 2 4 2 4 2 4 1 2 3 4* 1 2 3 4* 3 4* 3 4*

 CPY CMP CPY CMP DEC INY CMP DEX CPY CMP DEC

 Imm (Ind,X) ZP ZP ZP Implied Imm Implied Abs Abs Abs

 2 2 2 6 2 3 2 3 2 5 1 2 2 2 1 2 3 4 3 4 3 6

 BNE CMP CMP DEC CLD CMP CMP DEC

 Relative (Ind),Y ZP,X ZP,X Implied Abs,Y Abs,X Abs,X

 2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

 CPX SBC CPX SBC INC INX SBC NOP CPX SBC INC

 Imm (Ind,X) ZP ZP ZP Implied Imm Implied Abs Abs Abs

 2 2 2 6 2 3 2 3 2 5 1 2 2 2 1 2 3 4 3 4 3 6

 BEQ SBC SBC INC SED SBC SBC INC

 Relative (Ind),Y ZP,X ZP,X Implied Abs,Y Abs,X Abs,X

 2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

LSD

M
S

D

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

BRK
Implied
1 7

0

0
— OP Code
— Addressing Mode
— Instruction Bytes; Machine Cycles

 * Add 1 to N if page boundary is crossed.
** Add 1 to N if branch occurs to same page;
 add 2 to N if branch occurs to different page.

86

6.2 The Disassembler
A disassembler is always useful: either for exploring the contents
of the ROMs in the machine, or for checking that the machine
code that you have just assembled is actually what you wanted
(especially if it’s got lots of conditional assembly in it).

Most disassemblers take up quite a lot of memory. For a start,
they usually use a large table to decode the opcodes, with one
entry for each of the 256 possible 1-byte numbers. Each entry of
the table contains 3 bytes of mnemonic characters, and a further
byte to give the addressing modes allowed with that particular
opcode. This means that the disassembler is 1K long already,
without any program to decode the instructions. Also, they are
usually written in BASIC, which makes them slow, and even
larger.

The disassembler described in this section uses the assembler
tables in the ROM, and is written in machine code. When
assembled, it is less than 500 bytes long, and so will fit in any 2
spare pages of memory (for example, from &B00 to &CFF,
which is otherwise used for the user defined characters and
function keys).

To use the disassembler, the resident integer variable D% is set
to point to the first instruction to be disassembled (similar to the
use of P% by the assembler). Typing ‘CALL start%’ will then
disassemble one instruction, and leave D% pointing to the next
one to be disassembled. If the variables have been re-set since the
program was assembled, ‘CALL &B00’, or wherever the start of
it is, will have to be used instead. This could be built in as a new
statement, if required (see chapter 7).

To disassemble a length of code, a loop can be used:

 REPEAT:CALL &B00:UNTIL FALSE
or: REPEAT:CALL &B00:UNTIL D%>&BFFF

(page mode will have to be used with a loop like this, as it
disassembles at about 150 bytes/second, depending on the screen
mode). In fact, a short program could be used to make the use of
it very flexible; but the main advantage of it is that other
programs can be loaded and run while the disassembler is still

87

resident. If the user defined characters or function keys need to
be used while the disassembler is in memory, PAGE could be
moved up by 512 bytes, and it could be assembled there.

The ‘EQU’ directive has not been used in the program, so that it
will work on either a BASIC1 or BASIC2 machine with no
modification. PROCsetup (lines 9000 on) checks which version of
BASIC is present, and sets up the correct ROM table labels
before it is assembled.

Operation of the disassembler

The disassembler compares the opcode which is to be
disassembled against the ‘base opcode’ of each mnemonic, and
calculates the difference between them. If this difference can be
made up by the offset of a particular addressing mode, and this
addressing mode is allowed with the current mnemonic that it is
checking, the mnemonic and addressing mode of that particular
opcode have been found.

For example, if the value of the opcode was &31, this would be
matched with the mnemonic ‘AND’ (base opcode &21) and the
addressing mode ‘(IND),Y’ (offset &10). The base opcodes for
each mnemonic are stored in the ROM tables, but the
disassembler must contain the tables of allowed addressing modes
for each group of instructions, and also the extent of each group.
These tables are not in the ROM as the assembler does the
addressing mode decoding in machine code rather than using
tables.

The main opcode matching loop is from lines 1460–1760.

If the opcode is not matched with anything in the table, ‘???’ is
printed out (for an unrecognised mnemonic). Note that ‘JMP
(IND)’ has to be tested for separately (line 1190) as it does not fit
into the pattern with the rest of them.

88

The allowed addressing mode offsets for each group are:

Addressing Offset
mode-grp. 00 04 08 0C 10 14 18 1C

0 &01–&21 X
1 &22–&28 0 1 2 3 4 5 6 7
2 &29–&2C 1 A 3 5 7
3 &2D–&2E 1 3 5 7
4 &2F–&30 # 1 3
5 &31 1 3
6 &32–&33 3
7 &34–&35 # 1 3 5 7
8 &36 0 1 3 4 5 6 7
9 &37–&38 1 3 5

These possible offsets are held in the bit table ‘msktab’ in the
program (lines 3490–3590). The number of the lowest mnemonic
in each group is held in the table ‘grptab’ (lines 3600–3710).

The symbols in the table (X, #, A, 1 to 7) represent the possible
addressing modes. Note that they don’t all line up: the addressing
mode decode part of the program has to line up all these to get
the correct addressing mode. The symbols represent:

X either relative or implied
IMM (same as 2, but different pattern)
0 (IND,X)
1 ZP
2 IMM
3 ABS
4 (IND),Y
5 ZP,X
6 ABS,Y
7 ABS,X (,Y if LDX or STX)

The rest of the program handles the decoding and printing of the
addressing mode characters and data. For most of the groups this
is not too difficult, as the addressing mode corresponds directly
with the offset from the base address; however, some others need
to be shifted by an extra offset to ‘line up’ with the others. This
shifting is done by lines 1810–2060.

89

The more complex addressing modes are printed using a bit mask
table (lines 3800 to 3882) to decide which characters to print. The
simpler addressing modes are printed by a separate part of the
routine.

 10 REM Machine code disassembler
 15 REM using assembler ROM tables
 20 REM
 25 REM M D Plumbley 1984
 30 REM
 99
 100 PROCsetup :REM Set up ROM entry points
 590
 595 REM *** Allocate workspace ***
 600 worksp = &0070
 605 grpmsk = worksp :REM Bit mask of allowed modes
 610 ytemp = worksp+1 :REM Temp for addr mode group
 615 mdstor = worksp+2 :REM Store for addressing mode
 620 opcode = worksp+3 :REM Opcode read in from memory
 625 data = worksp+4 :REM The 2 bytes after the opcode
 630 addr = worksp+6 :REM Copy of address in D%
 635 mnem = worksp+8 :REM Mnemonic construction area
 640 xtemp = worksp+10 :REM Temp for mnemonic number
 645 lastch = worksp+11 :REM Last char of mnemonic
 650 nbytes = worksp+12 :REM Number of instruction bytes
 655 chrmsk = worksp+13 :REM Addr mode character mask
 690
 700 count = &1E
 799
 900 start% = &0B00 :REM User defined char/key area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .disass
 1010 LDA &410 \Get address from D%, and put it
 1020 STA addr \ in the workspace
 1030 LDA &411
 1040 STA addr+1
 1045
 1050 LDY #2 \Transfer the opcode and 2 data
 1060 .txbyte \ bytes to be disassembled
 1070 LDA (addr),Y
 1080 STA opcode,Y
 1090 DEY
 1100 BPL txbyte
 1105
 1110 LDA addr+1 \Print the address and the opcode
 1120 JSR phex
 1130 LDA addr

90

 1140 JSR phexsp
 1150 JSR pspace
 1160 LDA opcode
 1170 JSR phexsp
 1180
 1190 LDA opcode \If we have a JMP (XXXX), then
 1200 CMP #&6C \ set the mnemonic to "JMP"
 1210 BNE mtchop \ (mnemonic number &32),and the
 1220 LDX #&32 \ addressing mode to 8.
 1230 STX xtemp \ Otherwise, attempt to match the
 1240 LDA #8 \ opcode with the table
 1250 STA mdstor
 1260 JMP domode
 1270
 1280 .nomtch
 1290 JSR tbmnem \If we get here, no match was
 1300 LDY #3 \ found, so print a "???",
 1310 LDA #ASC"?" \ and go on to add 1 to D%
 1320 .pqloop \ before finishing
 1330 JSR pchar
 1340 DEY
 1350 BNE pqloop
 1360 JMP add1
 1370
 1380 .tbmnem
 1390 LDY #16 \Print spaces until we get to
 1400 .tbloop \ the 16th column. This lines
 1410 JSR pspace \ up all the mnemonics.
 1420 CPY count
 1430 BCS tbloop
 1440 RTS
 1450
 1451 \ ** Main opcode matching routine **
 1452
 1460 .mtchop \Go through all the mnemonics,
 1470 LDX #&39 \ and try to match one to the
 1480 LDY #&0A \ opcode.
 1485
 1490 .nextop
 1500 DEX \If we have tried all the
 1510 BEQ nomtch \ mnemonics, it is invalid.
 1515
 1520 TXA \Check to see if we are now in
 1530 CMP grptab,Y \ a new mnemonic group.
 1540 BCS samgrp
 1550 DEY
 1560 LDA msktab,Y
 1570 STA grpmsk
 1575
 1580 .samgrp
 1590 LDA opcode \The opcode can only have this
 1600 SEC \ mnemonic if is a positive

91

 1610 SBC opbase,X \ offset from the "base opcode"
 1620 BCC nextop \ of it. Also, the offset must
 1630 LSRA \ be divisible by 4, and must be
 1640 BCS nextop \ &1C or less (&1C=4*7)
 1650 LSRA
 1660 BCS nextop
 1670 CMP #8
 1680 BCS nextop
 1685
 1690 STA mdstor \Check to see if this addr mode
 1700 STY ytemp \ is allowed with this mnemonic.
 1710 TAY \ If it isn't, go back to check
 1720 LDA bittab,Y \ for another mnemonic.
 1730 LDY ytemp \ "grpmsk" holds the allowed
 1740 AND grpmsk \ addr modes for this mnemonic.
 1750 BEQ nextop
 1755
 1760 STX xtemp \Success!! - so save the mnemonic
 1762 \ number
 1765
 1770 LDY ytemp \If the mode group is 0, it is
 1790 TYA \ either implied or relative
 1800 BEQ imprel
 1805
 1810 LDA #&10 \If the group mask suggests that
 1820 .trymsk \ the mnemonic doesn't allow
 1830 BIT grpmsk \ absolute addressing, we have to
 1840 BNE mskok \ alter the addressing mode until
 1850 INC mdstor \ it does. (The "BPL" will always
 1860 LSR grpmsk \ work after a "LSR".)
 1870 BPL trymsk
 1875
 1880 .mskok \When we get here, the mask and
 1890 LDA grpmsk \ addr mode offset is OK.
 1900 AND #&08 \ However, if the addr mode is 0
 1910 BNE modeok \ and (indir),Y is not allowed,
 1920 LDA mdstor \ then it is really immediate
 1930 BNE modeok \ addressing, which should be
 1940 LDA #2 \ addr mode 2
 1950 STA mdstor
 1955
 1960 .modeok \When we get here, the only thing
 1970 CPY #2 \ left to test for is accumulator
 1980 BNE domode \ addressing. If the "allowed
 1990 TYA \ mode" group is 2, and the addr
 2000 CMP mdstor \ mode is also 2, then print the
 2010 BNE domode \ mnemonic, followed by an "A",
 2020 JSR pmnem \ and go to add 1 to D% before
 2030 LDA #ASC"A" \ finishing. Otherwise, go to
 2040 JSR pchar \ "domode".
 2050 .jadd1
 2060 JMP add1

92

 2065
 2070 .imprel \If we get here, the addressing
 2080 LDX xtemp \ mode is either relative or
 2090 CPX #&1A \ implied.
 2100 BCS rel
 2105
 2110 JSR pmnem \If it is implied, print the
 2120 JMP add1 \ mnemonic, and add 1 to D%
 2125
 2130 .rel \If it is relative, we have 1
 2140 LDA data \ extra data byte to print out
 2150 JSR phexsp \ before the mnemonic.
 2160 JSR pmnem
 2165
 2170 LDA #0 \The absolute addr has to be
 2180 STA data+1 \ calculated from the offset.
 2190 LDA data \ First extend the sign of the
 2200 BPL nodec \ offset byte into 2 bytes
 2210 DEC data+1
 2215
 2220 .nodec \Then add this 2-byte offset to
 2230 SEC \ D%, adding another 2 with it.
 2240 ADC &410 \ One extra is added by setting
 2250 STA data \ the carry before the addition,
 2260 LDA &411 \ the other is added by
 2270 ADC data+1 \ incrementing the address
 2280 STA data+1 \ afterwards.
 2290 INC data
 2300 BNE nopage
 2310 INC data+1
 2315
 2320 .nopage \Finally, print the absolute
 2330 JSR pabs \ address, and add 2 to D% before
 2340 JMP add2 \ leaving.
 2350
 2355 \ ** Print the mnemonic ***
 2360 .pmnem
 2370 LDX xtemp \First, get the number of the
 2380 JSR tbmnem \ mnemonic, and get the LSB and
 2390 LDA lsbmn,X \ MSB of the compressed mnemonic.
 2400 ASLA \ The shifts are to get the bits
 2410 STA mnem \ ready for the first 5 bits to
 2420 LDA msbmn,X \ be shifted out.
 2430 ROLA
 2440 STA mnem+1
 2445
 2450 LDX #3 \This is the main loop which
 2460 .mcloop \ shifts 3 characters out of
 2470 LDA #0 \ the 2-byte compressed mnemonic.
 2480 LDY #5 \ 5 bits at a time are shifted
 2490 .mbloop \ out into the accumulator, and
 2500 ASL mnem \ they are then ORed with &40 to

93

 2510 ROL mnem+1 \ turn them into upper case
 2520 ROLA \ letters.
 2530 DEY
 2540 BNE mbloop
 2550 ORA #&40
 2560 JSR pchar
 2570 DEX
 2580 BNE mcloop
 2585
 2590 STA lastch \Save the last character printed:
 2595 \ it might be an "X".
 2600 JMP pspace \Print a space, and exit.
 2605
 2606 \ ** Handle the addressing mode stuff **
 2610 .domode
 2620 LDY mdstor \First, get the number of bytes
 2630 LDX mdbyts,Y \ used by this addr mode, and
 2640 STX nbytes \ save it.
 2645
 2650 DEX \Print the required number of
 2660 BEQ nodata \ data bytes before the mnemonic.
 2670 LDA data
 2680 JSR phexsp
 2690 DEX
 2700 BEQ nodata
 2710 LDA data+1
 2720 JSR phexsp
 2725
 2730 .nodata
 2740 JSR pmnem \Print the mnemonic.
 2745
 2750 LSR mdstor \If the addr mode was odd, it is
 2760 BCS smplmd \ a simple one, so deal with it
 2770
 2780 LDY mdstor \If it was not a simple mode, get
 2790 LDA chmstb,Y \ the mask of characters to be
 2800 STA chrmsk \ printed into "chrmsk".
 2805
 2810 LDY #6 \Starting at the 7th (0..6) char,
 2820 .newchr \ if the bit shifted out of the
 2830 ASL chrmsk \ mask is set, then print it.
 2840 BCC nochr
 2850 LDA chtab,Y
 2860 JSR pchar
 2865
 2870 .nochr \If we have got to the 5th char,
 2880 CPY #5 \ the data can be printed (i.e.
 2890 BNE nodat \ the "#" or "(" has been printed
 2900 JSR pdata \ if there was one)
 2905
 2910 .nodat \Go round for another character
 2920 DEY \ if we haven't printed them all;

94

 2930 BPL newchr \ otherwise add "nbytes" to D%
 2940 JMP addn \ and exit.
 2950
 2960 .smplmd \If we get here, the addr mode is
 2970 JSR pdata \ either "zero-page", "absolute",
 2980 LSR mdstor \ "zero-page,X" or "absolute,X".
 2990 LSR mdstor \ Shifting out the 2nd bit from
 3000 BCC addn \ "mdstor" gives whether indexed
 3010 LDA #ASC"," \ addressing is required.
 3020 JSR pchar
 3025
 3030 LDA #ASC"X" \If the last character of the
 3040 CMP lastch \ mnemonic was a "X", then use
 3050 BNE px \ "Y" as the index
 3060 LDA #ASC"Y"
 3070 .px
 3080 JSR pchar \Print the index character, and
 3090 JMP addn \ add "nbytes" to D%.
 3095
 3096 \ ** Routines to print the data after the mnemonic **
 3110 .pabs \Print the data as an absolute
 3120 LDA #ASC"&" \ address.
 3130 JSR pchar
 3140 LDA data+1
 3150 JSR phex
 3160 LDA data
 3170 JMP phex
 3175
 3180 .pdata \If the total number of bytes for
 3190 LDA nbytes \ this addressing mode is not 2
 3200 CMP #2 \ (i.e. it is 3) then print the
 3210 BNE pabs \ absolute address.
 3220 .pzerop
 3230 LDA #ASC"&" \Print the data as a single byte.
 3240 JSR pchar
 3250 LDA data
 3260 JMP phex
 3265
 3267 ** Exit points; add size to D% and exit ***
 3270 .add1 \Add 1 to D%, and then exit
 3280 LDA #1
 3290 BNE add
 3300 .add2 \Add 2 to D%, and then exit
 3310 LDA #2
 3320 BNE add
 3360 .addn \Add the number of bytes in the
 3370 LDA nbytes \ instruciton to D%, then exit
 3375
 3380 .add \Add A to D%
 3390 CLC \ (The least significant 2 bytes
 3400 ADC &410 \ of D%, are stored in &410 and
 3410 STA &410 \ &411)

95

 3420 LDA &411
 3430 ADC #0
 3440 STA &411
 3445
 3450 JMP pnewl \Print a CRLF and exit
 3460
 3480 *** Allowed offset table ***
 3482 \This table gives the allowed addr mode offset for
 3484 \ each group of mnemonics. Bit 7 (the top bit) is set
 3486 \ if 0 is allowed; bit 6 set if 4 is allowed; etc.
 3490]:msktab=P%:P%=P%+10
 3500 msktab?0 = &80
 3510 msktab?1 = &FF
 3520 msktab?2 = &EA
 3530 msktab?3 = &AA
 3540 msktab?4 = &D0
 3550 msktab?5 = &50
 3560 msktab?6 = &80
 3570 msktab?7 = &D5
 3580 msktab?8 = &DF
 3590 msktab?9 = &A8
 3592
 3594 REM ** Addressing mode groups **
 3596 REM This table contains the starts of the mnemonics
 3598 REM which have the same allowed addressing modes
 3600 grptab=P%:P%=P%+11
 3610 grptab?&0 = &01
 3620 grptab?&1 = &22
 3630 grptab?&2 = &29
 3640 grptab?&3 = &2D
 3650 grptab?&4 = &2F
 3660 grptab?&5 = &31
 3670 grptab?&6 = &32
 3680 grptab?&7 = &34
 3690 grptab?&8 = &36
 3700 grptab?&9 = &37
 3710 grptab?&A = &39
 3712
 3714 REM *** Bit position table ***
 3716 REM This table contains the bit position corresponding
 3718 REM to each addressing mode
 3720 bittab=P%:P%=P%+8
 3730 bittab?0 = &80
 3740 bittab?1 = &40
 3750 bittab?2 = &20
 3760 bittab?3 = &10
 3770 bittab?4 = &08
 3780 bittab?5 = &04
 3790 bittab?6 = &02
 3800 bittab?7 = &01
 3802
 3804 REM *** Addr mode character mask table ***

96

 3806 REM This table gives the characters to be printed for
 3808 REM the non-simple addressing modes
 3810 chmstb=P%:P%=P%+5
 3820 chmstb?0 = &78 :REM "(,X)"
 3830 chmstb?1 = &80 :REM "#"
 3840 chmstb?2 = &4E :REM "(),Y"
 3850 chmstb?3 = &06 :REM ",Y"
 3860 chmstb?4 = &48 :REM "()"
 3870 chtab=P%:P%=P%+7
 3880 $chtab="Y,)X,(#"
 3882
 3884 REM *** Addressing mode bytes table ***
 3886 REM This table gives the total number of bytes used by
 3888 REM a given addressing mode.
 3890 mdbyts=P%:P%=P%+9
 3900 mdbyts?0 = 2
 3910 mdbyts?1 = 2
 3920 mdbyts?2 = 2
 3930 mdbyts?3 = 3
 3940 mdbyts?4 = 2
 3950 mdbyts?5 = 2
 3960 mdbyts?6 = 3
 3970 mdbyts?7 = 3
 3980 mdbyts?8 = 3
 8000
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICs"
 8230 PRINT
 8300 PRINT"DO ""CALL &"~disass""" to disassemble 1 line"
 8305 PRINT"D% points to code to be disassembled"'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9310 opbase = &84AD :REM Opcode base value table
 9315 lsbmn = &843B :REM Table of LSB of mnemonic
 9320 msbmn = &8474 :REM Table of MSB of mnemonic

97

 9325 phex = &8570 :REM Print A as a HEX byte
 9330 phexsp = &856A :REM Print A in HEX, then space
 9335 pspace = &B57B :REM Print a space
 9340 pnewl = &BC42 :REM Print a CRLF
 9345 pchar = &B571 :REM Print char in A
 9350 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9510 opbase = &84C4 :REM Opcode base value table
 9515 lsbmn = &8450 :REM Table of LSB of mnemonic
 9520 msbmn = &848A :REM Table of MSB of mnemonic
 9525 phex = &B545 :REM Print A as a HEX bytes
 9530 phexsp = &B562 :REM Print A in HEX, then space
 9535 pspace = &B565 :REM Print a space
 9540 pnewl = &BC25 :REM Print a CRLF
 9545 pchar = &B558 :REM Print char in A
 9550 ENDPROC

98

7 Adding New Commands
When the BASIC interpreter discovers anything which it doesn’t
recognise, it generates an error (usually ‘Mistake’), to stop
processing of the program or command and go back to command
mode. This section describes how new statements and commands
can be added to BASIC by intercepting this error.

7.1 Trapping BRK
The method that BASIC uses to generate an error, is to execute a
BRK instruction, which is followed by a number of bytes in a
standard error format. This format is:

BRK instruction to generate the error
Single byte error number (ERR)
Error message (like ‘Mistake’)
A zero byte to terminate the message

This is the standard method of generating errors on the Acorn
BBC system, and it allows errors to be ‘trapped’ by intercepting
the BRK vector (at &202). By trapping the errors generated by
BASIC, it is possible to add new commands, overlay procedures,
etc., and continue where it left off. Other errors which are
generated by BASIC are described in chapter 11.

When a BRK instruction is executed, the Machine Operating
System will JMP to the BRK handler whose address is in the
BRK vector at &202,&203. On entry to the BRK handler the
following conditions prevail:

(a) The A, X and Y registers are unchanged from when the
BRK instruction was executed.

(b) The 6502 stack is prepared ready for an RTI to the
instruction following the BRK instruction (i.e. with the
6502 flag byte on the top of the stack, and the return
address underneath it). This will return control to the
instruction 2 bytes after the BRK instruction.

(c) The pointer in locations &FD,&FE points to the ‘error
number’ byte after the BRK instruction.

99

Although a return from a BRK instruction is possible (it can be
used as a breakpoint in a machine code program), BASIC does
not expect such a return; executing an RTI after a BRK
instruction has been executed by BASIC (or any other program
using it as an error generating mechanism) will probably have
fatal results.

The small program below illustrates how the BRK vector can be
intercepted, to cause a bleep (CHR$7) each time an error is
generated. If you get fed up with this, pressing BREAK or typing
‘*BASIC’ will re-set the BRK vector to point to the default BRK
handler in BASIC, missing out this routine.

The code assembles into the user defined character area from
&0C00 onwards. If any user defined characters are to be used
while the routine is ‘linked in’ to the BRK vector, it could be
assembled somewhere else, by changing line 900. Space could be
allocated at PAGE for it by adding 256 to PAGE before the
routine is loaded (or typed in), and assembling the code to the old
location of PAGE, underneath the BASIC program.

 10 REM Routine to print a bleep on an error
 20 REM
 400 brkv = &0202 :REM BRK vector location
 410 oldbrk = !brkv AND &FFFF :REM Get default BRK handler
 420
 500 oswrch = &FFEE :REM OSWRCH (to print bleep)
 505
 900 start% = &0C00 :REM User char area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 915 P%=start%
 920 [OPT opt%
 925
 1000 .newbrk
 1005 PHA \ Save A
 1007
 1010 LDA #&7 \ Print a bleep
 1015 JSR oswrch
 1017
 1020 PLA \ Retrieve A, and continue
 1025 JMP oldbrk \ with default BRK handler.
 9000]
 9010 NEXT
 9020 IF newbrk=oldbrk PRINT"Already set up":END
 9030 brkv?0 = newbrk MOD &100 :REM Set up BRK vector to
 9040 brkv?1 = newbrk DIV &100 :REM point to this routine.
 9050 END

100

When the program is assembled, the address of the default BRK
handler is retrieved at line 410. This is where the new routine will
JMP to when it has printed its bleep. This means that the error
message will still be printed by the BASIC BRK handler, as
though nothing had happened.

After the program has been assembled, its start address is poked
into the BRK vector at lines 9030 and 9040 (the BRK vector is
stored low byte first). Line 9020 checks to see if the program has
already been set up. If it has, the new BRK handler would jump
back to itself when it has finished. This means that if any error
occurs, it will continue printing bleeps until BREAK is pressed –
not very useful (try assembling it twice, and see what happens).
This is something to look out for with most error trapping
routines; if they fail to clear the error which called them, it will be
generated again, and they will be called again in exactly the same
situation.

The error trap routine saves A by pushing it on the stack, while it
prints the bleep. This is not necessary if the BASIC error handler
will be JMPed to immediately afterwards, as it does not use it; but
it would be important if a different routine, which relies on A
being correct on entry, had intercepted the BRK vector before
this program was entered. If this other routine had been linked in
to the BRK vector in a similar way, the ‘JMP oldbrk’ on the end
of this routine will jump into that routine when it is finished,
rather than the BASIC BRK handler.

It is usually a good idea to save any registers you are going to use,
if control will be returned to another routine which may need
them. If the ‘No room’ error is being trapped, for example
(chapter 11, BASIC2 only), all of the 6502 registers (A, X, Y)
must be intact so that the source of the error can be determined.

7.2 The ‘Mistake’ error
If you type in a word that BASIC doesn’t recognise, it generates a
‘Mistake’ error (error number 4). However, it leaves its
statement pointer, PTRA, pointing one character after the start of
the name (PTRA was advanced one byte by the action of reading
in the first character). This means that the word which caused the
error to be generated can be checked, and action taken if it
corresponds to a new, ‘home-made’ statement.

101

The ‘Mistake’ error is actually generated when BASIC fails to
find an ‘=’ character, often due to a mistyped keyword (such as
‘PRIT’ instead of ‘PRINT’). When this happens, the sequence of
actions is as follows:

1 The statement interpreter reads the character at PTRA,
advancing PTRA to point to the next character.

2 The character is not a keyword token. It is alphabetic,
however, so it looks like the start of a variable name; and
the statement interpreter jumps into the variable
assignment handler.

3 The assignment handler scans what it thinks is a variable
name, using PTRB. This means that PTRA still points one
byte after the first character of the name. If the name is of a
variable which doesn’t already exist, it will create it; but
only after it has checked that there is an ‘=’ following it.

4 The assignment routine checks for an ‘=’ after the variable
name. If it doesn’t find one (which it won’t, if it was a
mistyped keyword), it generates a ‘Mistake’ error. If it
does find one, it continues with the assignment.

In fact there are 5 slightly different causes of a ‘Mistake’:

(a) A non-existent variable name was found, without an ‘=’
following it. This error is generated before the variable is
created, by a sort of ‘pre-check’ before the main
assignment routine is entered.

(b) An existing variable name was found, without an ‘=’
following it. This is not quite the same as (a), above, but
the only difference is the return address left on the 6502
stack.

(c) A ‘LET’ statement, followed by a valid variable, was
found, but there was no ‘=’ following the name. If the
variable did not exist before this statement, it would have
been created before the error was generated (unlike (a)
above).

102

(d) A psuedo-variable name, like ‘HIMEM’, was found, but
no ‘=’ followed it.

(e) A ‘FOR’ statement was found, followed by a valid
variable, but no ‘=’ followed the name.

All of these leave PTRA pointing 1 byte after the start of the
statement, but (c), (d), and (e) leave the 6502 stack in different
states. Fortunately, this only happens if the first character of the
statement is a keyword token; so if new statements are to be
introduced, they should not be allowed to start with one of the
tokens mentioned above (so ‘FORAGE’ cannot be a new
statement keyword).

Note that new keywords cannot begin with any other tokens
either (like the ‘TO’ in ‘TOTAL’) as these will cause a ‘Syntax
error’ rather than a ‘Mistake’. However, some of the BASIC
keywords are not tokenised if followed by an alphanumeric
character (see section 2.3.1), so ‘TIMER’ could be used as a new
statement (the ‘TIME’ part would not be tokenised).

For (a) and (b), the prevailing conditions on entry to the BRK
handler are:

&FD ,&FE points to the error number (4)

Stack contents: RTI information 3 bytes
 Return address 2 bytes

PTRA: points 1 after the first byte of the name

Other conditions are not so important (see chapter 11, error
number 4).

When a new statement has been recognised, the 3 bytes of RTI
information (pushed by the BRK instruction) and the 2 bytes of
return address (the ‘=’ was checked by a subroutine called by the
assignment handler) must be pulled from the stack before
execution is continued. If this is not done, any FNs or PROCs will
not return properly, as they expect their return address to be on
the top of the stack (see section 5.3).

103

7.3 A single character statement
The routine in this section shows a simple example of adding a
new statement, by just checking the first character of the
statement; the one just before PTRA. If it is a ‘B’, it pulls the 5
bytes to be discarded from the stack, checks that the ‘B’ is the
only thing (apart from spaces) in the statement, and produces a
bleep. Finally, it JMPs to the BASIC entry point to continue
executing the following statements.

Instead of being initialised when the program is assembled, this
program links in to the BRK vector when the small routine at the
start is CALLed (lines 1000 to 1115). Any programs which are
initialised in this way don’t need to be reassembled each time they
are used.

Note that the EQUB and EQUS assembler directives are used in
this program (lines 1025 to 1040), as they are much clearer than
the equivalent in BASIC. However, the EQU directive is not
implemented in BASIC 1, and should be replaced with its
equivalent using indirection operators.

 10 REM *** Program to add single character command ***
 12 REM
 14 REM M D Plumbley 1984
 16 REM
 18 REM This program traps the BRK vector. On an error,
 20 REM if ERR (the error number) is 4 ("Mistake")
 22 REM and the unrecognised statement is the single
 24 REM character "B", then a bleep will be produced.
 26 REM
 28 REM If the error number is not 4, or the first char
 30 REM of the statement is not a "B", then control will
 32 REM be passed to the default error handler.
 34 REM
 36 REM When setting up, the program tests for BASIC 1
 38 REM or BASIC 2, and uses the corresponding ROM
 40 REM entry points.
 42 REM
 44 REM Before using on BASIC I, all EQU directives
 46 REM should be replaced with indirections:
 48 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 50 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 52 REM
 54 REM The code is assembled into the user defined
 56 REM character space: alternatively, space could
 58 REM be reserved at PAGE for it.

104

 60 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 495 REM *** OS routines and vectors ***
 500 OSWRCH = &FFEE
 550 BRKV = &0202
 799
 900 start% = &0C00 :REM Assemble into user char space
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .init
 1005 LDA &8015 \Test that the correct
 1010 CMP #baschr \ version of BASIC is
 1015 BEQ basok \ in the ROM.
 1016
 1020 BRK \If it isn't, print an
 1025 EQUB 60 \ error message.
 1030 EQUS "Not BASIC " \ (baschr set by PROCsetup)
 1035 EQUB baschr
 1040 EQUB 0
 1041
 1045 .basok
 1050 LDA BRKV \Load the current BRK vector
 1055 LDX BRKV+1 \ into A and X.
 1056
 1060 CMP #newbrk MOD &100 \If this routine is already
 1065 BNE ntsavd \ set up, don't change BRKV.
 1070 CPX #newbrk DIV &100
 1075 BEQ saved
 1076
 1078 .ntsavd
 1080 STA svbrkv \It has not been set up
 1085 STX svbrkv+1 \ already, so save old
 1090 LDA #newbrk MOD &100 \ BRKV, and set up the new
 1095 STA BRKV \ one.
 1100 LDA #newbrk DIV &100
 1105 STA BRKV+1
 1106
 1110 .saved
 1115 RTS
 1190
 1192 \ *** This is the new BRK handling routine ***
 1200 .newbrk
 1205 PHA \Save A and Y on 6502 stack
 1210 TYA
 1215 PHA
 1216
 1220 LDY #0 \Get error number
 1225 LDA (&FD),Y

105

 1226
 1280 CMP #4 \If "Mistake", check for a "B"
 1285 BEQ mistak
 1286
 1400 .giveup
 1410 PLA \Restore A and Y from 6502 stack
 1420 TAY
 1430 PLA
 1431
 1440 JMP (svbrkv) \Go to old BRK handler
 1441
 1490 \ *** If we get here, an error 4 ("Mistake") has ***
 1492 \ *** ocurred, so see if the charcter is a "B". ***
 1500 .mistak
 1510 LDY &A \Get character at start of statement
 1520 DEY
 1530 LDA (&B),Y
 1531
 1540 CMP #ASC"B" \If it is not a "B", go to the old
 1550 BNE giveup \ BRK handler
 1551
 1560 PLA \Discard saved A and Y from stack
 1570 PLA
 1571
 1580 PLA \Discard RTI information from the
 1590 PLA \ 6502 stack. This is automatically
 1600 PLA \ pushed by the BRK instruction.
 1601
 1610 PLA \Discard return addr (of routine
 1620 PLA \ to check for "=") from stack
 1621
 1630 JSR chksda \Check for end of statement
 1631
 1640 LDA #7 \Print a beep
 1650 JSR OSWRCH \ (action at last!)
 1651
 1660 JMP cont \Continue execution
 1661
 6899
 6990 \ *** Routine variables area ***
 6991
 7000 .svbrkv EQUW !BRKV \Space to save old BRK vector
 7010
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICS"
 8230 PRINT

106

 8300 PRINT"Execute ""CALL &"~init""" to initialise."'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC I OR II"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9310 baschr = ASC"1":REM Used by init routine
 9320 chksda = &9810 :REM Check for statement delimiter
 9330 cont = &8B0C :REM Cont execution at next statement
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine
 9530 chksda = &9857 :REM Check for statement delimiter
 9540 cont = &8B9B :REM Cont execution at next statement
 9550 ENDPROC

The general operation of the program is as follows:

PROCsetup is called to set up the correct ROM entry points
required by the routine (‘Check for statement delimiter’ and
‘Continue execution’ in this case). This uses the copyright string
to check for the version type, and calls PROCsetl or PROCset2
depending on the year (1981 or 1982). Alternatively, the paged
ROM version number, held in location &8008, could be used.
This is &00 for BASIC1, and &01 for BASIC2.

When the assembled code is initialised by CALLing the start, the
initialisation routine first checks that the year of the ROM is the
same as the one it was assembled for; if it isn’t, it won’t link itself
in (as the ROM entry points will be wrong). Note that this check
will only work if the BASIC ROM is paged in when the
initialisation routine checks the year; and not if the DFS, say, is
paged in (if the routine has just been ‘*RUN’). See chapter 10 for
more on this.

If the ROM is correct, the initialisation routine saves the contents
of the BRK vector at ‘svbrkv’, and sets the BRK vector to point to
the new BRK handling routine.

107

When an error is generated, and ‘newbrk’ is entered, it checks
that the error number pointed to by &FD,&FE is 4, if it isn’t, the
error was not a ‘Mistake’, and a JMP is made to the default BRK
handler to deal with it.

If the error is a ‘Mistake’, the character before PTRA is tested to
see if it is a ‘B’ (the base of PTRA is stored in &B,&C with the
offset in &A). If it isn’t the old BRK handler is JMPed to to print
the ‘Mistake’ message.

If it is a ‘B’, then the 5 bytes on the 6502 stack are pulled from it
(together with the 2 saved registers from the BRK handler). Then
the ROM routine is called which checks for the end of the
statement at PTRA (which still points just after the ‘B’). This will
produce a ‘Syntax error’ (error number 16) if it doesn’t find a ‘:’,
an ELSE token, or the end of the line.

Finally, a bleep is printed, and a JMP is made to the ROM
routine which continues with the execution of the program. Note
that this routine expects the ‘Check for statement delimiter’
routine to be called before it, so that PTRA is set up to actually
point 1 byte after the statement terminator. These ROM routines
are detailed in chapter 10.

7.4 Recognising keywords
Just using single character statements is not very versatile: most
of the time it would be much more useful to give the new
statements keywords which reflect the action that they perform,
like ‘DUMP’ to dump the variables, or ‘REN’ to renumber a
program. The program in this section shows how to implement a
command line interpreter to recognise keywords from a table.

The keywords implemented in the program are ‘BEEP’, which
beeps (again), and ‘DUMP’, which lists the current active
dynamic variables (see section 3.1.2). Neither of them take any
arguments.

Note that the EQU assembler directive has been used again (lines
1025 to 1040 as before, and lines 2500 to 2580 in the keyword
table).

108

 10 REM *** Program to add new BASIC commands ***
 12 REM
 14 REM M D Plumbley 1984
 16 REM
 18 REM This program traps the BRK vector. On an error,
 20 REM if ERR (the error number) is 4 ("Mistake")
 22 REM then a command line interpreter will test the
 24 REM statement for a keyword to recognise. If it is
 26 REM recognised, the keyword's action is performed.
 28 REM Otherwise, control is passed on to the default
 30 REM BRK handler.
 32 REM
 34 REM The code is assembled into the user key/char
 36 REM space: alternatively, space could be reserved
 38 REM at PAGE for it.
 40 REM
 42 REM Before using with BASIC 1, the EQUs should be
 44 REM replaced with their equivalent:
 46 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 48 REM "EQUW X" => "]!P%=X:P%=P%+2:[OPTopt%"
 50 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 52 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 495 REM *** OS routines and vectors ***
 500 OSWRCH = &FFEE
 550 BRKV = &0202
 590
 600 svbrkv = &0070 :REM Space to save old BRK vector
 690
 900 start% = &0B00 :REM User key/char area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .init
 1005 LDA &8015 \Test that the correct
 1010 CMP #baschr \ version of BASIC is
 1015 BEQ basok \ in the ROM.
 1016
 1020 BRK \If it isn't, print an
 1025 EQUB 60 \ error message.
 1030 EQUS "Not BASIC " \ (baschr set by PROCsetup)
 1035 EQUB baschr
 1040 EQUB 0
 1041
 1045 .basok
 1050 LDA BRKV \Load the current BRK vector
 1055 LDX BRKV+1 \ into A and X.
 1056
 1060 CMP #newbrk MOD &100 \If this routine is already

109

 1065 BNE ntsavd \ set up, don't change BRKV.
 1070 CPX #newbrk DIV &100
 1075 BEQ saved
 1076
 1078 .ntsavd
 1080 STA svbrkv \It has not been set up
 1085 STX svbrkv+1 \ already, so save old
 1090 LDA #newbrk MOD &100 \ BRKV, and set up the new
 1095 STA BRKV \ one.
 1100 LDA #newbrk DIV &100
 1105 STA BRKV+1
 1106
 1110 .saved
 1115 RTS
 1190
 1192 \ *** This is the new BRK handling routine ***
 1200 .newbrk
 1205 PHA \Save A and Y on 6502 stack
 1210 TYA
 1215 PHA
 1216
 1220 LDY #0 \Get error number
 1225 LDA (&FD),Y
 1226
 1280 CMP #4 \If "Mistake", try new keywords
 1285 BEQ mistak
 1286
 1400 .giveup
 1410 PLA \Restore A and Y from 6502 stack
 1420 TAY
 1430 PLA
 1431
 1440 JMP (svbrkv) \Go to old BRK handler
 1441
 1490 \ *** If we get here, an error 4 ("Mistake") has ***
 1492 \ *** ocurred, so attempt to recognise one of the ***
 1494 \ *** command keywords in the table. ***
 1500 .mistak
 1510 LDA #keytab MOD &100 \Get start of keyword table
 1520 STA &39 \ into (&39)
 1530 LDA #keytab DIV &100
 1540 STA &3A
 1541
 1550 LDY &A \Set (&37) to point to character
 1560 DEY \ before PTRA. It will then point
 1570 TYA \ to the first non-space character
 1580 CLC \ of the statement.
 1590 ADC &B
 1600 STA &37
 1610 LDA &C
 1620 ADC #0
 1630 STA &38

110

 1631
 1640 JSR nxtwrd \Call the command line interpreter
 1641
 1650 BCS giveup \Exit if no match
 1651
 1660 DEY \Adjust the offset of PTRA so that
 1665 TYA \ it points to the first charcter
 1670 CLC \ after the keyword just recognised.
 1675 ADC &A
 1680 STA &A
 1681
 1685 PLA \Discard saved A and Y from stack
 1690 PLA
 1691
 1695 PLA \Discard RTI information from the
 1700 PLA \ 6502 stack. This is automatically
 1705 PLA \ pushed by the BRK instruction.
 1706
 1710 PLA \Discard return addr (of routine
 1715 PLA \ to check for "=") from stack
 1716
 1720 JMP (&0037) \Execute the command
 1721
 1900 \ *** Command Line Interpreter ***
 1902 \ *** On entry, (&37) should point to the first ***
 1904 \ *** char of the word in the program to be ***
 1906 \ *** recognised. (&39) should point to the ***
 1908 \ *** start of the keyword table. ***
 1910 \ *** On exit; ***
 1912 \ *** if C is set, a match was not made ***
 1914 \ *** if C is clear, the action addr is in ***
 1916 \ *** &37,38, so that JMP (&37) will call it. ***
 1917 \ *** Y contains the length of the word. ***
 1918 \ *** ***
 1920 \ *** No abbreviations are allowed. ***
 1922
 2135 .nxtwrd
 2140 LDY #0 \Beginning of words
 2141
 2150 LDA (&39),Y \If no word, this is the end of the
 2160 BEQ nomtch \ table, so no match was made.
 2161
 2170 CMP (&37),Y \If the chars do not match,
 2180 BNE difrnt \ try the next keyword.
 2181
 2190 .nextch
 2200 INY \Get the next character:
 2210 LDA (&39),Y \ if it is the end of the keyword,
 2220 BEQ getadr \ then get its addr, and jump there.
 2221
 2230 CMP (&37),Y \If the chars match,
 2240 BEQ nextch \ try the next one.

111

 2241
 2250 .difrnt
 2260 INY \This keyword is not the right one,
 2270 LDA (&39),Y \ so look for the end of it.
 2280 BNE difrnt
 2281
 2290 INY \Set the base pointer at (&39) to
 2300 INY \ the start of the next keyword in
 2310 TYA \ the table (i.e. 3 bytes past the
 2320 SEC \ end of this keyword, to allow
 2330 ADC &39 \ for the address).
 2340 STA &39
 2350 LDA &3A
 2360 ADC #0
 2370 STA &3A
 2371
 2380 JMP nxtwrd \Try the next keyword in the table
 2381
 2400 .getadr
 2410 INY \The correct keyword has been
 2415 LDA (&39),Y \ matched, so put its execution
 2420 STA &37 \ addr in (&37).
 2425 INY
 2430 LDA (&39),Y
 2435 STA &38
 2436
 2440 DEY \Adjust Y so it contains the length
 2445 DEY \ of the recognised word.
 2446
 2450 CLC \Flag "Match OK", and exit
 2455 RTS
 2456
 2460 .nomtch
 2465 SEC \Flag "No match", and exit
 2470 RTS
 2490
 2494 \ *** Keyword table. The format of this table ***
 2496 \ *** is; Keyword, zero byte, action addr ***
 2498 \ *** A 0 keyword entry marks end of table. ***
 2499
 2500 .keytab
 2505 EQUS "BEEP" \Keyword,
 2510 EQUB 0 \ zero byte,
 2515 EQUW beep \ action addr
 2516
 2520 EQUS "DUMP"
 2525 EQUB 0
 2530 EQUW dump
 2531
 2580 EQUB 0 \End of keyword table
 2990
 2992 \ *** BEEP - This command makes a beep by ***

112

 2994 \ *** printing a BEL character (CHR$7) ***
 3000 .beep
 3010 JSR chksda \Ensure end of statement
 3011
 3020 LDA #7 \Print a beep
 3030 JSR OSWRCH
 3031
 3035 .alldne
 3040 JMP cont \Continue execution
 3090
 3092 \ *** DUMP - This command lists the names of ***
 3094 \ *** all of the current active variables. ***
 3100 .dump
 3105 JSR chksda \Ensure end of statement
 3106
 3110 LDA #ASC"A"-1 \Set first initial letter for
 3120 STA &39 \ variable (allow for first INC)
 3121
 3125 .newltr
 3130 INC &39 \Use the next initial letter
 3131
 3140 LDA &39 \If all the letters have been
 3150 CMP #ASC"z"+1 \ used up, go to next statement
 3160 BCS alldne
 3161
 3170 ASL A \Point (&3A) at the right place
 3180 STA &3A \ in the variable link table
 3190 LDA #4 \ in the top half of page 4
 3200 STA &3B
 3201
 3205 .newptr
 3210 LDY #1 \Get the MSB of the pointer to the
 3220 LDA (&3A),Y \ next variable in the linked list.
 3221
 3230 BEQ newltr \If it is 0, we have found the end,
 3231 \ so try another initial letter.
 3232
 3240 TAX \Using X as a temp for the MSB,
 3245 DEY \ get the LSB of the pointer to the
 3250 LDA (&3A),Y \ next variable in the list, and
 3255 STA &3A \ set (&3A) to point to this
 3260 STX &3B \ variable.
 3261
 3262 LDA &39 \Print initial letter of variable
 3264 JSR pchar \ name (not stored in the list)
 3265
 3266 LDY #2 \Point at 1st stored char
 3267
 3268 .nxtchr
 3270 LDA (&3A),Y \Get the char in the name. If it
 3275 BEQ namend \ is the end of the name, exit.
 3280 JSR pchar \ Otherwise, print the char, and

113

 3285 INY \ go to the next one.
 3290 BNE nxtchr \ (Y never 0 here, so branch always)
 3291
 3295 .namend
 3300 JSR pnewl \Print a new line after the end of
 3305 JMP newptr \ the name, and try the next link.
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICs"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~init""" to initialise."'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9310 baschr = ASC"1":REM Used by init routine
 9320 pchar = &B571 :REM Print char in A: handle COUNT
 9330 pnewl = &BC42 :REM Print a CRLF, and zero COUNT
 9340 chksda = &9810 :REM Check for statement delimiter
 9350 cont = &8B0C :REM Cont execution at next statement
 9360 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine
 9520 pchar = &B558 :REM Print char in A: handle COUNT
 9525 pnewl = &BC25 :REM Print a CRLF, and zero COUNT
 9530 chksda = &9857 :REM Check for statement delimiter
 9540 cont = &8B9B :REM Cont execution at next statenemt
 9550 ENDPROC

Note that the initialisation and setup routines are substantially
the same as for the program in section 7.3 (although there are a
few extra ROM routines). The program is longer than the last
one, so it destroys the user defined function key area (this means

114

that funny things might happen if you press BREAK, as it is
function key 10). The command line interpreter in this program
(lines 1500 on) replaces the simple check for a ‘B’ in the last one.

The keyword recogniser (lines 1900 to 2470) is a subroutine all by
itself. It uses a keyword table (lines 2500 to 2580) with each entry
in the following format:

keyword characters
a zero byte to terminate the keyword
the action address of the keyword (2 bytes)

The end of the table is marked by the first character of the
keyword being a zero byte.

The keyword recogniser is entered with the address of the table in
&38,&39 and the address of the keyword to be recognised in
&37,&38. If the keyword is recognised, the action address is put
into &37,&38, the length of the recognised word is left in Y, and
the carry flag cleared. If the keyword is not recognised, the carry
flag is set.

Sending the address of the table in this manner allows more than
one routine to use the same recogniser, with different tables. This
means that it could also be used if new functions are being added
as well.

The general operation of the keyword recogniser is as follows:

1 If the first byte of the name is a zero, the end of the table
has been reached without a match, so exit with the carry
flag set.

2 Compare the keyword in the table against the word in the
program. If they both match until the zero at the end of the
word in the table is found, get the action address of the
keyword.

3 If any characters did not match, move the table pointer up
to point to the next entry, and go back to stage 1 to try to
match the next one.

When the keyword recogniser has returned, PTRA is updated to
point to the first character after the keyword (lines 1660 to 1680).

115

This allows the routine for the keyword to continue from there, to
get anything it needs from the text (or to just check for the end of
the statement).

The variable dump routine works in a similar way to the BASIC
one in section 3.1.2, but it doesn’t print out their values.

7.5 A renumber utility
The RENUMBER command in BASIC is very limited; it only
allows you to renumber the whole of your program. This is OK
for small programs, but larger programs usually consist of a
number of PROC and FN definitions, and it is very easy to loose
track of these if they don’t start on, say, 1000 boundaries. Using
BASIC’s blanket renumber on programs such as these will lose
this structure completely.

This section describes how to add a new command to allow
selected areas of the program to be renumbered. It is less than
512 bytes long, and so will fit in any 2 spare pages in memory
(the user defined character and function key pages, perhaps).

Once the program has been assembled, and initialised by
CALLing the start address, the new statement ‘REN’ has been
added.

REN L, U; S, I

will renumber the lines in the program between L and U
(inclusive) starting at S with an increment of I. All line numbers
outside this range will be left unaltered. The GOTO and GOSUB
line number references will be dealt with, in the same way as the
BASIC RENUMBER command (in fact, the program JMPs into
the RENUMBER code to do this!).

For example, if the following program was in memory:

 10 REM PROGRAM
 100 A=0
 101 B=0
 110 PROCthing
 1000 DEFPROCthing
 1010 ENDPROC

116

typing ‘REN 100,110;500,20’ would leave the program as:

 10 REM PROGRAM
 500 A=0
 520 B=0
 540 PROCthing
 1000 DEFPROCthing
 1010 ENDPROC

The following errors will be produced if the REN statement is
misused:

REN syntax

This error is generated if the REN statement fails to find a comma
or a semicolon separating its arguments where expected.

REN space

This error is generated if there is not enough room for the pile of
old line numbers the REN statement needs to put on the TOP of
the program. This is similar to the ‘RENUMBER space’ error (a
fatal error).

REN range

An attempt was made to renumber the program such that the new
lines would be out of sequence. In the above example, if ‘REN
1000,1010;1,2’ was typed this error would be generated.

REN type

A string was used as the argument to the REN statement (floating
point numbers will be converted to integer if necessary).

EQU has not been used in this program, so it will work without
modification with either BASIC 1 or BASIC 2 (although it looks
a bit messy).

 10 REM *** Selective renumber utility ***
 12 REM
 14 REM M D Plumbley 1984
 16 REM
 18 REM This program traps the BRK vector. If the error
 20 REM number is 4 ("Mistake") then the command line
 22 REM interpreter will test for the new command "REN",

117

 24 REM and execute it if it is.
 26 REM
 28 REM REN L, U; S, I will renumber lines L to U of a
 30 REM program, starting at S, with an increment of I.
 32 REM
 34 REM The code is assembled into the user key/char
 36 REM space. This can be changed by changing line 900
 38 REM
 40 REM The EQU directive is not used in this program, and
 42 REM it will work without modification on either
 44 REM BASIC1 or BASIC2 machines.
 46 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 495 REM *** OS routines and vectors ***
 550 BRKV = &0202
 590
 600 worksp = &0070 :REM Workspace area
 605 svbrkv = worksp :REM BRK vector save slot
 610 lower = worksp+&2 :REM Lower renumber limit
 615 upper = worksp+&4 :REM Upper renumber limit
 620 start = worksp+&6 :REM Start line number
 625 number = worksp+&8 :REM Next renumber number
 630 line = worksp+&A :REM Pointer to line in prog.
 635 pile = worksp+&C :REM Ptr. to line no. pile
 640 newnum = worksp+&E :REM Line no. to be used
 690
 695 REM *** BASIC system variables ***
 700 himem = &0006
 705 top = &0012
 710 page = &0018
 715 count = &001E
 720 inta = &002A :REM Integer accumulator
 725
 750 renum = 0 :REM To stop "No such var."
 799
 900 start% = &0B00 :REM User key/char
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .init
 1005 LDA &8015 \Test that the correct
 1010 CMP #baschr \ version of BASIC is
 1015 BEQ basok \ in the ROM.
 1020
 1025 BRK \If it isn't, print an
 1030]?P%=60:P%=P%+1 :REM error message
 1035 $P%="Not BASIC ":P%=P%+LEN$P%
 1040 ?P%=baschr:P%=P%+1
 1045 ?P%=0:P%=P%+1:[OPTopt%

118

 1050
 1055 .basok
 1060 LDA BRKV \Load the current BRK vector
 1065 LDX BRKV+1 \ into A and X.
 1070
 1075 CMP #newbrk MOD &100 \If this routine is already
 1080 BNE ntsavd \ set up, don't change BRKV.
 1085 CPX #newbrk DIV &100
 1090 BEQ saved
 1095
 1100 .ntsavd
 1105 STA svbrkv \It has not been set up
 1110 STX svbrkv+1 \ already, so save old
 1115 LDA #newbrk MOD &100 \ BRKV, and set up the new
 1120 STA BRKV \ one.
 1125 LDA #newbrk DIV &100
 1130 STA BRKV+1
 1135
 1140 .saved
 1145 RTS
 1190
 1192 \ *** This is the new BRK handling routine ***
 1200 .newbrk
 1205 PHA \Save A and Y on 6502 stack
 1210 TYA
 1215 PHA
 1220
 1225 LDY #0 \Get error number
 1230 LDA (&FD),Y
 1235
 1240 CMP #4 \If "Mistake", try new keywords
 1245 BEQ mistak
 1250
 1400 .giveup
 1405 PLA \Restore A and Y from 6502 stack
 1410 TAY
 1415 PLA
 1420
 1425 JMP (svbrkv) \Go to old BRK handler
 1430
 1490 \ *** If we get here, an error 4 ("Mistake") has ***
 1492 \ *** ocurred, so attempt to recognise one of the ***
 1494 \ *** command keywords in the table. ***
 1500 .mistak
 1505 LDA #keytab MOD &100 \Get start of keyword table
 1510 STA &39 \ into (&39)
 1515 LDA #keytab DIV &100
 1520 STA &3A
 1525
 1530 LDY &A \Set (&37) to point to character
 1535 DEY \ before PTRA. It will then point
 1540 TYA \ to the first non-space character

119

 1545 CLC \ of the statement.
 1550 ADC &B
 1555 STA &37
 1560 LDA &C
 1565 ADC #0
 1570 STA &38
 1575
 1580 JSR nxtwrd \Call the command line interpreter
 1585
 1590 BCS giveup \Exit if no match
 1595
 1600 DEY \Adjust the offset of PTRA so that
 1605 TYA \ it points to the first charcter
 1610 CLC \ after the keyword just recognised.
 1615 ADC &A
 1620 STA &A
 1625
 1630 PLA \Discard saved A and Y from stack
 1635 PLA
 1640
 1645 PLA \Discard RTI information from the
 1650 PLA \ 6502 stack. This is automatically
 1655 PLA \ pushed by the BRK instruction.
 1660
 1665 PLA \Discard return addr (of routine
 1670 PLA \ to check for "=") from stack
 1675
 1680 JMP (&0037) \Execute the command
 1685
 1690
 1990 \ *** This is the command line interpreter bit ***
 1992
 2000 .nxtwrd
 2005 LDY #0 \Beginning of words
 2010
 2015 LDA (&39),Y \If no word, this is the end of the
 2020 BEQ nomtch \ table, so no match was made.
 2025
 2030 CMP (&37),Y \If the chars do not match,
 2035 BNE difrnt \ try the next keyword.
 2040
 2045 .nextch
 2050 INY \Get the next character:
 2055 LDA (&39),Y \ if it is the end of the keyword,
 2060 BEQ getadr \ then get its addr, and jump there.
 2065
 2070 CMP (&37),Y \If the chars match,
 2075 BEQ nextch \ try the next one.
 2080
 2085 .difrnt
 2090 INY \This keyword is not the right one,
 2095 LDA (&39),Y \ so look for the end of it.

120

 2100 BNE difrnt
 2105
 2110 INY \Set the base pointer at (&39) to
 2115 INY \ the start of the next keyword in
 2120 TYA \ the table (i.e. 3 bytes past the
 2125 SEC \ end of this keyword, to allow
 2130 ADC &39 \ for the address).
 2135 STA &39
 2140 LDA &3A
 2145 ADC #0
 2150 STA &3A
 2155
 2160 JMP nxtwrd \Try the next keyword in the table
 2165
 2170 .getadr
 2175 INY \The correct keyword has been
 2180 LDA (&39),Y \ matched, so put its execution
 2185 STA &37 \ addr in (&37).
 2190 INY
 2195 LDA (&39),Y
 2200 STA &38
 2205
 2210 DEY \Adjust Y so it contains the length
 2215 DEY \ of the recognised word.
 2220
 2225 CLC \Flag "Match OK", and exit
 2230 RTS
 2235
 2240 .nomtch
 2245 SEC \Flag "No match", and exit
 2250 RTS
 2490
 2494 \ *** Keyword table. The format of this table ***
 2496 \ *** is; Keyword, zero byte, action addr ***
 2498 \ *** A 0 keyword entry marks end of table. ***
 2499
 2500]
 2505 keytab = P%
 2510 $P% = "REN" :P%=P%+LEN$P%
 2515 ?P% = 0 :P%=P%+1
 2520 !P% = renum :P%=P%+2
 2525 ?P% = 0 :P%=P%+1 :REM end of table
 2600 [OPT opt%
 2790
 2792 \ *** This prints a REN syntax error ***
 2800 .nocom \ If "," missing, or ";"
 2805 .noscol \ missing, generate a
 2810 BRK \ "REN syntax" error
 2815]
 2820 ?P%=&60:P%=P%+1
 2825 $P%="REN syntax":P%=P%+LEN$P%
 2830 ?P%=0:P%=P%+1

121

 2835 [OPT opt%
 2990
 2992 \ *** REN - This command renumbers a selected ***
 2994 \ *** part of a program ***
 3000 .renum
 3005 JSR gtinta \ Get the lower limit line
 3010 LDA inta \ number from the text at
 3015 STA lower \ PTRA, and save it in
 3020 LDA inta+1 \ "lower". PTRB points to
 3025 STA lower+1 \ the next item.
 3030
 3035 JSR getchb \ Check for a comma at PTRB,
 3040 CMP #ASC"," \ and error if it isn't.
 3045 BNE nocom
 3050
 3055 JSR gtintb \ Get the upper limit line
 3060 LDA inta \ number from the text at
 3065 STA upper \ PTRB, and save it in
 3070 LDA inta+1 \ "upper".
 3075 STA upper+1
 3080
 3085 JSR getchb \ Check for a semicolon at
 3090 CMP #ASC";" \ PTRB, and error if it
 3095 BNE noscol \ isn't.
 3100
 3105 JSR gtintb \ Get the start number for
 3110 LDA inta \ the renumbered section,
 3115 STA start \ and save it in "start".
 3120 LDA inta+1
 3125 STA start+1
 3130
 3135 JSR getchb \ Check for a comma, and
 3140 CMP #ASC"," \ error if it isn't.
 3145 BNE nocom
 3150
 3155 JSR gtintb \ Get the increment, leaving
 3157 \ leaving it in IntA.
 3160
 3165 JSR chksdb \ Check for end of statement
 3170
 3200 JSR settop \ Set TOP to the top of the
 3202 \ program, and set up the
 3205 JSR setup \ initial ptrs and numbers
 3210
 3490 \ ** Go through all the lines, piling up the ***
 3492 \ ** numbers, and checking for range. ***
 3500 .chklns
 3505 LDY #0 \ If we're at the end of the
 3510 LDA (line),Y \ program, go on to renumber
 3515 BMI renlns \ the lines
 3520
 3525 STA (pile),Y \ Otherwise, add the line

122

 3530 INY \ number to the pile on the
 3535 LDA (line),Y \ TOP of the program.
 3540 STA (pile),Y
 3545
 3550 CLC \ Add 2 to the pile pointer,
 3555 LDA #2 \ to cover the new line just
 3560 ADC pile \ added to it. Save the LSB
 3565 STA pile \ of the pile pointer in X,
 3570 TAX \ as it will be needed to
 3575 LDA pile+1 \ check against HIMEM.
 3580 ADC #0
 3585 STA pile+1
 3590
 3595 CPX himem \ If the pile pointer is now
 3600 SBC himem+1 \ above HIMEM, give a
 3605 BCS noroom \ "REN space" error.
 3610
 3615 JSR rngchk \ Check the line range, and
 3620 JSR nextln \ move the pointer to the
 3621 \ next one, and go back to
 3625 JMP chklns \ do another.
 3630
 3635 .noroom \ Generate a "REN space"
 3640 BRK \ error.
 3645]?P%=&61:P%=P%+1
 3650 $P%="REN space":P%=P%+LEN$P%
 3655 ?P%=0:P%=P%+1
 3660 [OPT opt%
 3990
 3992 \ ** Once the line range has been checked, and the **
 3994 \ ** pile set up, come here to renumber the lines **
 3996
 4000 .renlns \ Re-set the line pointer and
 4005 JSR setup \ numbers.
 4010
 4015 .rnline \ If we're at the end of the
 4020 LDY #0 \ program, go on to resolve
 4025 LDA (line),Y \ the GOTO line references.
 4030 BMI rsolve
 4035
 4040 JSR rngchk \ Set up "newnum" to be the
 4045 \ new line number to be
 4050 LDA newnum+1 \ used, and set the line
 4055 STA (line),Y \ number of the current line
 4060 INY \ to it.
 4065 LDA newnum
 4070 STA (line),Y
 4075
 4080 JSR nextln \ Move the line pointer to
 4085 \ point to the next line,
 4090 JMP rnline \ and jump back to renumber
 4095 \ the next one.

123

 4100
 4500 .rsolve \ Jump into RENUMBER to fix
 4505 JMP rsvgot \ the GOTO references.
 4510
 5989
 5990 \ ** Set up current number to first,
 5992 \ line pointer to PAGE+1,
 5994 \ pile pointer to TOP
 6000 .setup
 6005 LDA start \ Set the next number in the
 6010 STA number \ renumbered section to the
 6015 LDA start+1 \ start number in the
 6020 STA number+1 \ renumbered section.
 6025
 6030 LDA #1 \ Set the line pointer to
 6035 STA line \ point to the first line
 6040 LDA page \ at PAGE+1
 6045 STA line+1
 6050
 6055 LDA top \ Set the pile pointer to
 6060 STA pile \ the TOP of the program
 6065 LDA top+1
 6070 STA pile+1
 6075
 6080 LDA #0 \ Set the last number used to
 6085 STA newnum \ zero
 6090 STA newnum+1
 6092
 6095 RTS \ Exit
 6189
 6190 \ ** Set "line" to point to next line **
 6200 .nextln
 6205 LDY #2 \ Get the length byte of the
 6210 LDA (line),Y \ current line.
 6212
 6215 CLC \ Add the length of the line
 6220 ADC line \ to the line pointer.
 6225 STA line
 6230 BCC lineok
 6235 INC line+1
 6240 .lineok
 6245 RTS \ Exit
 6489
 6490 \ ** Check range and set up newnum **
 6500 .rngchk
 6505 LDY #1 \ Get the current line number
 6510 LDA (line),Y \ into X (LSB) and A (MSB)
 6515 TAX
 6520 DEY
 6525 LDA (line),Y
 6530
 6535 CPX lower \ If the current line is not

124

 6540 SBC lower+1 \ under the lower limit, go
 6545 BCS notund \ to "notund"
 6550
 6555 LDA (line),Y \ If it is, check that the
 6560 CPX start \ start line for the REN
 6565 SBC start+1 \ section is above this
 6570 BCC thisln \ line. Otherwise, ...
 6575
 6580 .rngerr \ Generate a "REN range"
 6585 BRK \ error
 6590]?P%=&62:P%=P%+1
 6595 $P%="REN range":P%=P%+LEN$P%
 6600 ?P%=0:P%=P%+1
 6605 [OPT opt%
 6610
 6615 .notund \ Check to see if the current
 6620 LDA (line),Y \ line number, which is
 6625 CMP upper+1 \ not under the lower limit,
 6630 BCC notovr \ is also not over the upper
 6635 BNE over \ limit. If it is inside
 6640 CPX upper \ both these limits, go to
 6645 BCC notovr \ "notovr" to generate a new
 6650 BEQ notovr \ line number.
 6655
 6660 .over \ If the current line number
 6665 CMP newnum+1 \ is over the upper limit,
 6670 BCC rngerr \ check that the last line
 6675 BNE thisln \ used was not above this
 6680 CPX newnum \ one. If it was, the last
 6685 BCC rngerr \ renumbered line number was
 6690 BEQ rngerr \ too big, so error.
 6695
 6700 .thisln \ If the current line number
 6705 LDA (line),Y \ is outside the REN limits,
 6710 STA newnum+1 \ use the current line
 6715 STX newnum \ number as the new one, and
 6720 RTS \ exit.
 6725
 6730 .notovr \ If the current line number
 6735 CLC \ is inside the REN limits,
 6740 LDA number \ use "number" as the new
 6745 STA newnum \ line number, and add the
 6750 ADC inta \ increment to "number".
 6755 STA number
 6760
 6765 LDA number+1 \ The AND is to make sure
 6767 AND #&7F \ that the line number never
 6770 STA newnum+1 \ exceeds 32768. If it does,
 6775 ADC inta+1 \ it will be lost off the
 6780 STA number+1 \ end of the program.
 6782
 6785 RTS \ Exit

125

 6790
 6990 \ ** Get an integer from the text at PTRA **
 7000 .gtinta
 7005 JSR getnsa \ Get a <numeric> or <string>
 7010 JMP typchk \ at PTRA, and check type.
 7015
 7017 \ ** Get an integer from the text at PTRB **
 7020 .gtintb \ Get a <numeric> or <string>
 7025 JSR getnsb \ at PTRB.
 7027
 7030 .typchk \ If it was a string, give a
 7035 BEQ msmtch \ "REN type" error
 7040
 7045 BPL noconv \ If it was real (type -ve),
 7050 JSR cftoi \ convert it to integer.
 7052
 7055 .noconv
 7060 RTS \ Exit.
 7065
 7070 .msmtch \ Generate a "REN type"
 7075 BRK \ error.
 7080]?P%=&63:P%=P%+1
 7085 $P%="REN type":P%=P%+LEN$P%
 7090 ?P%=0:P%=P%+1
 8000
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICs"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~init""" to initialise."'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9305 baschr = ASC"1":REM Used by init routine
 9310 cftoi = &A3F2 :REM Convert floating point to integer
 9315 chksdb = &980B :REM Check statement delimiter at PTRB
 9320 getchb = &8A13 :REM Get character at PTRB

126

 9325 getnsb = &9B03 :REM Get <numeric> or <string> at PTRB
 9330 getnsa = &9AF7 :REM Get <numeric> or <string> at PTRA
 9535 settop = &BE88 :REM Set up TOP, check "Bad program"
 9340 rsvgot = &8FAD :REM Resolve RENUMBERed GOTOs
 9345 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine
 9510 cftoi = &A3E4 :REM Convert floating point to integer
 9515 chksdb = &9852 :REM Check statement delimiter at PTRB
 9520 getchb = &8A8C :REM Get character at PTRB
 9525 getnsb = &9B29 :REM Get <numeric> or <string> at PTRB
 9530 getnsa = &9B1D :REM Get <numeric> or <string> at PTRA
 9535 settop = &BE6F :REM Set up TOP, check "Bad program"
 9540 rsvgot = &900D :REM Resolve RENUMBERed GOTOs
 9545 ENDPROC

The initialisation routine, BRK handler, and keyword recogniser
used by this program (lines 1000 to 2250) are the same as used in
the program in section 7.4. The keyword table (lines 2500 to
2525) contains the single entry ‘REN’.

The general operation of the renumber utility, once recognised, is
as follows:

1 The rest of the line after the ‘REN’ is decoded (lines 3000
to 3165). The keyword recogniser leaves PTRA pointing to
the first character after the keyword, so this is used to get
the first integer. The succeeding characters and integers are
read in from PTRB, as this is advanced leaving PTRA still
pointing to the first character after the ‘REN’.

2 The old line numbers are piled up above the program, from
TOP onwards (lines 3500 to 3625). Also, each line is
checked to make sure that the range of the renumbered
lines does not overlap with the lines which will not be
renumbered. This check is carried out by the routine
‘rngchk’ (which also calculates the new line number, but
that is not used at this stage).

3 The lines are then renumbered (lines 4000 to 4095), using
the routine ‘rngchk’ to calculate the new line number. This
is not done at stage 2, in case there was not enough room

127

for the pile of line numbers; otherwise, the program would
be left half-renumbered, with no GOTO references
resolved.

4 The GOTO and GOSUB references are resolved. This part
is in fact done by the routine in the ROM which is used by
the BASIC RENUMBER command. It scans through the
program, looking for line number tokens (section 2.3.2). If
it finds one, it searches through the pile of old line numbers
on top of the program, at the same time keeping track of
the corresponding new line number in the program. When
it matches the line numbers, it changes the tokenised line
number to the new one. If it couldn’t match them, it prints
the ‘Failed at xxx’ message, before continuing.

The ‘rngchk’ routine is used both in stages 2 and 3. It decides
whether the current line number is inside the range to be
renumbered or not, and generates ‘newnum’ to be either the
current line number, or a new renumbered line number
accordingly. If it finds that the renumbering would cause a line
number overlap, it generates a ‘REN range’ error.

The ‘getinta’ and ‘getintb’ routines get an integer from the line of
text, leaving it in IntA (&2A to &2D). If the argument is in fact a
string, a ‘REN type’ error will be generated. If the argument is a
floating point number, it will convert it to an integer. The routine
to get a <numeric> or <string> at PTRA will first copy PTRA
into PTRB, and then get the <numeric> or <string> at PTRB
(thus leaving PTRA unchanged). See chapter 10 for more details
of these expression evaluation routines.

With the mechanisms described in this chapter, any number of
new statements can be added (provided there is enough memory
to keep them all in). The next chapters describe how other errors
can be trapped, as well as the ‘Mistake’ error.

128

8 Overlaying Procedures
Lack of memory can be a very restrictive and annoying problem
with large programs. One way of getting round this is to use
several smaller programs, and CHAIN them together (like the
‘Welcome’ cassette). However, this RUNs each program which is
loaded in, so all the variables (apart from the resident integers)
are lost.

Another method is to ‘overlay’ FNs and PROCs. If the program
consists of a number of large sections, which will not be in
memory at the same time as one another, these sections can be
loaded in on top of each other when one is required. Since only
one of the sections will be active at any particular time, the same
memory can be used for all of them.

By intercepting the ‘No such FN/PROC’ error, an overlay file can
be loaded in, and executed as if it was a normal FN or PROC.
When the FN or PROC has finished, the memory that it loaded
into is free for another call. This sort of overlaying is more useful
on a system with discs, because of its random access ability; but it
can be used with cassettes as well if the order in which the overlay
files will be required is known (so that they can be saved in that
order on the tape).

This chapter describes how to overlay FNs and PROCs, JMPing
back in to BASIC to continue when the file has been loaded.

8.1 The ‘No such FN/PROC’ error
This error (error number 29) is generated by the FN/PROC
handler when it failed to find the definition of the FN or PROC in
the program. See section 5.3 for the operation of the FN/PROC
handler. The sequence of actions taken when the FN/PROC
handler comes across an undefined call is as follows:

1 The 6502 stack, from &1FF to the item on top of the stack,
is saved on the BASIC STACK. The 6502 stack pointer is
saved as the byte on top of the BASIC stack, so that the
correct number of bytes can be retrieved after the call.
After saving, the 6502 stack pointer is re-set to &1FF.

129

2 The FN or PROC token is saved as the first item on the
6502 stack, at &1FF, so that ENDPROC or the ‘=’
statement know which type of call they are in. The FN
token is &A4, and the PROC token is &F2.

3 PTRA is saved on the 6502 stack, from &1FE to &1FC.
The stack pointer now points to &1FB (at the next free
byte).

4 If there was no name after the FN/PROC token, a ‘Bad
call’ error is generated. Otherwise, the FN/PROC handler
searches through the list of already used FNs or PROCs for
the name.

5 If it wasn’t found in the list (which it won’t be, if it is not
in the program), the FN/PROC handler searches through
the program for the definition. When it doesn’t find it, it
restores the base of PTRA from the 6502 stack, so that
ERL will be set up properly by the BASIC error handler,
and generates a ‘No such FN/PROC’ error.

When this error ocurrs, the prevailing conditions on entry to the
BRK handler are:

&FD,&FE points to the error number (29)

6502 stack: &1FB RTI info. 3 bytes
 &1FE PTRA offset 1 byte
 &1FF FN/PROC token 1 byte

BASIC STACK contains old 6502 stack.

&37,&38 points 1 byte before the FN/PROC token
&39 length of name (+1 for token)

The FN/PROC can be re-entered to force it to use an overlayed
file as the FN or PROC it was looking for, but first the 6502 stack
must be restored to the state immediately before the error was
generated. The 3 bytes of RTI information must be pulled from
the stack, and the base of PTRA must be pushed back on (&B
first, then &C).

130

At this point the overlay file can be loaded. When the overlay file
is in memory, the FN/PROC handler can be re-entered, as if the
overlay is a FN or PROC which it has just found.

To re-enter the FN/PROC handler, set the base of PTRA (in
&B,&C) to point to the first character which would be after the
name of the FN/PROC in the definition, and JMP to &B223
(BASIC1) or &B1F4 (BASIC2).

Jumping to this address will continue with the FN/PROC
handler, and the name will not be added to the list of used FNs or
PROCs. If the name had been added to the list, difficulties would
arise when the overlay had been finished with; the FN/PROC
handler would still think that it knew where the overlayed FN or
PROC was, but the memory may have already been used by a
different overlay file.

8.2 Static overlaying
A very simple method of overlaying a FN or PROC is to load a
file into a fixed position in memory (hence ‘static’) whenever a
‘No such FN/PROC’ error is generated.

The routine in this section will load the file ‘OVERLAY’ into
memory at &6000 (this can be changed by altering line 600), and
then re-enter the FN/PROC handler to use this file as the FN or
PROC which could not be found.

The ‘OVERLAY’ file should be saved as if it is a normal BASIC
program: it should not contain the ‘DEF PROCname’ (but it
must have the ‘ENDPROC’ or ‘=’ statement). If parameters are
to be passed to it, the ‘(’ should be the first character on the first
line of the program. For example, the following overlay file will
print the SIN of the number passed to it:

 10(number)
 20PRINT SIN(number)
 30ENDPROC

If this program is saved as the file ‘OVERLAY’, any
unrecognised FN or PROC call will be passed to it. For example,
‘PROCFRED(PI/2)’ will print ‘1’.

131

This overlay routine cannot tell the difference between FNs and
PROCs; it will load the file ‘OVERLAY’ whenever the error is
generated. So, if the file is saved as above, ‘X=FNA(3)’ will give
a ‘No PROC’ error, when it finds the ‘ENDPROC’ statement on
the end of what it thinks is a FN.

If the overlay does not need any parameters, the first character on
the first line could be the start of the first statement, or a space.

 4 REM This is a simple program to overlay procedures.
 6 REM
 8 REM M D Plumbley 1984
 10 REM
 12 REM Once this is initilaised, if a FN or PROC is not
 14 REM found in a program, generating the
 16 REM "No such FN/PROC" error, then the file called
 18 REM "OVERLAY" will be loaded from disc, and
 20 REM executed.
 22 REM
 24 REM The overlay file should not contain the name of
 26 REM the PROC or FN, but any parameters should be
 28 REM inside brackets on the first line of the file.
 30 REM If used, the open bracket must be the first
 32 REM character on the first line of the file.
 90 REM
 95
 100 PROCsetup :REM Set up correct ROM entry points
 390
 395 REM *** OS vectors ***
 400 brkv = &0202
 410 oldbrk = !brkv AND &FFFF
 490
 495 REM *** OS routines ***
 500 oscli = &FFF7
 590
 600 ldslot = &6000 :REM Area to load overlay into
 799
 900 start% = &0C00 :REM Assemble into user char space
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 960
 1000 .newbrk
 1005 PHA \Save A and Y on 6502 stack
 1010 TYA
 1015 PHA
 1020
 1025 LDY #0 \Get error number
 1030 LDA (&FD),Y

132

 1035
 1040 CMP #29 \If "No such FN/PROC", go
 1045 BEQ noproc \ to overlay routine.
 1050
 1055 .giveup \Otherwise, restore A and Y and go
 1060 PLA \ to the default BRK handler.
 1065 TAY
 1070 PLA
 1075 JMP oldbrk
 1080
 2000 .noproc
 2005 PLA \Remove the saved A and Y from the
 2010 PLA \ 6502 stack.
 2015
 2020 PLA \Remove the RTI information from the
 2025 PLA \ 6502 stack.
 2030 PLA
 2035
 2040 LDA &B \Push the base of PTRA, ready for
 2045 PHA \ the return from the FN/PROC.
 2050 LDA &C
 2055 PHA
 2060
 2065 LDX #lodtxt MOD &100 \Tell the filing system to
 2070 LDY #lodtxt DIV &100 \ load the overlay file
 2075 JSR oscli
 2080
 2085 LDA #ldslot MOD&100+4 \Set PTRA to point to the
 2090 STA &B \ 1st char of the file
 2095 LDA #ldslot DIV &100 \ (not CR, line num, or
 2100 STA &C \ length)
 2105
 2110 JMP prcfnd \Continue with the FN/PROC handler
 2115
 2120 .lodtxt \DFS command to load the overlay
 2125]$P% = "LOAD OVERLAY ":P%=P%+LEN$P%
 2130 $P% = STR$~ldslot :P%=P%+LEN$P%
 2135 ?P% = &0D :P%=P%+1
 2140
 8000 NEXT
 8010 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8030
 8040 REM *** Link new routine in to BRK vector ***
 8050 IF newbrk=oldbrk PRINT"Already set up":END
 8060 brkv?0 = newbrk MOD &100
 8070 brkv?1 = newbrk DIV &100
 8080 END
 8090
 9000 REM *** Set up ROM entry points, allowing for ***
 9010 REM *** BASIC1 and BASIC2 ***
 9020 DEFPROCsetup

133

 9030 IF ?&8015=ASC"1" THEN PROCset1 ELSE PROCset2
 9040 ENDPROC
 9050
 9300 REM *** Set up BASIC1 entry points ***
 9310 DEFPROCset1
 9320 prcfnd = &B223 :REM Return to FN/PROC handler
 9330 ENDPROC
 9340
 9500 REM *** Set up BASIC2 entry points ***
 9510 DEFPROCset2
 9520 prcfnd = &B1F4 :REM Return to FN/PROC handler
 9530 ENDPROC

The general operation of the routine is as follows:

1 If the error number is not 29, the default BRK handler is
called (lines 1000 to 1080). If the error number is 29, the 3
bytes of RTI information are removed from the stack (as
well as the 2 registers saved by the BRK handling routine
at 1000 to 1015).

2 The base of PTRA is pushed back on the 6502 stack (lines
2040 to 2055), for the return when the call is finished.

3 The overlay file is loaded by sending the line ‘LOAD
OVERLAY 6000’ to the Operating System Command Line
Interpreter (OSCLI). This will be interpreted just as if a
‘*LOAD’ had been typed at the keyboard. Note the use of
the hexadecimal version of the STR$ function (line 2130).
This is in BASIC1 and BASIC2, but is not mentioned in
the User Guide.

4 The base of PTRA is set to point to the fifth character of
the file (at &6004). If the file has been entered as a BASIC
program, the first character of the file will be a &0D,
followed by a 2-byte line number, followed by the line
length byte (see section 2.4 for the program storage
format).

5 A JMP is made to re-enter the FN/PROC handler. It will
then think that the call definition has been found, and that
the base of PTRA points to the first character after the
name in the definition. If this character is a ‘(, it will handle
any parameters which are listed. It will then start executing
statements in the file as if it was a proper FN or PROC.

134

8.3 Dynamic overlaying
The routine in the last section is a bit limited. It can’t tell the
difference between different FNs or PROCs, as it doesn’t do any
name checking; and it always loads into the same area of memory
(which must be decided when it is assembled), so only one PROC
or FN can operate at a time.

The routine in this section shows how FNs and PROCs can be
recognised and loaded onto the BASIC STACK, completely
invisible to the main program (except for the amount of memory
required to load them). If there is not enough memory to load the
FN or PROC, a ‘No room’ error will be generated. FNs and
PROCs loaded like this can call others inside them to be
overlayed, and these will also be loaded onto the STACK. The
program in section 8.2 would just load the other overlay on top of
the first one.

The exit from the FN or PROC is trapped by changing the token
byte on the 6502 stack at &1FF, so that a ‘No FN’ or ‘No PROC’
error will be generated. This allows the overlayed file to be
removed from the STACK when it is finished with, by
intercepting these errors.

The overlay files are created in the same manner as the ones in
section 8.2, with the ‘(’ as the first character on the first line if
necessary. However, the routine will check the name of the FN or
PROC, and will load in ‘P.fred‘ if ‘PROCfred’ is called, and
‘F.fred’ if ‘FNfred’ is called. Note that the operating system will
treat upper and lower case letters as the same, so ‘F.FRED’ is the
same as ‘F.fred’ as far is it is concerned.

 10 REM *** Program to overlay PROCs and FNs **
 12 REM
 14 REM M D Plumbley 1984
 16 REM
 18 REM Once this is run, if a FN or PROC is not found in
 20 REM a program, generating the "No such FN/PROC"
 22 REM error, then the file with the same name
 24 REM as the FN or PROC will be loaded from disc (or
 26 REM tape). The P directory will be used for PROCs,
 28 REM the F directory for FNs.
 30 REM
 32 REM The FN or PROC will be loaded on the BASIC

135

 34 REM STACK, and will be removed when it exits.
 36 REM
 38 REM The overlay file should not contain the name of
 40 REM the PROC or FN, but any parameters should be
 42 REM inside brackets on the first line of the file.
 44 REM If used, the open bracket must be the first
 46 REM character on the first line of the file.
 48 REM
 50 REM Before using with BASIC 1, all EQU directives
 52 REM should be replaced by indirections:
 54 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 54 REM "EQUW X" => "]!P%=X:P%=P%+2:[OPTopt%"
 54 REM "EQUD X" => "]!P%=X:P%=P%+4:[OPTopt%"
 54 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 90 REM
 95
 100 PROCsetup :REM Set up correct ROM entry points
 390
 395 REM *** OS vectors ***
 400 brkv = &0202
 410 oldbrk = !brkv AND &FFFF
 490
 495 REM *** OS routines ***
 500 oscli = &FFF7
 505 osfile = &FFDD
 590
 690 REM *** BASIC registers ***
 700 stack = &0004
 705 inta = &002A
 799
 800 parms = &0070 :REM Temp for number of parameters
 899
 900 start% = &0B00 :REM User defined character area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 960
 1000 .newbrk
 1005 PHA \Save A and Y on 6502 stack
 1010 TYA
 1015 PHA
 1020
 1025 LDY #0 \Get error number
 1030 LDA (&FD),Y
 1035
 1040 CMP #29 \If "No such FN/PROC", go
 1045 BEQ nofnpr \ to overlay routine.
 1047
 1050 CMP #7 \If "No FN" see if it is a FN
 1055 BEQ jnofn \ to be thrown away.
 1057

136

 1060 CMP #13 \If "No PROC" see if it is a PROC
 1065 BEQ jnoprc \ to be thrown away.
 1070
 1075 .ospace
 1080 .giveup \Otherwise, restore A and Y and go
 1085 PLA \ to the default BRK handler.
 1090 TAY
 1095 PLA
 1100 JMP oldbrk
 1105
 1110 .jnofn \Jump to the "No FN" handler
 1115 JMP nofn
 1117
 1120 .jnoprc \Jump to the "No PROC" handler
 1125 JMP noproc
 1127
 1990 \ *** If we get here, a FN or PROC is to be ***
 1992 \ *** overlayed, after a "No such FN/PROC" error ***
 2000 .nofnpr
 2005 PLA \Remove the saved A and Y from the
 2010 PLA \ 6502 stack.
 2015
 2020 PLA \Remove the RTI information from the
 2025 PLA \ 6502 stack.
 2030 PLA
 2035
 2040 LDA &B \Push the base of PTRA, ready for
 2045 PHA \ the return from the FN/PROC.
 2050 LDA &C
 2055 PHA
 2060
 2065 LDY &39 \If the length of the name of the
 2070 CPY #9 \ FN/PROC, with the token, is > 8,
 2075 BCS giveup \ it is too big to be a filename.
 2080
 2085 LDA #&0D \Put a CR on the end of the
 2090 STA filnam+1,Y \ area, ...
 2095
 2100 .txnmlp \ and transfer the name from the
 2105 LDA (&37),Y \ text into the filename area.
 2110 STA filnam,Y
 2115 DEY
 2120 BNE txnmlp
 2125
 2130 LDX #ASC"P" \If the token on the front of the
 2135 CMP #&F2 \ name (the last byte transfered)
 2140 BEQ proc \ was a PROC token, put a "P" on
 2145 LDX #ASC"F" \ the front of the filename;
 2150 .proc \ otherwise use an "F".
 2155 STX filnam
 2160
 2165 LDA #ASC"." \Put a "." between the P/F and the

137

 2170 STA filnam+1 \ FN/PROC name.
 2175
 2180 LDX #pblock MOD &100 \Call OSFILE to find
 2185 LDY #pblock DIV &100 \ the length of the
 2190 LDA #5 \ file.
 2195 JSR osfile
 2200
 2205 CMP #1 \If it didn't exist, jump to the
 2210 BNE giveup \ default error handler.
 2215
 2220 LDA stack \Save the BASIC STACK pointer in
 2225 STA inta \ IntA, and move the STACK pointer
 2230 SEC \ down ready to load the overlay,
 2235 SBC pblock+&0A \ by subtracting the length of the
 2240 STA stack \ file from it. The file length
 2245 STA pblock+2 \ is returned by OSFILE 5 in
 2250 \ pblock+&A and pblock+&B.
 2255 LDA stack+1
 2260 STA inta+1 \ A copy of the new stack pointer
 2265 SBC pblock+&0B \ is loaded into pblock+2 and
 2270 STA stack+1 \ pblock+3, to tell OSFILE &FF
 2275 STA pblock+3 \ where to load the file when it
 2277 \ is called.
 2280 BCC ospace \ If the STACK wrapped round,
 2282 \ give an error.
 2285
 2290 JSR pushi \Push the old STACK pointer on
 2292 \ the STACK.
 2295
 2300 LDA #0 \Set the "addr" flag for OSFILE to
 2305 STA pblock+6 \ load the file at the given addr
 2310
 2315 LDX #pblock MOD &100 \Call OSFILE to load
 2320 LDY #pblock DIV &100 \ the overlay file into
 2325 LDA #&FF \ the space allocated
 2330 JSR osfile \ on the STACK.
 2335
 2340 LDA stack \Set the base of PTRA to point to
 2345 CLC \ the first character in the BASIC
 2350 ADC #8 \ file (4 up to miss over IntA,
 2355 STA &B \ and another 4 up to miss the
 2360 LDA stack+1 \ &0D, line number, and length
 2365 ADC #0 \ byte as before).
 2370 STA &C
 2375
 2380 LDA filnam \Set the FN/PROC identifier byte
 2385 STA &1FF \ on the stack to a "P" or "F"
 2390
 2395 JMP prcfnd \Jump into the FN/PROC handler.
 2990
 3000 .pblock \OSFILE parameter block
 3005 EQUW filnam

138

 3010 EQUD 0
 3015 EQUD 0
 3020 EQUD 0
 3025 EQUD 0
 3030 EQUB 0
 3032
 3035 .filnam \Filename area (max 9 characters)
 3040 EQUS "123456789"
 3045 EQUB &0D
 3990
 3992 \ ** No FN error **
 4000 .nofn
 4005 LDA &1FF \If the item on the stack was not
 4010 CMP #ASC"F" \ left by the overlay routine,
 4015 BNE jgivup \ there isn't a FN on the STACK.
 4017
 4020 CPX #&F5 \If the 6502 stack pointer wasn't
 4025 BNE jgivup \ &F5, we're not in a FN.
 4027
 4030 JSR getnsa \Get the value of the FN following
 4035 JSR chksdb \ the "=", check end of statement,
 4040 JMP doret \ and jump to do the FN return.
 4045
 4090 \
 4100 .jgivup
 4105 JMP giveup \Jump to the old BRK handler
 4110
 4990 \ ** No PROC error **
 5000 .noproc
 5005 LDA &1FF \If the item on the stack was not
 5010 CMP #ASC"P" \ left by the overlay routine,
 5015 BNE jgivup \ there isn't a PROC on the STACK.
 5020
 5025 CPX #&F5 \If the 6502 stack pointer wasn't
 5030 BNE jgivup \ &F5, we're not in a PROC.
 5032
 5035 JSR chksda \Check end of statement after the
 5036 \ "ENDPROC".
 5037
 5040 .doret
 5045 PLA \Remove the saved A and Y from the
 5050 PLA \ 6502 stack.
 5055
 5060 PLA \Remove the RTI information from
 5065 PLA \ the 6502 stack
 5070 PLA
 5075
 5080 PLA \Remove the return addr to the
 5085 PLA \ FN/PROC handler.
 5090
 5095 PLA \Restore PTRB
 5100 STA &1A

139

 5105 PLA
 5110 STA &19
 5115 PLA
 5120 STA &1B
 5125
 5130 PLA \If there were no parameters,
 5135 BEQ noparm \ don't restore any.
 5140
 5145 STA parms \Otherwise, restore the saved
 5150 .doparm \ value of each parameter by
 5155 JSR popi1 \ popping the variable descriptor
 5160 JSR poppar \ block and value from the BASIC
 5165 DEC parms \ stack.
 5170 BNE doparm
 5175
 5180 .noparm
 5185 PLA \Restore PTRA
 5190 STA &C
 5195 PLA
 5200 STA &B
 5205 PLA
 5210 STA &A
 5215
 5220 LDY #0 \Restore the BASIC stack pointer
 5225 LDA (stack),Y \ to the value it was before the
 5230 TAX \ FN or PROC was loaded onto it:
 5235 INY \ this had been pushed on the
 5240 LDA (stack),Y \ STACK when the file was loaded.
 5245 STX stack
 5250 STA stack+1
 5255
 5260 LDY #0 \Restore the 6502 stack from the
 5265 LDA (stack),Y \ BASIC STACK. The first byte
 5270 TAX \ gives the old value of the 6502
 5275 TXS \ S register, the rest of the
 5280 .txstk \ bytes are the actual stack
 5285 INY \ contents.
 5290 INX
 5295 LDA (stack),Y
 5300 STA &100,X
 5305 CPX #&FF
 5310 BNE txstk
 5315
 5320 TYA \Move the STACK pointer up to
 5325 ADC stack \ remove the 6502 stack contents
 5330 STA stack \ from it.
 5335 BCC stkok
 5340 INC stack+1
 5345 .stkok
 5347
 5350 LDA &27 \Set the 6502 flags according to
 5352 \ &27 (in case we're in a FN).

140

 5253
 5355 RTS \Exit
 9000]
 9010 NEXT
 9020 @%=0
 9030 PRINT'"Code length =&"~P%-start%
 9040
 9045 REM *** Link new routine in to BRK vector ***
 9050 IF newbrk=oldbrk PRINT"Already set up":END
 9060 brkv?0 = newbrk MOD &100
 9070 brkv?1 = newbrk DIV &100
 9075 END
 9080
 9500 REM *** Set up ROM entry points, allowing for ***
 9510 REM *** BASIC1 and BASIC2 ***
 9520 DEFPROCsetup
 9530 IF ?&8015=ASC"1" THEN PROCset1 ELSE PROCset2
 9540 ENDPROC
 9550
 9600 REM *** Set up BASIC1 entry points ***
 9610 DEFPROCset1
 9615 prcfnd = &B223 :REM Return to FN/PROC handler
 9620 pushi = &BDAC :REM Push IntA on the BASIC STACK
 9625 popi1 = &BE23 :REM Pop &37-&3A from the STACK
 9630 poppar = &8C5B :REM Pop parameter value from STACK
 9635 getnsa = &9AF7 :REM Get <numeric> or <string>
 9640 chksda = &9810 :REM Check end of statement (PTRA)
 9645 chksdb = &980B :REM Check end of statement (PTRB)
 9650 ENDPROC
 9670
 9800 REM *** Set up BASIC2 entry points ***
 9810 DEFPROCset2
 9815 prcfnd = &B1F4 :REM Return to FN/PROC handler
 9820 pushi = &BD94 :REM Push IntA on the BASIC STACK
 9825 popi1 = &BE0B :REM Pop &37-&3A from the STACK
 9830 poppar = &8CC1 :REM Pop parameter value from STACK
 9835 getnsa = &9B1D :REM Get <numeric> or <string>
 9840 chksda = &9857 :REM Check end of statement (PTRA)
 9845 chksdb = &9852 :REM Check end of statement (PTRB)
 9850 ENDPROC

The general operation of the routine is as follows:

1 It creates a filename using the name of the FN or PROC,
which is left 1 byte after (&37). If it is a FN, ‘F.’ is put on
the front: otherwise ‘P.’ is put on the front.

2 OSFILE is called to find the length of the overlay file, and
the BASIC STACK is moved down by a corresponding
amount. The old value of the STACK pointer is pushed

141

onto the STACK so that it can be restored to its original
value afterwards. This action also checks that the STACK
has not gone below the level of the HEAP (and produces a
‘No room’ error if it has).

3 OSFILE is called again, but this time to load the file into
the space created for it on the STACK.

4 A ‘P’ or an ‘F’ is put in the token slot on the 6502 stack at
&1FF. This will cause a ‘No FN’ or ‘No PROC’ error when
the FN or PROC exits, so that the STACK can be restored,
removing the overlayed file.

5 PTRA is pointed to the first character of the overlay and a
JMP is made to continue with the FN/PROC handler.

When a ‘No FN’ or ‘No PROC’ error is generated on the return
from the overlayed call (caused by the substitution of the call type
identifier token at stage 4) the routine must not only do the job
normally performed by end of the FN/PROC handler, but also
remove the overlayed file from the BASIC STACK.

The action performed when this happens is as follows:

1 If it is the exit from a FN, the value is evaluated, and a
check is made for the end of the statement. If it is the exit
from a PROC, the end of statement check only is made.
These actions were not performed by the FN or PROC
return statements before the error was generated.

2 The return address to the FN/PROC handler is pulled from
the stack. The rest of this routine will do its job instead.

3 PTRB is restored from the stack.

4 The parameter values, pushed on the BASIC STACK
when the FN/PROC call was made, are restored.

5 PTRA is restored from the stack.

6 The BASIC STACK, which is now in the same state which
it was just after the overlay file was loaded, is restored to its

142

previous value (which was pushed onto the STACK by the
overlaying routine).

7 The 6502 stack is restored from the BASIC STACK.

8 The flags are set according to the byte in &27. If we are
returning from a PROC, this has no effect; but if we are
returning from a FN, the 6502 flags need to reflect the type
of the value of the FN.

9 The routine exits, either to the PROC statement handler,
or to the code which asked for the FN value.

For more details on the general operation of PROCs and FNs,
see section 5.3. For more details on the ‘No FN’ (error number 7)
and ‘No PROC’ (error number 13) see chapter 11.

This overlay routine is very much better than the one in section
8.2. However, there are still improvements which could be made
to it. For example, if a recursive FN or PROC is used, it will load
in another new version each time a call is made. Perhaps a linked
list of overlayed files could be used to get round this.

Another way of overlaying may be to shift the STACK down
bodily, and load the file between HIMEM and the bottom of the
screen. A file loaded in this way could be left in memory until a
‘No room’ error was generated, and then it could be removed
(providing it wasn’t being executed at the time). In fact, there are
many alternatives and improvements which can be made to this
general idea.

143

9 Trapping Other Errors
Chapters 7 and 8 described how two of the errors generated by
BASIC could be trapped, and used to add new commands, or to
overlay procedures and functions. This section gives a couple of
examples of recovering from other errors.

9.1 Bad MODE recover
If an attempt is made to change mode inside a PROC or a FN, a
‘Bad MODE’ error (error number 25) is generated. When a
PROC or FN is in operation, there will be data on the BASIC
STACK, which it will use when it returns (see section 5.3).

A MODE change alters HIMEM and resets the BASIC STACK
pointer to this new value of HIMEM. If this was reset inside a
PROC or a FN, the BASIC STACK contents would be lost, and
BASIC would crash when the call returned.

However, by trapping this error, changing MODE inside a
PROC or a FN can be allowed, providing that the bottom of the
new MODE is above the current HIMEM. If it is, HIMEM can
be left as it is, and the BASIC STACK pointer left unchanged.
For example, changing from MODE 3 to MODE 6 would be
allowed, as the bottom of screen is higher for MODE 6 than
MODE 3.

The prevailing conditions on a ‘Bad MODE’ error are:

Stack contents: RTI information 3 bytes
 &16 MODE change char. 1 byte

PTRA points at statement delimiter
&2A prospective MODE number

If it is possible to change MODE without moving the STACK,
this routine will print the MODE change command and continue
executing the program. It will not reset HIMEM or the STACK,
although the normal MODE change routine will continue to do
so whenever the MODE change is made outside a FN or PROC.
This means that after this routine has been called, there may be a
gap between HIMEM and the bottom of the screen.

144

 10 REM *** Program to allow MODE change inside PROCs ***
 12 REM
 14 REM M D Plumbley 1984
 16 REM
 18 REM This program traps the "Bad MODE" error (ERR = 25)
 20 REM
 22 REM If there is enough room to change MODE above
 24 REM HIMEM, without disurbing the BASIC stack, then
 26 REM MODE can be changed, even if the stack is in use
 28 REM (i.e. there is a FN or PROC active at the time)
 30 REM
 32 REM "Bad MODE" will still be given if you are changing
 34 REM to a mode which requires HIMEM to be lower than
 36 REM the current setting (unless you are not in a
 38 REM FN/PROC).
 40 REM
 42 REM For BASIC 1, replace EQUs as in chapter 7.
 44 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 495 REM *** OS routines and vectors ***
 500 OSWRCH = &FFEE
 505 OSBYTE = &FFF4
 550 BRKV = &0202
 590
 595 REM *** Allocate workspace ***
 600 worksp = &0070
 605 svbrkv = worksp
 690
 695 REM *** BASIC system variables ***
 700 Lomem = &0000
 705 Heap = &0002
 710 Stack = &0004
 715 Himem = &0006
 720 Top = &0012
 725 Count = &001E
 799
 900 start% = &0C00 :REM Assemble into user char space
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .init
 1005 LDA &8015 \Test that the correct
 1010 CMP #baschr \ version of BASIC is
 1015 BEQ basok \ in the ROM.
 1016
 1020 BRK \If it isn't, print an
 1025 EQUB 60 \ error message.
 1030 EQUS "Not BASIC " \ (baschr set by PROCsetup)
 1035 EQUB baschr

145

 1040 EQUB 0
 1041
 1045 .basok
 1050 LDA BRKV \Load the current BRK vector
 1055 LDX BRKV+1 \ into A and X.
 1056
 1060 CMP #newbrk MOD &100 \If this routine is already
 1065 BNE ntsavd \ set up, don't change BRKV.
 1070 CPX #newbrk DIV &100
 1075 BEQ saved
 1076
 1078 .ntsavd
 1080 STA svbrkv \It has not been set up
 1085 STX svbrkv+1 \ already, so save old
 1090 LDA #newbrk MOD &100 \ BRKV, and set up the new
 1095 STA BRKV \ one.
 1100 LDA #newbrk DIV &100
 1105 STA BRKV+1
 1106
 1110 .saved
 1115 RTS
 1190
 1192 \ *** This is the new BRK handling routine ***
 1200 .newbrk
 1205 PHA \Save A and Y on 6502 stack
 1210 TYA
 1215 PHA
 1216
 1220 LDY #0 \Get error number
 1225 LDA (&FD),Y
 1226
 1230 CMP #25 \If ERR = 25 ("Bad MODE"), then
 1235 BEQ badmde \ try to correct it
 1236
 1240 .giveup
 1245 PLA \Restore A any Y from 6502 stack
 1250 TAY
 1255 PLA
 1256
 1260 JMP (svbrkv) \Go to old BRK handler
 1261
 1490 \ *** If we get here, a "Bad MODE" error has ***
 1492 \ *** occurred. This was either caused by a ***
 1494 \ *** non-empty BASIC stack, or not enough room. ***
 1500 .badmde
 1505 LDX &2A \Get requested mode number from
 1510 LDA #&85 \ IntA, and find out what HIMEM
 1515 JSR OSBYTE \ would be in that mode.
 1516
 1520 CPX Himem \If new HIMEM would be below the
 1525 TYA \ current HIMEM, then the STACK
 1530 SBC Himem+1 \ is in the way.

146

 1535 BCC giveup
 1536
 1540 CPX Heap \If new HIMEM would be below the top
 1545 TYA \ of the variables heap, there is
 1550 SBC Heap+1 \ not enough room for the MODE.
 1555 BCC giveup
 1556
 1560 CPX Top \If HIMEM would be below TOP, there
 1565 TYA \ is not enough room for the MODE.
 1570 SBC Top+1 \ This test is in case LOMEM had
 1575 BCC giveup \ not been set to TOP yet.
 1576
 1580 PLA \Discard saved values of Y and A
 1590 PLA \ from 6502 stack
 1591
 1600 PLA \Discard RTI information from the
 1605 PLA \ 6502 stack. This is pushed by
 1610 PLA \ the BRK instruction.
 1611
 1615 LDA #0 \Zero COUNT (a MODE change leaves
 1620 STA Count \ the cursor at start of line)
 1621
 1625 PLA \Pop "mode change" byte from stack
 1630 JSR OSWRCH \ (pushed by MODE command), and
 1631 \ print it
 1632
 1635 LDA &2A \Get mode number from int acc, and
 1640 JSR OSWRCH \ print that
 1641
 1645 JMP cont \Command completed, so execute the
 1646 \ next statement.
 1647
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICs"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~init""" to initialise."'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC I and BASIC II. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"

147

 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9305 baschr = ASC"1":REM Used by init routine
 9310 cont = &8B0C :REM Cont execution at next statement
 9320 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine
 9540 cont = &8898 :REM Cont execution at next statement
 9550 ENDPROC

The initialising and BRK handling parts of this routine are very
similar to the programs in chapter 7. In fact, there is not really a
lot to the program at all.

This routine could be modified to copy the BASIC stack bodily if
a MODE change was made which required HIMEM to be lower
than its current setting. This could also be used anyway, to ensure
that the least amount of memory was being used for each MODE.

Performing a MODE change, and shifting the stack, may be one
way of allocating more memory if a ‘No room’ error is generated.
However, this is only possible with BASIC 2, as this error does
not use the BRK error generating mechanism in BASIC 1 (see
chapter 11 for more on ‘No room’)

9.2 Bad program salvage
One of the more annoying error messages that BASIC can
produce is ‘Bad program’. You may have just waited 10 minutes
for a long program to load from tape, or spent the last 2 hours
typing something in, to be greeted by this message because the
program got corrupted somehow. This section describes how the
bad program, or as much of it as possible, can be salvaged into an
editable form.

148

Program storage

Program lines are stored in the following format:

00 MSB of line number
01 LSB of line number
02 total length of line (= XX)
03 first character of line text
04 etc.

XX−1 &0D (carriage return) line end marker
XX MSB of line number of next line
XX+1 etc.

The first byte stored at PAGE is a &0D (carriage return),
followed by the MSB of the first line number. The end of the
program is marked by an &FF byte after the carriage return on
the end of the last line.

The length byte of the line number is used to speed up the search
for line numbers in a GOTO or GOSUB. However, if one of
these gets corrupted, so that there isn’t a &0D where BASIC
thinks the end of the line should be, it will give a ‘Bad program’
error. This could also be caused if the carriage return has been
corrupted.

By scanning through the program, re-linking all these length
bytes, the program can be salvaged. It may not be completely
correct, but at least it will be possible to edit it again.

The salvage routine

This routine can be assembled and the code saved onto disc or
cassette by using ‘*SAVE’. It assembles into the user defined
character area, so the code can be loaded in and executed if a
‘Bad program’ occurs, without disturbing the program to be
salvaged.

The program can be loaded and run by typing

*LOAD SALVAGE
CALL &C00

149

assuming that it was assembled from &C00 onwards. If the DFS,
or any filing system which operates from a paged ROM, is used to
load the routine, it should not be run by using ‘*SALVAGE’. If
this was used, the DFS ROM, rather than the BASIC ROM,
would be paged in while the routine was operating, and the
BASIC ROM routines which the are called would not be
available. To get round this, the ROM routines required could be
duplicated in the salvage routine itself.

 4 REM ** Bad program salvage routine ***
 6 REM
 8 REM M D Plumbley 1984
 10 REM
 12 REM This routine will scan through the BASIC program
 14 REM at PAGE and re-set any link pointers which have
 16 REM been corrupted.
 18 REM
 20 REM Before using with BASIC 1, the EQUS should be
 22 REM replaced with their equivalents:
 24 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 26 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 90 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 495 REM *** OS routines and vectors ***
 510 osrdch = &FFE0
 590
 600 worksp = &0070
 605 line = worksp
 610 ytemp = worksp+2
 690
 695 REM *** BASIC system variables ***
 700 page = &0018
 710 inta = &002A
 799
 900 start% = &0C00 :REM User defined character area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 990
 995 \ ** Salvage routine entry point ***
 1000 .slvage
 1005 LDA page \Set "line" to point to the
 1010 STA line+1 \ first byte of the program
 1015 LDY #0 \ at PAGE.
 1020 STY line
 1025
 1030 LDA (line),Y \If it is a CR, jump to start

150

 1035 CMP #&0D \ checking through the lines.
 1040 BEQ strtok
 1045
 1050 JSR pmess \Otherwise, print an
 1055 EQUS "No CR at start" \ error message and
 1060 NOP \ exit.
 1065 .end
 1070 RTS
 1075
 1100 .escape \This is used to give an
 1105 BRK \ "Escape" error if the
 1110 EQUB 17 \ necessary
 1115 EQUS "Escape"
 1120 EQUB 0
 1125
 1195 \ ** Start looking through lines ***
 1200 .strtok
 1205 JSR pnewl \Start on a new line
 1210
 1215 BIT &FF \If an escape condition is
 1220 BMI escape \ pending, handle it.
 1225
 1230 LDA line+1 \Print out the address of the
 1235 JSR phex \ current line.
 1240 LDA line
 1245 JSR phexsp
 1250
 1255 LDY #1 \If we are at the end of the
 1260 LDA (line),Y \ program, exit.
 1265 BMI end
 1270
 1275 STA inta+1 \Otherwise, print out the
 1280 INY \ line number.
 1285 LDA (line),Y
 1290 STA inta
 1295 JSR plnum5
 1300
 1305 LDY #3 \Get the length byte from the
 1310 LDA (line),Y \ line. If it is zero, the
 1315 BEQ flink \ link has failed, so fix it.
 1320
 1325 TAY \Get the byte on the end of
 1330 LDA (line),Y \ the line.
 1335
 1340 CMP #&0D \If it is not a CR, the link
 1345 BNE flink \ failed, so fix it.
 1350
 1355 TYA \Transfer the length into A
 1360
 1365 .newlna
 1370 CLC \Add the length of the line
 1375 ADC line \ (in A) to the line pointer,

151

 1380 STA line \ so it now points to the
 1385 BCC strtok \ line, and go back to
 1390 INC line+1 \ "strtok" to handle the next
 1395 BCS strtok \ line.
 1400
 1990 \ ** If we get here, the link has failed ***
 2000 .flink
 2005 JSR pmess \Print a message
 2010 EQUS " Failed link"
 2015 NOP
 2020
 2025 LDY #3 \Scan from the start..
 2030
 2035 .cscan \ for control characters
 2040 LDA #&1F \ (i.e. less than &20)
 2045 INY
 2050
 2055 .loop \Loop round until a control
 2060 CMP (line),Y \ character is found. If it
 2065 BCS fixlnk \ is, go to fix the link.
 2070 INY
 2075 BNE loop
 2080
 2085 DEY \If the end wasn't found, set
 2090 STY ytemp \ the "end" to be used at 255
 2095
 2100 JSR pmess \ and print the
 2105 EQUS " End not found: F/T" \ message.
 2110 NOP
 2115
 2120 JSR osrdch \Read a character, and exit
 2125 BCS escape \ if ESC was pressed.
 2130
 2135 .notasc \Check for a "T".
 2140 CMP #ASC"T"
 2145 BNE noterm
 2150
 2155 LDA #&FF \If it was, set the MSB of
 2160 LDY #1 \ the current line to &FF
 2165 STA (line),Y \ to terminate the program,
 2170 .nforce \ and exit.
 2175 RTS
 2180
 2200 .noterm \If it wasn't, check for an
 2205 CMP #ASC"F" \ "F".
 2210 BNE nforce
 2215
 2220 LDY ytemp \If it was, set the character
 2225 .force \ where scanning stopped to
 2230 LDA #&0D \ be a CR, and ...
 2235 STA (line),Y
 2240

152

 2245 TYA \ set the length byte,
 2250 LDY #3 \ and ...
 2255 STA (line),Y
 2260
 2265 JMP newlna \ go to the next line.
 2270
 3000 .fixlnk \If the control character
 3005 LDA (line),Y \ that was found was a CR,
 3010 CMP #&0D \ force the length byte to
 3015 BEQ force \ point to it.
 3020
 3025 STY ytemp \Otherwise, save the offset,
 3030
 3035 JSR pmess \ and print the
 3040 EQUS " Control char A/F/T" \ message.
 3045 NOP
 3050
 3055 JSR osrdch \Read the character input,
 3060 BCS jesc \ and exit if ESC pressed.
 3065
 3070 CMP #ASC"A" \Check for "A".
 3075 BNE notasc
 3080
 3085 LDY ytemp \If it was, force the
 3090 LDA (line),Y \ control char to be a letter
 3095 ORA #&40 \ by ORing it with &40, and
 3100 STA (line),Y \ jump back to continue
 3105 JMP cscan \ scanning the line.
 3110
 3200 .jesc \Jump the the "Escape" error.
 3205 JMP escape
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICs"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~start%""" to use"'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $88009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END

153

 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9305 plnum5 = &98F5 :REM Print line number (field 5)
 9310 pmess = &BFCB :REM Print message following JSR
 9315 pnewl = &BC42 :REM Print a new line (CRLF)
 9320 phex = &8570 :REM Print A as 2-digit HEX no.
 9325 phexsp = &856A :REM Print HEX no. then space
 9330 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 plnum5 = &9923 :REM Print line number (field 5)
 9510 pmess = &BFCF :REM Print message following JSR
 9515 pnewl = &BC25 :REM Print a new line (CRLF)
 9520 phex = &B545 :REM Print A as 2-digit HEX no.
 9525 phexsp = &B562 :REM Print HEX no. then space
 9600 ENDPROC

The general operation of the routine is as follows:

1 It first checks that there is a carriage return at the start of
the program. If there isn’t, it prints a message and exits. If
this happens, either there was no BASIC program at all, or
the routine can be re-started after ‘?PAGE=13’ has been
typed.

2 The start address of the current line, and its line number,
are printed. If the program is so bad that this salvage
routine cannot cope with it properly, this information may
help if a hex dump program needs to be used to patch up
the program.

3 If the end of the program has been found, the routine exits.

4 If the length byte points correctly to the carriage return on
the end of the line, the routine moves on to the next line,
and jumps back to stage 2.

5 The message ‘Failed link’ is printed after the line number,
and the line is scanned until a control character is found.

6 If the control character found was a carriage return, the
length byte is fixed, and the routine jumps back to continue
checking the rest of the program.

154

7 If the end of the line was not found, or the control
character found was not a carriage return, the routine gives
the option of forcing the control character to be a letter,
forcing the end of the line to be at this point, or marking
the end of the program at this line.

The ESC key can be pressed at any time while the salvage
operation is underway, and the routine will stop when it is about
to do the next line.

The routine may think that it has reached the end of the program
before it should have, because it found a negative byte as the
MSB of the next line number. It can be forced to continue by
typing‘END:?(TOP−1)=0’ to force the end marker to zero
before re-starting the salvage routine.

This routine will cope with most things, but if the program is
really bad, the following hex dump program maybe useful to
examine it by hand. It should be loaded in by setting PAGE
above the top of the corrupted program (give plenty of room, just
in case), and then just LOADing in as normal.

 5 REM ** Hex dump program **
 6 REM
 10 REM M D Plumbley 1984
 15 REM
 20 REM Press <space> to stop listing
 25 REM <return> to continue
 30 REM "Q" to quit
 35 REM
 100 len% = 8 :REM length of line (bytes)
 200 INPUT"START ADDR :&"input$
 210 start% = EVAL("&"+input$)
 220 INPUT"END ADDR :&"input$
 230 end% = EVAL("&"+input$)
 400 REPEAT
 410 PROCline(start%) :REM Hexdump 1 line
 420 start% = start%+len% :REM Next line
 430 key$ = INKEY$(0)
 440 IF key$=" " THEN PROCwait
 450 IF key$="Q" THEN END
 460 UNTIL start%>end%
 470 END
 998
 999 REM *** Print hexdump of 1 line ***
 1000 DEFPROCline(addr%)
 1010 @%=4:PRINT~addr%" "; :REM Addr at start of line

155

 1015 @%=3
 1017 text$ = "" :REM Clear text string
 1020 FOR offset = 0 TO len%-1
 1030 byte% = addr%?offset :REM Get byte
 1040 PRINT ~byte%; :REM Print hex byte
 1045 valid = (byte%>=&20 AND byte%<&7F)
 1046 :REM Is it a character?
 1050 IF valid THEN chr$=CHR$(byte%) ELSE chr$="."
 1060 text$ = text$+chr$:REM Add char to text string
 1070 NEXT offset
 1080 PRINT" " text$
 1090 ENDPROC
 1998
 1999 REM *** Wait for <CR> or "Q" to be pressed ***
 2000 DEFPROCwait
 2010 REPEAT
 2020 key$ = GETS
 2030 UNTIL key$=CHR$(13) OR key$="Q"
 2040 IF key$="Q" THEN END
 2050 ENDPROC

9.3 Error listing
Sometimes it is not very easy to spot an error in a line of BASIC,
especially when it is in the middle of a multi-statement line. The
routine in this section will LIST out the line that any error
occurred on, together with 2 markers pointing out the possible
sources of the error. These represent the positions of the two
BASIC text pointers, PTRA and PTRB, at the instant of the
error.

For example, if the following line is typed in:

>PRINT"HELLO"; REM Should be a ":"

the response will be:

HELLO
PRINT"HELLO"; REM Should be a ":"
 ^
 ^
No such variable

The top arrow represents the position of PTRA, and the bottom
one represents the position of PTRB. In this case, they both point
to the same position (just after the REM token), but in most
cases they will be different.

156

This can also be used to check the position of the pointers, if
certain errors are to be intercepted.

 5 REM *** Error listing routine ***
 7 REM
 10 REM M D Plumbley 1984
 15 REM
 20 REM When an error occurs, this routine will print out
 25 REM the offending line, and print the position of
 30 REM the two BASIC pointers, pointing out the error.
 35 REM
 40 REM This program assembles into user key/character
 42 REM area at &0B00 onwards.
 44 REM
 46 REM Before using with BASIC 1, the EQUs should be
 48 REM replaced with their equivalents:
 50 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%
 52 REM "EQUW X" => "]!P%=X:P%=P%+2:[OPTopt%"
 54 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 56 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 550 BRKV = &0202
 799
 900 start% = &0B00 :REM User key/char space
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .init
 1005 LDA &8015 \Test that the correct
 1010 CMP #baschr \ version of BASIC is
 1015 BEQ basok \ in the ROM.
 1016
 1020 BRK \If it isn't, print an
 1025 EQUB 60 \ error message.
 1030 EQUS "Not BASIC " \ (baschr set by PROCsetup)
 1035 EQUB baschr
 1040 EQUB 0
 1041
 1045 .basok
 1050 LDA BRKV \Load the current BRK vector
 1055 LDX BRKV+1 \ into A and X.
 1056
 1060 CMP #newbrk MOD &100 \If this routine is already
 1065 BNE ntsavd \ set up, don't change BRKV.
 1070 CPX #newbrk DIV &100
 1075 BEQ saved
 1076
 1078 .ntsavd

157

 1080 STA svbrkv \It has not been set up
 1085 STX svbrkv+1 \ already, so save old
 1090 LDA #newbrk MOD &100 \ BRKV, and set up the new
 1095 STA BRKV \ one.
 1100 LDA #newbrk DIV &100
 1105 STA BRKV+1
 1106
 1110 .saved
 1115 RTS
 1480
 1490 \ *** Enter here on BRK ***
 1500 .newbrk
 1502 PHA \Save A,Y,X on 6502 stack
 1504 TYA
 1506 PHA
 1508 TXA
 1510 PHA
 1511
 1515 JSR pnewl \Start a new line
 1516
 1520 LDA #&FF \Set up immediate area
 1525 STA &3D \ as default for error area.
 1530 LDA #&06 \ (&3D) is used to point to the
 1540 STA &3E \ start of the line in error
 1545
 1550 LDA &C \If error occurred in immed mode,
 1560 CMP #7 \ don't look for a line
 1570 BEQ immed
 1575
 2010 JSR setERL \Get ERL, and
 2020 LDA &8 \ copy it into the
 2030 STA &2A \ integer accumulator
 2040 LDA &9 \ ready for "schlin"
 2050 STA &2B
 2055
 2060 JSR schlin \Point (&3D) at start of line
 2070 BCS noline \Exit if line not found
 2072
 2075 JSR pnewl \Start a new line, followed by
 2080 JSR plnum5 \ the line number
 2082
 2085 .immed
 2090 LDA #0 \Reset counters for
 2100 STA countA \ the position of the pointers
 2110 STA countB \ on the line
 2115
 2120 LDA &A \Save PTRA in temp area
 2130 STA ptrtmp
 2140 LDA &B
 2150 STA ptrtmp+1
 2160 LDA &C
 2170 STA ptrtmp+2

158

 2175
 2180 LDA &3D \Set PTRA to point to start
 2190 STA &B \ of line in error.
 2200 LDA &3E \ (PTRA is used by the line number
 2210 STA &C \ decoding routine)
 2220 LDY #1
 2230 STY &A
 2235
 2240 JSR prtlne \Print out line, setting counters
 2245
 2250 LDX countA \Print posn of PTRA
 2260 JSR prtptr
 2262 JSR pnewl
 2265
 2270 LDX countB \Print posn of PTRB
 2280 JSR prtptr
 2285
 2290 LDA ptrtmp \Restore PTRA from temp area
 2300 STA &A
 2310 LDA ptrtmp+1
 2320 STA &B
 2330 LDA ptrtmp+2
 2340 STA &C
 2342
 2345 .noline
 2350 PLA \Restore X,Y,A from 6502 stack
 2355 TAX
 2360 PLA
 2365 TAY
 2370 PLA
 2371
 2375 JMP (svbrkv) \Continue with default BRK routine
 2376
 2900 .exit
 2910 JMP pnewl \Print CRLF at end of line
 2920
 2990 \ *** Print out line at PTRA, setting counters ***
 2991 \ *** countA and countB to the screen positions ***
 2992 \ *** of the saved PTRA and PTRB ***
 3000 .prtlne
 3010 LDY &A \Get next character, and
 3020 INC &A \ increment PTRA
 3030 LDA (&B),Y
 3035
 3040 CMP #&0D \If end of line,
 3050 BEQ exit \ print CRLF and exit.
 3055
 3060 CMP #&8D \If a line number,
 3070 BEQ lineno \ print it
 3075
 3080 JSR ptoken \Print char or token in A
 3090 JMP counts \ and skip line number section

159

 3095
 3100 .lineno
 3110 JSR getlno \Get line number after token
 3120 JSR plnum0 \ and print it
 3130 .counts
 3140 CLC \Move PTRA (position of next
 3150 LDA &A \ char to be printed) into
 3160 ADC &B \ integer accumulator
 3170 STA &2A \ at &2A and &2B
 3180 LDA &C
 3190 ADC #0
 3200 STA &2B
 3205
 3210 LDA ptrtmp \Get old PTRA from temp area
 3220 ADC ptrtmp+1 \ into X (LSB)
 3230 TAX \
 3240 LDA ptrtmp+2 \ and A (MSB)
 3250 ADC #0
 3255
 3260 CPX &2A \If char at old PTRA has not
 3270 SBC &2B \ been printed yet,
 3280 BCC nocntA \
 3290 LDA &1E \ set countA to COUNT
 3300 STA countA \ (COUNT held in &1E)
 3305
 3310 .nocntA
 3320 CLC \Get PTRB
 3330 LDA &1B \
 3340 ADC &19 \ into X (LSB)
 3350 TAX \
 3360 LDA &1A \ and A (MSB)
 3370 ADC #0
 3375
 3380 CPX &2A \If char at PTRB has not been
 3390 SBC &2B \ printed yet,
 3400 BCC nocntB \
 3410 LDA &1E \ set countB to COUNT
 3420 STA countB
 3425
 3430 .nocntB
 3440 JMP prtlne \Go back for another char
 4990
 4991
 4992 \ *** Print a "^" in the Xth column ***
 4993 \ *** (entry point is "prtptr") ***
 5006 .loop
 5010 LDA #ASC(" ") \Print a space
 5020 JSR pchar
 5022
 5025 .prtptr
 5030 CPX &1E \If not at the right col,
 5040 BNE loop \ print another space.

160

 5045
 5050 LDA #ASC("^") \Print a "^"
 5060 JSR pchar
 5065
 5080 RTS \Exit
 7790
 7792 \ *** Routine variables area ***
 7800 .svbrkv EQUW !BRKV \Space to save BRK vector
 7801
 7810 .countA EQUB 0 \Screen posn of PTRA
 7815 .countB EQUB 0 \Screen posn of PTRB
 7816
 7820 .ptrtmp EQUW 0 \Temp for PTRA
 7825 EQUB 0
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICs"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~init""" to initialise."'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9305 baschr = ASC"1":REM Used by init routine
 9310 setERL = &B3F6 :REM Get no of line in error into &8,9
 9315 schlin = &9942 :REM Find start of line given line no
 9320 plnum5 = &98F5 :REM Print &2A,2B in decimal (field 5)
 9325 plnum0 = &98F1 :REM Print &2A,2B in decimal (field 0)
 9330 ptoken = &B53A :REM Print char, or token if A > &7F
 9335 pchar = &B571 :REM Print char in A, and incr COUNT
 9340 pnewl = &BC42 :REM Print CRLF, and zero COUNT
 9345 getlno = &97BA :REM Get tokenised line no at PTRA
 9350 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine

161

 9510 setERL = &B3C5 :REM Get no of line in error into &8,9
 9515 schlin = &9970 :REM Find start of line given line no
 9520 plnum5 = &9923 :REM Print &2A,28 in decimal (field 5)
 9525 plnum0 = &991F :REM Print &2A,2B in decimal (field 0)
 9530 ptoken = &B50E :REM Print char, or token if A > &7F
 9535 pchar = &B558 :REM Print char in A, and incr COUNT
 9540 pnewl = &BC25 :REM Print CRLF, and zero COUNT
 9545 getlno = &97EB :REM Get tokenised line no at PTRA
 9550 ENDPROC

The general operation of the routine is as follows:

1 The pointer at &3D,&3E is set up to point to the start of
the line in error, by searching through the program if
necessary.

2 The line is printed out, updating counters which mark the
screen position of PTRA and PTRB. Tokens are expanded
by the ROM routine ‘ptoken’, but this does not handle line
number tokens. These have to be dealt with separately.

3 The markers which point to the positions of PTRA and
PTRB are printed out, using the counters set while the
error line was being printed.

4 Finally, a JMP is made to the default BRK handler to print
out the error message.

The programs in the last few chapters are not really meant to
show everything that can be done: they are really just an
indication of the way that the BBC BASIC can be enhanced by
overlaying procedures, or adding new commands and utilities.

Chapters 10 and 11 detail the routines inside the ROM, and the
the other errors generated by BASIC, and these may give ideas
for experimenting with more new command and functions, like
graphics commands or statistical functions.

162

10 ROM Routines
Many of the tasks which need to be performed when dealing with
the BASIC system are handled by standard routines inside the
BASIC ROM. There are standard routines for expression
evaluation, checking the syntax of lines, handling the memory
allocation, and arithmetic routines. Although some of these will
only be of use inside new statements and functions (like the ‘Get
character at PTRB’ routine); many can be used from simple
machine code programs, to allow floating point calculations to be
performed, or accessing the variables passed by the BASIC
‘CALL’ statement, perhaps.

Note that these ROM routines can only be used if BASIC is
paged in to &8000 to &BFFF. If the machine code program which
uses them will be called from BASIC, using either the ‘CALL’
statement or the ‘USR’ function, BASIC will be paged in. The
programs in chapters 7 to 9 rely on this. However, BASIC will not
be paged in if the program is called by using the ‘*RUN’
command in any filing system which itself sits in a paged ROM
(like DFS, for example): the filing system ROM will be paged in
instead.

To check that the current paged-in ROM is BASIC, the RAM
copy of the paged ROM select register (in location &F4) should
be compared with the ROM number of the BASIC ROM. This
can be found by using OSBYTE &BB (187). For example, this
section of code will check that the current ROM is BASIC:

 LDA #&BB \Call OSBYTE &BB to read the ROM
 LDY #&FF \ socket number containing BASIC.
 LDX #&00 \ X and Y are set to read it without
 JSR osbyte \ modification.
 CPX &F4 \If it is not the same as the current
 BNE giveup \ ROM, don't continue.

The BASIC ROM does not need to be paged in if the only part of
the machine code program which is to be ‘*RUN’ is the
initialisation section, and that just needs to check the year of the
BASIC ROM (but uses no ROM routines). If this is the case, the
BASIC ROM slot number can be found using OSBYTE &BB

163

(187) as above, and the year byte found by using OSRDRM
(&FFB9). For example, the following code will read the year byte
of the BASIC ROM:

 LDA #&BB \Call OSBYTE &BB to read the ROM
 LDY #&FF \ socket number containing BASIC.
 LDX #&00 \ X and Y are set to read it without
 JSR osbyte \ modification.
 TXA \
 TAY \Transfer the ROM number into Y,
 LDA #&80 \ and call OSRDRM to read the byte
 STA &F7 \ at location &8015 in the BASIC ROM.
 LDA #&15 \
 STA &F6 \
 JSR &FFB9 \

Note that OSRDRM was implemented for operating the ‘*ROM’
filing system in paged ROMs, so use it with caution (as with most
of the rest of the examples in this book!).

Throughout this section, I have used the names of many of the
standard BASIC registers, rather than the actual memory they
occupy. They are detailed in other parts of this book, but here is a
summary of them:

IntA This is the integer accumulator which is held in page zero
at &2A to &2D (LSB in &2A, MSB in &2D). It is used in
integer calculations, and also to pass integer values
between routines.

 The low 3 bytes of IntA (&2A to &2C) are also used to
hold the variable descriptor block when handling
variables. When being used for this, &2A and &2B point
to the first byte of the variable value, and &2C contains
the variable type (for a description of the variable types,
see section 3.1.3). This variable descriptor block is
sometimes used at &37 to &39 (if IntA is used to hold the
value of the variable).

FPA This is the main floating point accumulator, which is held
in page zero at &2E to &35 (see section 2.2.2 for the
floating point accumulator format). It is used in
calculations involving real numbers (together with FPB),
and also to pass real values between routines.

164

FPB This is the secondary floating point accumulator, which
is held in page zero at &3B to &42. It is involved in most
floating point calculations.

StrA This is the string accumulator, which is held in page 6
(&600 to &6FF). The current length of the string is held
in location &36 in page zero. It is used in string
manipulations, and to pass string values between
routines.

PTRA This is the primary text pointer. The base of the pointer is
held in page zero in &B and &C, with the offset in &A.
This is used mainly to parse the keyword at the start of a
statement.

PTRB This is the secondary text pointer. The base is held in
&19 and &1A, with the offset in &1B. This is used
mainly for expression evaluation.

STACK This is the BASIC STACK which works downwards in
memory from HIMEM. The STACK pointer is held in
page zero in &4 and &5. It is used mainly to hold
temporary results of calculations, and to save old values
of parameters inside FNs and PROCs (see section 5.3).

HEAP This is the BASIC variable HEAP which works upwards
in memory from LOMEM. The HEAP pointer is held in
page zero in &2 and &3. It is used to hold variables and
FN and PROC locations (once found).

165

Summary
This list is a summary of the routines documented in this section,
split into functional groups. Some of the routines have other
entry points which are not listed here, but are included with the
full description of the routine. For a summary of the ROM in
numerical order, see appendix B.

 BASIC1 BASIC2

10.1 Restarting BASIC

cstart 8A80 8ADD Cold start
wstart 8A96 8AF3 Warm start
istart 8A99 8AF6 Enter immediate mode

10.2 Program handling

tline 88D9 8957 Tokenise a line

inslin BCAA BC8D Insert line in program
dellin BC4A BC2D Delete line in program
schlin 9942 9970 Search for program line

run BD2C BD14 Run a program

clear BD38 BD20 Clear variables/stacks
clrstk BD52 BD3A Reset stacks and restore data

seterl B3F6 B3C5 Set up ERL to line in error
settop BE88 BE6F Set up TOP, check ‘Bad program’

10.3 Statement handling

getcha 8A1E 8A97 Get character at PTRA
getchb 8A13 8A8C Get character at PTRB

chksda 9810 9857 Check end of statement
cont 8B0C 8B9B Continue execution
skipin 8AED 8B7D Skip rest of line

166

10.4 Expression evaluation

getnsb 9B03 9B29 Get <numeric> or <string>
getfsb AE1B ADEC Get <factor> or <string-factor>

getnmb A06C A07B Get number at PTRB
getlna 97AE 97DF Get a tokenised line number

10.5 Variable/FN/PROC management

fndvar 95A9 95DD Find variable

rdvar B35B B32C Read value of variable
asvar 8BD3 8C21 Assign string variable
asvark B4E0 B4B4 Assign numeric variable

schvar 9429 9469 Search for variable in list
linkvar 94BC 94FC Link in new variable
scnvn 951F 9559 Scan variable name

schfnp 941B 945B Search for FN/PROC in list
lnkfnp 94AD 94ED Link in new FN/PROC

clrib 94F7 9531 Clear space for new block

10.6 STACK management

pusha BDA8 BD90 Push IntA, FPA, or StrA
pushi BDAC BD94 Push IntA
pushf BD69 BD51 Push FPA
pushs BDCA BDB2 Push StrA

chksp BE4C BE34 Check for STACK/HEAP clash

popi BE02 BDEA Pop IntA
popi0 BE25 BE0D Pop integer into page zero
popf BD96 BD7E Pop real number; set up (&4B)
pops BDE3 BDCB Pop StrA

pshvvd B33C B30D Push value and descriptor
poppar 8C5B 8CC1 Pop parameter value

167

10.7 Input/output

inputs BC17 BBFC Input string to StrA

pchar B571 B558 Print A as a character
ptoken B53A B50E Print A as a character or token
phex 8570 B545 Print A as a HEX number

plnum0 98F1 991F Print line number

pnewl BC42 BC25 Print a CRLF (newline)

10.8 Type conversion

citof A2AF A2BE Convert integer to real
catof A2DE A2ED Convert A to a real number
cftoi A3F2 A3E4 Convert real to integer

cntos 9ED0 9EDF Convert number to string
cston AC5A AC34 Convert string to number

10.9 Integer routines

lodiay AF19 AEEA Load IntA with A,Y

lodi0 AF85 AF56 Load IntA from 00,X–03,X
stori0 BE5C BE44 Store IntA at 00,X–03,X

negi ADB5 AD93 Negate IntA
absi AD94 AD71 Take ABS value of IntA

divi 99C0 99E8 Perform integer division

10.10 Floating point routines

movfab A20F A21E Move FPA into FPB
movfba A4E4 A4DC Move FPB into FPA

ldfan0 A691 A686 Set FPA to zero
ldfan1 A6A4 A699 Set FPA to 1
ldfbn0 A463 A453 Set FPB to zero

168

ldfam A3A6 A3B5 Load FPA from (&4B)
ldfbm A33F A34E Load FPB from (&4B)
stfam A37E A38D Store FPA at (&4B)
exfam A4DE A4D6 Exchange FPA with (&4B)

pntmt1 A7FB A7F5 Point &4B,&4C at &46C
pntmt2 A7F3 A7ED Point &4B,&4C at &471
pntmt3 A7F7 A7F1 Point &4B,&4C at &476
pntmt4 A7EF A7E9 Point &4B,&4C at &47B

tstfa A1CB A1DA Test FPA
nmlfa A2F4 A303 Normalise FPA
rcofa A667 A65C Round FPA & check overflow

negfa ADA0 AD7E Negate FPA

addfba A513 A50B Add FPB to FPA

mulfab A61E A613 Multiply FPA by FPB
mufa10 A1E5 A1F4 Multiply FPA by 10

divfab A6FC A6F1 Divide FPA by FPB
dvfa10 A23E A24D Divide FPA by 10

series A889 A897 Perform series evaluation

fixfa A40C A3FE Convert FPA to fixed format
fracfa A494 A486 Extract fractional part of FPA

10.11 Function entry points

 (Listed in section 10.11)

169

10.1 Restarting BASIC
These entry points allow BASIC to be re-started, rather than
continuing with the execution of the program currently running.
This may be necessary if, for example, the program has been
altered or corrupted by the statement just executed (like
DELETE, for example).

cstart – Cold start
Execution addr

BASIC1 &8A80
BASIC2 &8ADD

Entry conditions:

PAGE points to the program area to be used

HIMEM points to the top of available memory

Exit conditions:

NON-RETURNING

Description

This entry has exactly the same effect as the BASIC ‘NEW’
command. It turns TRACE off, places the sequence &0D &FF in
memory at PAGE, and sets TOP to be PAGE+2, before
executing a warm start.

Other entry points

NONE

170

wstart – Warm start
Execution addr

BASIC1 &8A96
BASIC2 &8AF3

Entry conditions:

Resident program at PAGE

TOP points to the next available byte after the program

HIMEM points to the top of available memory

Exit conditions:

NON-RETURNING

Description

LOMEM and HEAP are set to TOP, the variables and FN/PROC
lists are cleared, and STACK is reset to HIMEM. BASIC then
enters immediate mode, and waits for a line to be input.

Other entry points

NONE

171

istart – Enter immediate mode
Execution addr

BASIC1 &8A99
BASIC2 &8AF6

Entry conditions:

Resident program at PAGE

TOP points to the next available byte after the program

LOMEM, HIMEM delimit the HEAP/STACK memory to be
used

Exit conditions:

NON-RETURNING

Description

This entry has the same effect as the BASIC ‘END’ statement.
The ‘ON ERROR’ pointer is reset, and a line is input into the
keyboard buffer. If this starts with a line number, it is inserted
into the program; otherwise the line is executed as an immediate
command.

Other entry points

NONE

172

10.2 Program handling
These are general routines for manipulating the program
currently in memory. Note that if the program is altered by
inserting or deleting any lines, the HEAP may be corrupted, so a
‘Warm start’ should be executed to return to immediate mode
and clear the variables.

tline – Tokenise a line
Execution addr

BASIC1 &88D9
BASIC2 &8957

Entry conditions:

Y 0

(&37) points to start of line to be tokenised
&3B start of statement flag: 0 = ‘at start’
&3C line number flag: 0 = don’t tokenise line numbers

Exit conditions:

Tokenised line starting at original position

&37–&3D undefined

A undefined
X undefined
Y undefined
C undefined

Description

This routine tokenises the line pointed to by the pointer at
&37,&38 and terminated by a carriage return. The tokeniser can
be in several states initially, and these states are set by the flags
in &3B and &3C before entering the routine. &3B tells the
tokeniser if it is at the start of a statement (if a ‘*’ is at the start,

173

the rest of the line is not tokenised); and &3C tells the tokeniser
whether to tokenise any numbers it finds, or to leave them as
ASCII. The tokeniser follows several rules, and encountering a
keyword (or not) may change the state. See section 2.3 for more
on tokenising.

Other entry points

1 tline0 – Tokenise start of statement, no line numbers

BASIC1 &88D3
BASIC2 &8951

This entry point sets both of the tokenising flags to zero, and
zeros Y, before entering the main routine (i.e. tokenise from the
start of a statement, but don’t tokenise line numbers).

174

inslin – Insert line in program
Execution addr

BASIC1 &BCAA
BASIC2 &BC8D

Entry conditions:

Y offset from &700 of first character of line text

IntA: line number of line to be inserted
&700– line to be inserted (keyboard buffer)

Exit conditions:

&37–&3E undefined

TOP new top of program

A &0D
X undefined
Y undefined
C 1

Description

This routine inserts a line into the current program. On entry, the
line to be inserted should be in the keyboard buffer (at &700 to
&7FF), terminated by a carriage return. Y should point to the
first character of the line to be inserted into the program (so that
the line number itself can be missed out). The low 2 bytes of IntA
should contain the line number. The routine will delete the old
line if necessary, and then insert the new one if it is not empty. If
there is not enough room for the line to be inserted, a ‘LINE
space’ error (ERR = 0) will be generated.

Other entry points

NONE

175

dellin – Delete line in program
Execution addr

BASIC1 &BC4A
BASIC2 &BC2D

Entry conditions:

IntA: line number of line to be deleted

Exit conditions:

&37,&38 undefined
&3D,&3E undefined

TOP new top of program

A undefined
X preserved
Y undefined
C 0=line deleted, 1=line not found

Description

This routine deletes a line from the current program. On entry,
the line number of the line to be deleted should be in the low 2
bytes of IntA (at &2A,&2B). If the line could not be found, the
routine will exit with C set; otherwise, the line will be deleted,
and the routine will exit with C clear.

Other entry points

NONE

176

schlin – Search for line in program
Execution addr

BASIC1 &9942
BASIC2 &9970

Entry conditions:

IntA: line number of line to be found

Exit conditions:

C 0=line found, 1=line not found

If C=0, (&3D) points at length byte of line found
If C=1, (&3D) points at end of last smaller line

A undefined
X preserved
Y 2

Description

This routine searches for a line in the program, given the line
number in IntA. If it is found, the pointer at &3D,&3E is set to
point to the length byte of the line (i.e. 1 before the text of the
line), and C is cleared. If it is not found, C is set, and the pointer
at &3D,&3E is left pointing at the carriage return on the end of
the last line that had a smaller line number than the one being
searched for.

Other entry points

NONE

177

run – Run a program
Execution addr

BASIC1 &BD2C
BASIC2 &BD14

Entry conditions:

Resident program at PAGE

Exit conditions:

NON-RETURNING

Description

This entry point does the same as the BASIC statement ‘RUN’. It
clears the variables (apart from the resident integers) and stacks,
and starts executing the program from the beginning.

Other entry points

1 gstart – Goto start of program

BASIC1 &BD2F
BASIC2 &BD17

This entry point starts executing the BASIC program in memory
at PAGE, but it does not clear the variables or stacks first.

178

clear – Clear variables and stacks
Execution addr

BASIC1 &BD38
BASIC2 &BD20

Entry conditions:

Valid PAGE, TOP, HIMEM

Exit conditions:

variables cleared

REPEAT, GOSUB, FOR stacks cleared

DATA pointer restored to PAGE

LOMEM set to TOP
HEAP set to TOP
STACK set to HIMEM

A 0
X 0
Y preserved
C preserved

Description

This routine clears all variables and FN/PROC lists (except for
the resident integers), and resets the HEAP and all BASIC
stacks. It does the same as the BASIC ‘CLEAR’ statement.

Other entry points

NONE

179

clrstk – Reset stacks, restore data
Execution addr

BASIC1 &BD52
BASIC2 &BD3A

Entry conditions:

Valid PAGE, HIMEM

Exit conditions:

REPEAT, GOSUB, FOR stacks cleared

DATA pointer restored to PAGE

STACK set to HIMEM

A 0
X preserved
Y preserved
C preserved

Description

This routine resets the BASIC stacks, and restores the DATA
pointer to PAGE.

Other entry points

NONE

180

seterl – Set up ERL
Execution addr

BASIC1 &B3F6
BASIC2 &B3C5

Entry conditions:

PTRA: base points to position of error

Exit conditions:

&8,&9 line number of error (ERL)

A undefined
X undefined
Y undefined
C undefined

Description

This routine searches through the program, keeping track of the
current line number, until it finds the line which the base of
PTRA points to. It then sets ERL to the number of this line.

Other entry points

NONE

181

settop – Set up TOP, check ‘Bad program’
Execution addr

BASIC1 &BE88
BASIC2 &BE6F

Entry conditions:

BASIC program at PAGE

Exit conditions:

&12,&13 points to the end of the program (TOP)

A undefined
X preserved
Y 1
C undefined

Description

This routine scans through the current program in memory, and
sets TOP to point to the next free memory location after the end
of it. If it could not follow the length bytes through to the end of
the program, a ‘Bad program’ message will be generated, and a
JMP will be made to immediate mode (istart).

Other entry points

NONE

182

10.3 Statement handling
These routines allow general handling of statements, using the
syntax pointers PTRA and PTRB.

PTRA is mostly used for recognising statement keywords, and a
few other special uses; it should not be used inside the expression
evaluator (i.e. in functions) unless it is saved, and restored before
returning. The base of PTRA is stored in &B and &C, with the
offset in &A.

PTRB is used for evaluating expressions, and most other general
uses. The base of PTRB is stored in &19 and &1A, with the offset
in &1B.

The base of both of these pointers normally points 1 character
before the start of the text of the statement currently being
executed (i.e. the ‘:’; or the length byte of the line if it is the first
statement on the line). These should not normally be changed
during a statement, except at the end, when they will be set up to
point to the next one by the ‘Check end of statement’ routine.

getcha – Get character at PTRA into A
Execution addr

BASIC1 &8A1E
BASIC2 &8A97

Entry conditions:

PTRA: points to the character to be read.

Exit conditions:

PTRA: points to the next character to be read.

A character read
X preserved
Y offset from base of PTRA to character just read
C undefined

183

Description

This routine returns the first non-space character found at, or
after, PTRA. The offset of PTRA is updated so that it points to
the character after the one just read. The character returned by
this routine can be re-read if necessary by a ‘LDA (&B),Y’.

Other entry points

NONE

getchb – Get character at PTRB into A
Execution addr

BASIC1 &8A13
BASIC2 &8A8C

Entry conditions:

PTRB: points to the character to be read

Exit conditions:

PTRB: points to the next character to be read.

A character read
X preserved
Y offset from base of PTRA to character just read
C undefined

Description

This routine returns the first non-space character found at, or
after, PTRB. The offset of PTRB is updated so that it points to
the character after the one just read. The character returned by
this routine can be re-read if necessary by a ‘LDA (&19),Y’.

Other entry points

NONE

184

chksda – Check for end of statement
Execution address

BASIC1 &9810
BASIC2 &9857

Entry conditions:

PTRA: points at the end of the current statement.

Exit conditions:

PTRA: base points to the statement delimiting character.
 offset = 1

A undefined
X preserved
Y 1
C undefined

Description

Starting at PTRA, if the first non-space character found is not a
‘:’, a carriage return character, or an ‘ELSE’ token, then a
‘Syntax error’ (ERR = 16) will be generated. If it is one of these,
then the base of PTRA will be updated to point to this character,
and the offset set to 1. Thus PTRA will point to the first character
after the statement delimiter. Finally, the escape flag is tested
before returning, and an ‘Escape’ error (ERR = 17) will be
generated if an escape condition exists.

Other entry points

1 chksdb – Check end of statement at PTRB

BASIC1 &980B
BASIC2 &9852

This uses the offset of PTRB instead of the offset of PTRA on
entry. Providing that the base of PTRA has been copied into
PTRB at some time during the statement, this entry point can be
used to check for the end of the statement at PTRB.

185

cont – Continue execution
Execution addr

BASIC1 &8B0C
BASIC2 &8B9B

Entry conditions:

PTRA: base points to the statement delimiting character.
 offset = 1

Exit conditions:

NON-RETURNING

Description

This entry will test the statement delimiter at the base of PTRA.
If it is an ‘ELSE’ token, the rest of the line will be skipped, and
execution will continue on the next program line. Otherwise,
execution will continue with the next statement or program line,
giving a TRACE if necessary. If the end of the program has been
reached (or the end of the line in immediate mode), a jump will
be made to enter immediate mode.

Other entry points

1 contsd – Check end of statement, then continue

BASIC1 &8B09
BASIC2 &8B98

This calls ‘check for end of statement’ before dropping into the
main routine. Entry conditions are as for ‘check end of
statement’.

186

skplin – Skip rest of line, then continue execution
Execution addr

BASIC1 &8AED
BASIC2 &8B7D

Entry conditions:

PTRA: points at or before the CR on the end of the line.

Exit conditions:

NON-RETURNING

Description

This entry will skip the rest of the current line, and execution will
continue on the next program line, giving a TRACE if necessary.
If the end of the program has been reached, or the line was an
immediate mode command, a jump will be made to enter
immediate mode.

Other entry points

NONE

187

10.4 Expression evaluation
Expression evaluation is carried out using PTRB to scan the text.
At each stage, the result is left in IntA, FPA, or StrA for the code
which called the routine. If the type of the result is not what is
required by the particular level (for example, an attempt to AND
with a string), then a ‘Type mismatch’ error is generated. See
chapter 4 for more on expression evaluation.

getnsb – Get <numeric> or <string> at PTRB
Execution addr

BASIC1 &9B03
BASIC2 &9B29

Entry conditions:

PTRB: points to the next character to be read.

Exit conditions:

PTRB: points to the next character to be read.

If Z=1: result in StrA (string)
If N=1: result in FPA (real)
Otherwise: result in IntA (integer)

&27 result type (&00=string, &40=integer, &FF=real)

&2A–&4E undefined (except where specified above)

A result type
X next character (after the <numeric> or <string>)
Y result type
C undefined

188

Description

This routine evaluates the <numeric> or <string> at PTRB
(leading spaces will be ignored), and sets the 6502 flags according
to the type of the result (see chapter 4 for more on expressions).
PTRB will be updated to point to the character after the
<numeric> or <string>. Nothing should be left in the
accumulators (&2A to &36), or in BASIC’s temporary
workspace (&37 to &4E), as this will be used by the routine. Any
temporary results which need to be kept should be saved on the
BASIC STACK, or in the ‘free for users’ zero page area (&70 to
&8F). Note also, that because FN’s can appear in a <numeric>
or <string>, anything that can be set by a BASIC statement is
liable to change. PTRA will be preserved by this routine (it is
saved during execution of FNs and PROCs).

Other entry points

1 getnsa – Get <numeric> or <string> at PTRA

BASIC1 &9AF7
BASIC2 &9B1D

This entry copies PTRA into PTRB before entering the main
routine. All other entry and exit conditions are the same.

189

getfsb – Get <factor> or <string-factor> at PTRB
Execution addr

BASIC1 &AE1B
BASIC2 &ADEC

Entry conditions:

PTRB: points to the next character to be read.

Exit conditions:

PTRB: points to the next character to be read.

If Z=1: result in StrA (string)
If N=1: result in FPA (real)
Otherwise: result in IntA (integer)

&27 undefined

&2A–&4E undefined (except where specified above)

A result type (&00=string, &40=integer, &FF=real)
X undefined
Y undefined
C undefined

Description

This routine evaluates the <factor> or <string-factor> at PTRB
(leading spaces will be ignored), and sets the 6502 flags according
to the type of the result (see chapter 4 for more on expressions).
PTRB will be updated to point to the first character after the
<factor> or <string-factor>. Nothing should be left in the
accumulators (&2A to &36), or in BASIC’s temporary
workspace (&37 to &4E), as this will be used by the routine. Any
temporary results which need to be kept should be saved on the
BASIC STACK, or in the ‘free for users’ zero page area (&70 to
&8F). Note that FN’s can be called inside this routine, so
anything that can be set by a BASIC statement is liable to change.

190

Other entry points

1 getifb – Get integer <factor> at PTRB

BASIC1 &92E3
BASIC2 &9292

This entry calls the main routine, and then forces the result to be
an integer. If the result is a string, a ‘Type mismatch’ error (ERR
= 6) will be generated; if the result is real, it will be converted to
an integer. Entry and exit conditions are as for the main routine,
except that A and the flags will always indicate an integer result.

2 getrfb – Get real <factor> at PTRB

BASIC1 &92AC
BASIC2 &92EB

This entry calls the main routine, and then forces the result to be
real. If the result is a string, a ‘Type mismatch’ error (ERR = 6)
will be generated; if the result is an integer, it will be converted to
a real number. Entry and exit conditions are as for the main
routine, except that A and the flags will always indicate a real
result.

191

getnmb – Get number at PTRB
Execution addr

BASIC1 &A06C
BASIC2 &A07B

Entry conditions:

PTRB: points 1 after the first digit of the number

A first digit of the number
Y offset from base of PTRB to first digit of number

Exit conditions:

PTRB: points to the next character to be read.

C 0=no number found, 1=number found

If N=1: result in FPA (real)
Otherwise: result in IntA (integer)

&2A–&35 undefined (except where specified above)
&43 undefined
&48–&4A undefined

A result type (&40=integer, &FF=real)
X undefined
Y undefined

Description

This routine gets the positive decimal integer at PTRB whose first
digit has just been read using the ‘Get character at PTRB’
routine. If no number was found (i.e. the character in A on entry
was not one of ‘0’ to ‘9’), it will clear C and leave zero in FPA as
a real result. If a number was found, it will be left in IntA or FPA,
depending on the type (‘200000’ will be integer, ‘2E5’ or ‘1.7’
will be real).

Other entry points

NONE

192

getlna – Get a tokenised line number at PTRA
Execution addr

BASIC1 &97AE
BASIC2 &97DF

Entry conditions:

PTRA: points to the next character to be read.

Exit conditions:

If C=0 (no line number found):

PTRA: points to first non-space character found.

A character at PTRA
X preserved
Y PTRA offset

If C=1 (line number found):

PTRA: points to the next character to be read.

IntA: line number (in &2A,&2B)

A undefined
X preserved
Y PTRA offset

Description

This routine checks for a line number token (&8D) at PTRA
(ignoring leading spaces). If it finds one, it gets the 3 bytes of
tokenised line number following it into the low-order 2 bytes of
IntA, and exits with C set. Otherwise, it exits with C clear. See
section 2.3.2 for the format of tokenised line numbers.

Other entry points

NONE

193

10.5 Variable/FN/PROC management
Named variables, and the location of FNs and PROCs are stored
on the BASIC HEAP, which builds upwards from LOMEM. The
HEAP pointer is stored at &2,&3 in page zero, and points to the
next available memory location for a variable or FN/PROC
information block to be stored in. See section 3.1 for more on
HEAP storage.

Each named variable stored on the HEAP has its own variable
information block, which gives the name and value of the variable.
These are chained together to form a linked list: one list for each
possible first letter (A to z), and one each for FNs and PROCs.
The format of the variable information block is:

00,01 pointer to start of next block
02– name of variable
XX &00 name terminator
XX+1 value starts here

The ‘name’ field does not include the first letter of the name if it is
a variable (but it does if it is a FN or PROC). The name includes
any ‘%’, ‘$’, or ‘(’ characters on the end of a variable name: these
give the type of the variable.

Much of the variable handling is done using a variable descriptor
block, which gives the location and type of the variable. This
variable descriptor block has the following format (when in IntA):

(&2A) points to the start of the variable value
&2C holds the type of the variable

Variable types can be:

&00 single byte integer
&04 4-byte integer
&05 5-byte real number
&80 static string terminated by a &0D
&81 dynamic string (stored on the HEAP)

For the format of these variable types, see section 3.1.3.

194

fndvrb – Find variable at PTRB
Execution addr

BASIC1 &95A9
BASIC2 &95DD

Entry conditions:

PTRB: points to the first character of the variable name.

A first character of the variable name
Y copy of PTRB offset (in &1B)

Exit conditions:

Z=0,C=0: numeric variable found
Z=0,C=1: string variable found
Z=1,C=0: non-existent (but valid) variable name found
Z=1,C=1: no valid variable was found

A undefined
X undefined
Y undefined

If Z=0: (variable exists)
PTRB: points to the character after the variable
IntA: variable descriptor block

&2E–4E undefined

If Z=1,C=0: (non-existent variable)
PTRB: points to the character after the name
&2C variable type
(&37) points 1 before the start of the name
&39 length of name

&3A–3D undefined

If Z=1,C=1: (invalid variable)
(&37) points 1 before PTRB

195

Description

This routine looks for the variable which is at PTRB (this includes
indirected variables like ?A or B!5). If the variable exists, it sets
up the variable descriptor block in IntA. If it does not exist, but is
a valid name, it sets up the pointer at &37,&38 with the length of
the name in &39, ready to create it if necessary. If a non-existent
array name is found, an ‘Array’ error (ERR = 14) will be
generated.

Other entry points

1 fndvra – Find variable at PTRA

BASIC1 &9595
BASIC2 &95C9

This entry first copies PTRA into PTRB, and then skips any
leading spaces at PTRB, before entering the main routine. The
exit conditions are the same.

2 fncvra – Find variable at PTRA, creating one if necessary

BASIC1 &9548
BASIC2 &9582

This entry calls entry point 1 above, and if a non-existent, but
valid, variable name is found, it will create it and clear space for it
on the HEAP. Its initial value will be zero (or the empty string).
Exit conditions are the same as for the main routine (the variable
may still be invalid).

196

rdvar – Read value of variable
Execution addr

BASIC1 &B35B
BASIC2 &B32C

Entry conditions:

IntA: variable descriptor block

Exit conditions:

If Z=1: result in StrA (string)
If N=1: result in FPA (real)
Otherwise: result in IntA (integer)

A result type (&00=string, &40=integer, &FF=real)
X undefined
Y undefined
C undefined

Description

This routine gets the value of the variable given by the variable
descriptor block in IntA, and transfers it to the relevant
accumulator. This can also be used to get the value of parameters
passed by the BASIC ‘CALL’ statement.

Other entry points

NONE

197

asvar – Assign string variable
Execution addr

BASIC1 &8BD3
BASIC2 &8C21

Entry conditions:

IntA: variable descriptor block (MUST be a string)
StrA: value to be assigned

Exit conditions:

Value assigned to variable

HEAP: moved up if necessary

Description

This routine assigns the value in StrA to a static or dynamic
string. In the case of a dynamic string, if the space allocated for
the string is not large enough, a new space is allocated on the
HEAP (see section 3.1.3 for more on string allocation). A static
string (one which is to be written into memory using the string
indirection operator) will just be stored at the address given,
terminated by a carriage return character (&0D). This routine
can be used to set the value of string parameters passed by the
BASIC ‘CALL’ statement. Both the variable and the value must
be a string, as no test is made by this routine for type mismatch.

Other entry points

1 asvark – Assign variable on stack

BASIC1 &8BD0
BASIC2 &8C1E

This entry pulls the variable descriptor block from the STACK
into IntA before entering the main routine. It should have
previously been pushed on the STACK using the ‘Push IntA’
routine (pushi).

198

anvark – Assign numeric variable
Execution addr

BASIC1 &B4E0
BASIC2 &B4B4

Entry conditions:

STACK: variable descriptor block

&27 type of value (&00=string, &40=integer,
 &FF=real)

Real: value in FPA
Integer: value in IntA

Exit conditions:

STACK: variable descriptor block removed (4 bytes)

Value assigned to variable

&37–&3A undefined

A undefined
X undefined
Y undefined
C undefined

Description

This routine assigns the value in FPA or IntA (type given in &27)
to the variable whose variable descriptor block is on the STACK.
This should have previously been pushed by the ‘Push IntA’
routine (pushi). This routine can be used to set the value of
numeric parameters passed by the BASIC ‘CALL’ statement. If
the type of the value (in &27) is a string, a ‘Type mismatch’ error
(ERR = 6) will be generated, but the variable type is not
checked, and must be numeric.

199

Other entry points

1 asgtvr – Assign <numeric> to variable on stack

BASIC1 &B4DD
BASIC2 &B4B1

This entry calls the ‘Get <numeric> or <string> at PTRB’
routine (getnsb), to set up the value and the type in &27, before
entering the main routine. The variable descriptor block should
still be on the STACK on entry. All temporary areas (&2A to
&4E) will be undefined if this entry is used.

200

schvar – Search for variable in list
Execution addr

BASIC1 &9429
BASIC2 &9469

Entry conditions:

(&37) points 1 before the start of the variable name
&39 length of name

Exit conditions:

If Z=1: variable not found
If Z=0: variable found

&3A–&3D undefined

A undefined
X preserved
Y undefined
C undefined

If Z=0 (variable found):

(&2A) points to the variable value

Description

This routine searches for a variable name in the linked list. If
found, it sets the low 2 bytes of the variable descriptor block in
IntA to the address of the value of the variable. This routine is
used by the main ‘Find variable at PTRB’ routine (fndvar).

Other entry points

NONE

201

lnkvar – Link in new variable
Execution addr

BASIC1 &94BC
BASIC2 &94FC

Entry conditions:

(&37) points 1 before the start of the name
&39 length of name

Exit conditions:

New variable information block linked in to HEAP.

(&3A) points to the previous block
HEAP points to the new block

A undefined
X undefined
Y length of name
C undefined

Description

This routine links in a new variable infomation block to the linked
list of variables on the HEAP (see section 3.1 for more on the
HEAP). The MSB of the new link pointer is zeroed (to mark the
end), and the name is transferred to the new block. The routine
exits with the pointer at &3A,3B pointing to the previous link
pointer (which now points to the new block), so that this pointer
can be re-set if there is not enough memory for the new block.
This routine does not allocate any memory for the new block; this
must be done with a call to the ‘Clear space for information block’
routine (clrib).

Other entry points

NONE

202

scnvn – Scan variable name
Execution addr

BASIC1 &951F
BASIC2 &9559

Entry conditions:

(&37) points 1 before the start of the name

X (see exit)

Exit conditions:

A first character following variable name
X incremented by the length of the name
Y offset from (&37) of character in A
C undefined

Description

This routine scans the variable name starting one byte after the
pointer at (&37). Only the characters A–Z, a–z, @, _, and £ are
allowed in variable names (and 0–9 after the first character). The
special variable symbols ‘$’ and ‘%’ are not recognised by this
routine. This routine is used by the array handler and the FN/
PROC handler.

Other entry points

NONE

203

schfnp – Look for FN/PROC in list
Execution addr

BASIC1 &941B
BASIC2 &945B

Entry conditions:

(&37) points 1 before the FN/PROC token
&39 length of name (including 1 for FN/PROC token)

Exit conditions:

If Z=1: FN/PROC not found in list
If Z=0: FN/PROC found

&3A–&3D undefined

A undefined
X preserved
Y undefined
C undefined

If Z=0 (FN/PROC found):

(&2A) points to the FN/PROC pointer field

Description

This routine searches for a given FN or PROC in the linked list on
the HEAP. If found, it leaves the low 2 bytes of IntA pointing to
the pointer field of the FN/PROC information block. This pointer
field points to the first character after the FN or PROC name
definition (i.e. the ‘(’ if it has any parameters). See section 3.1 for
HEAP storage.

Other entry points

NONE

204

lnkfnp – Link in new FN/PROC
Execution addr

BASIC1 &94AD
BASIC2 &94ED

Entry conditions:

(&37) points 1 before the FN/PROC token
&39 length of name (including FN/PROC token)

Exit conditions:

New FN/PROC information block linked in to the HEAP.

(&3A) points to the previous block
HEAP points to the new block

A undefined
X undefined
Y length of name
C undefined

Description

This routine links in a new FN or PROC information block to the
linked list of FNs or PROCs on the HEAP (see section 3.1 for
more on the HEAP). The MSB of the new link pointer is zeroed
(to mark the end), and the name is transferred to the new block.
The routine exits with the pointer at &3A,3B pointing to the
previous link pointer (which now points to the new block), so that
this pointer can be re-set if there is not enough memory for the
new block. This routine does not allocate any memory for the
new block; this must be done with a call to the ‘Clear space for
information block’ routine (clrib).

Other entry points

NONE

205

clrib – Clear space for new information block
Execution addr

BASIC1 &94F7
BASIC2 &9531

Entry conditions:

X number of bytes to be cleared (at least 1)
Y offset of end of name into information block
HEAP points to start of information block
(&3A) points to the previous block in the list

Exit conditions:

Bytes cleared in information block given by X on entry

HEAP: moved up to cover new block

A LSB of HEAP pointer
X 0
Y MSB of HEAP pointer
C 0

Description

This routine clears and allocates space on the HEAP for a
variable or FN/PROC information block, once the pointer and
name have been set up. On entry, Y (as an offset from the HEAP
pointer) points to the last character of the name already in the
information block, and X contains the number of bytes which
need to be zeroed after it (including 1 for the name terminating
byte). If the HEAP pointer is above the STACK pointer after the
space for the block is allocated, then a ‘No room’ error is
generated (message only in BASIC1, ERR = 0 in BASIC2).
Because the bytes are cleared before the space check is made, the
top of STACK contents will be destroyed if there is not enough
room. This routine is called after the ‘Link in new variable’
(lnkvar) or ‘Link in new FN/PROC’ (lnkfnp) routines have set up
the name and link pointer.

206

Other entry points

1 mvheap – Add Y to HEAP pointer

BASIC1 &94FF
BASIC2 &9539

This entry point adds Y to the HEAP pointer. It does not zero
any bytes. If the new HEAP pointer is above the STACK
pointer, a ‘No room’ error is generated, otherwise the routine
returns.

207

10.6 Stack management
The BASIC STACK pointer is maintained in page zero in
&04,&05 and works downwards from HIMEM. It is used to hold
temporary results, and information saved by FNs and PROCs. For
more on the use of the STACK, see section 3.2.

pusha – Push IntA, FPA, or StrA on STACK
Execution addr

BASIC1 &BDA8
BASIC2 &BD90

Entry conditions:

If Z=1: string in StrA
If N=1: real in FPA
Otherwise: integer in IntA

Exit conditions:

Item pushed on STACK

STACK: pointer lowered by size of item

A undefined
X preserved
Y undefined
C undefined

Description

This routine tests the 6502 flags on entry to find the type of the
item to be pushed on the BASIC STACK. It then pushes the
appropriate accumulator (IntA, FPA, or StrA). Note that there is
no way to tell the type of an item on the STACK, so this should
be saved before this routine is called. If the STACK would be
lowered below the level of the HEAP by pushing this item, a ‘No
room’ error is generated (message only in BASIC1, ERR = 0 in
BASIC2), and the item is not pushed.

208

Other entry points

1 pushi – Push IntA on STACK

BASIC1 &BDAC
BASIC2 &BD94

This routine pushes IntA on the BASIC STACK, lowering the
STACK pointer by 4 bytes. This can be used to save the variable
descriptor block, which is sometimes held in IntA.

2 pushf – Push FPA on STACK

BASIC1 &BD69
BASIC2 &BDB2

This entry pushes FPA on the BASIC STACK, lowering the
STACK pointer by 5 bytes.

3 pushs – Push StrA on STACK

BASIC1 &BDCA
BASIC2 &BDB2

This routine pushes StrA on the BASIC STACK, lowering the
STACK pointer by one more than the length of the string (the
byte on the top gives the length of the string).

209

chksp – Check for STACK/HEAP clash
Execution addr

BASIC1 &BE4C
BASIC2 &BE34

Entry conditions:

STACK: new value of STACK pointer to be tested

A copy of LSB of new STACK pointer, &4

Exit conditions:

A preserved (LSB of STACK pointer)
X preserved
Y MSB of STACK pointer
C 1

Description

This routine tests the STACK pointer against the HEAP pointer.
If the STACK is below the HEAP, a ‘No room’ error is generated
(message only in BASIC1, ERR = 0 in BASIC2). If there is no
clash, the routine returns.

Other entry points

1 lwrsp – Lower STACK pointer; check for HEAP clash

BASIC1 &BE46
BASIC2 &BE2E

This entry point can be used if up to 255 bytes need to be
allocated on the STACK. The LSB of the STACK pointer (in
&4) should be loaded into A, and the number of bytes required
should be subtracted from this. A call to this entry point will then
save A as the LSB of the new STACK pointer, and decrement the
MSB (in &5) if the subtraction had cleared the carry flag (i.e. if
the number of bytes to be allocated was greater than the LSB of
the STACK pointer). The main routine will then be entered to
test for a HEAP clash.

210

popi – Pop IntA from STACK
Execution addr

BASIC1 &BE02
BASIC2 &BDEA

Entry conditions:

STACK: points to the 4-byte integer to be popped

Exit conditions:

IntA: integer popped from STACK

STACK: pointer moved up by 4 bytes

A undefined
X preserved
Y 0
C undefined

Description

This routine pops the 4-byte integer from the top of the STACK
into IntA, and moves the STACK pointer up by 4 bytes to
remove it.

Other entry points

1 rmvi – Remove integer from STACK

BASIC1 &BE17
BASIC2 &BDFF

This entry moves the STACK pointer up by 4 bytes to remove
the integer on the STACK. X and Y are preserved.

211

popi0 – Pop integer from STACK into page zero
Execution addr

BASIC1 &BE25
BASIC2 &BE0D

Entry conditions:

STACK: points to the 4-byte integer to be popped

X points to the destination for the integer

Exit conditions:

00,X to 03,X holds the integer just popped

STACK: pointer moved up by 4 bytes

A undefined
X preserved
Y 0
C undefined

Description

This routine pops the 4-bytes on the top of the STACK into page
zero at 00,X to 03,X. It then moves the STACK pointer up by 4
bytes to remove it.

Other entry points

1 popi1 – Pop integer from stack into &37 to &3A

BASIC1 &BE23
BASIC2 &BE0B

This entry sets X to &37 before entering the main routine.

212

popf – Pop real number from STACK; set up
(&4B)

Execution addr

BASIC1 &BD96
BASIC2 &BD7E

Entry conditions:

STACK: points to the 5-byte real number to be popped

Exit conditions:

(&4B) points at real number

STACK: pointer moved up by 5 bytes

A undefined
X preserved
Y preserved
C undefined

Description

This routine pops a real number from the STACK, and moves up
the STACK pointer by 5 bytes to remove it. It does not move the
number into FPA, but it sets up the floating point memory
pointer, (&4B), to point to it. If the number is to be saved, it
should be loaded into FPA or FPB after this routine has been
called.

Other entry points

NONE

213

pops – Pop StrA from STACK
Execution addr

BASIC1 &BDE3
BASIC2 &BDCB

Entry conditions:

STACK: points to the string to be popped

Exit conditions:

StrA: string popped from STACK

STACK: pointer moved up to remove string

A undefined
X preserved
Y 0
C undefined

Description

This routine pops a string from the STACK into StrA, and moves
the STACK pointer up by one more than the length of the string,
to remove it from the stack (the length of the string is the first
byte on the stack).

Other entry points

1 rmvs – Remove string from STACK

BASIC1 &BDF4
BASIC2 &BDDC

This entry gets the length of the string from the stack, and moves
the STACK pointer up by one more than the length of the string
(to allow for the length byte, which was also on the stack).

214

pshvvd – Push value and descriptor of variable on
STACK

Execution addr

BASIC1 &B33C
BASIC2 &B30D

Entry conditions:

IntA: variable descriptor block

Exit conditions:

Value of variable pushed on STACK, followed by descriptor

STACK: lowered by required amount

A undefined
X undefined
Y undefined
C undefined

Description

This routine gets the value of the variable pointed to by the
variable descriptor block in IntA, and pushes it on the STACK. It
then pushes the variable descriptor block, so the variable can be
re-set later. This is used to save the old values of local variables
(or parameters) for a FN or a PROC.

Other entry points

NONE

215

poppar – Pop old parameter value from STACK
Execution addr

BASIC1 &8C5B
BASIC2 &8CC1

Entry conditions:

&37–&39 variable descriptor block

STACK: points to the value to be popped

Exit conditions:

Value assigned to variable

STACK: pointer moved up to remove value

A undefined
X undefined
Y undefined
C undefined

Description

This routine is used to re-assign old values to parameters and
local variable which have previously been saved on the STACK.
It should NOT be used to assign new variables, because it
assumes the allocated space for a string will be large enough
(which it will be, if it came from there in the first place). It is used
on a return from a procedure or function, to re-set old variable
values.

Other entry points

NONE

216

10.7 Input/output
These routines are the input and output routines used in BASIC.
The output routines all handle COUNT (in &1E) and WIDTH (in
&23): COUNT is used by BASIC to keep track of the current
cursor column to be used by TAB.

There is no routine to print a number from IntA or FPA: to do this
the number can be converted to a string in StrA using the ‘Type
conversion’ routines (section 10.8), and then StrA can be printed
(there is not a routine for this either, but it is fairly simple). Input
of numbers can also be accomplished by inputting a string, and
then converting that to a number.

inputs – Input string from keyboard into StrA
Execution addr

BASIC1 &BC17
BASIC2 &BBFC

Entry conditions:

NONE

Exit conditions:

&600– string input

&37–&3B used as the OSWORD parameter block

COUNT set to zero (in &1E)

A 0
X undefined
Y length of string
C 0

217

Description

This routine calls OSWORD with A=&0 to input a line from the
keyboard into StrA at &600 onwards. Maximum line length is 238
bytes; all characters with an ASCII value of less than &20 will not
be put in the input line (i.e. the control characters). If the
ESCAPE key terminated the input instead of a carriage return,
an ‘Escape’ error (ERR = 17) will be generated.

Other entry points

1 inputk – Input string into the keyboard buffer

BASIC1 &BC1D
BASIC2 &BC02

This entry prints the character in A as a prompt, and sets the
address for input to be &700 (the keyboard buffer) before joining
the main routine. It is used for BASIC’s immediate mode
command input.

218

pchar – Print A as a character
Execution addr

BASIC1 &B571
BASIC2 &B558

Entry conditions:

A character to be printed

Exit conditions:

COUNT updated, allowing for WIDTH if necessary

A preserved
X preserved
Y preserved
C undefined

Description

This routine outputs the character in A using OSWRCH, and
increments the value of COUNT. If COUNT has moved past
WIDTH, the character will be printed on a new line, and
COUNT will be reset.

Other entry points

1 pspace – Print a space
BASIC1 &B57B
BASIC2 &B565

This entry loads A with a space (&20) before entering the main
routine.

2 pnewl – Print a newline
BASIC1 &BC42
BASIC2 &BC25

This entry point calls OSNEWL to print a carriage return and a
line feed, and then zeros COUNT.

219

ptoken – Print A as a character or token
Execution addr

BASIC1 &B53A
BASIC2 &B50E

Entry conditions:

A character or token to be printed

Exit conditions:

COUNT updated, allowing for WIDTH if necessary

&37–&3A undefined

A last character printed
X preserved
Y preserved
C undefined

Description

If the character in A is less than &80, it will be printed out as a
character. Otherwise, it will be interpreted as a token, and the
corresponding keyword will be printed from the token table. This
routine will not handle a line number token, or any other invalid
token (which may cause the routine to hang up). This routine is
used by the ‘LIST’ and ‘REPORT’ statements.

Other entry points

NONE

220

phex – Print A as a 2-digit HEX number
Execution addr

BASIC1 &8570
BASIC2 &B545

Entry conditions:

A byte to be printed

Exit conditions:

COUNT updated, allowing for WIDTH if necessary

A last character printed
X preserved
Y preserved
C undefined

Description

This routine prints the byte in A as a 2-digit HEX number (a
leading zero will not be suppressed). This routine is used by the
assembler, but has been re-located in BASIC2 to save space.

Other entry points

1 phexsp – Print HEX byte, followed by a space

BASIC1 &856A
BASIC2 &B562

This entry calls the main routine to print the 2-digit HEX number
in A, and then prints a space after it. This leaves &20 in A on
exit.

221

plnum0 – Print line number
Execution addr

BASIC1 &98F1
BASIC2 &991F

Entry conditions:

IntA: line number to be printed

Exit conditions:

COUNT updated, allowing for WIDTH if necessary

&14 0 (field width used)

&37 undefined
&3F–&43 undefined

A last character printed
X &FF
Y undefined
C undefined

Description

This routine prints the line number in the low 2 bytes of IntA as a
positive decimal number between 0 and 65535. No leading spaces
are printed.

Other entry points

1 plnum5 – Print line number (field 5)

BASIC1 &98F5
BASIC2 &9923

This entry uses a field width of 5 to print the line number: it will
be padded with leading spaces if necessary. Location &14 will be
set to 5 on exit.

222

10.8 Type conversion
These routines allow conversion between integers, reals, and
strings.

The ‘Integer to real’ and ‘Real to integer’ routines are used
throughout the expression evaluator in BASIC when the type of
the number being dealt with needs to be converted. For example
if an integer is being added to a real number, the integer must be
converted to real before the addition is carried out.

The ‘String to number’ and ‘Number to string’ routines are used
during input and output of numbers, as the I/O routines do not
handle numbers directly.

citof – Convert integer to real number
Execution addr

BASIC1 &A2AF
BASIC2 &A2BE

Entry conditions:

IntA: integer to be converted

Exit conditions:

FPA: converted real number (normalised)

IntA: ABS value of original integer

A undefined
X undefined
Y undefined
C undefined

223

Description

This routine converts the 2’s complement (signed) integer in IntA
to a real number in FPA.

Other entry points

NONE

catof – Convert A to real number
Execution addr

BASIC1 &A2DE
BASIC2 &A2ED

Entry conditions:

A 2’s complement signed integer (+127 to −128)

Exit conditions:

FPA: converted real number (normalised)

A 0 if number is zero, else undefined (non-zero)
X undefined
Y undefined
C undefined
Z 1 if number is zero, else 0

Description

This routine converts the 2’s complement (signed) integer in A to
a real number in FPA.

Other entry points

NONE

224

cftoi – Convert real number to integer
Execution addr

BASIC1 &A3F2
BASIC2 &A3E4

Entry conditions:

FPA: real number to be converted

Exit conditions:

IntA: converted integer

FPA: 2’s complement integer part of number in mantissa
FPB: ABS value of fractional part of number in mantissa

A undefined
X undefined
Y undefined
C undefined

Description

This routine converts the floating point number in FPA into an
integer in IntA. If the number is too large to be converted to an
integer, a ‘Too big’ error (ERR = 20) will be generated. On
conversion, the ABS value of the number will be truncated, and
then negated if necessary; this means that ‘ −1.9’ will be
converted to ‘−1’ (try ‘A% = −1.9’). On exit, FPB mantissa
contains the ABS value of the fractional part of the number (the
top bit of &3E represents 0.5), and the sign of this fraction will be
in &2E, so this could be used to round the number properly
afterwards, if necessary.

225

Other entry points

1 int – Take INT of FPA

BASIC1 &ACA5
BASIC2 &AC7F

This entry performs the equivalent of the BASIC function ‘INT’:
it converts the floating point number to the highest integer which
is less than or equal to it (i.e. ‘−1.9’ gets converted to ‘1.9’ gets
converted to ‘1’). This routine will exit with &40 in A, and the
Z and N flags clear, to signal an integer result (as if from the
‘Get <factor> or <string-factor>’ routine). To round a number
to the nearest integer, 0.5 could be added to it before this routine
is called.

cntos – Convert number to string
Execution addr

BASIC1 &9ED0
BASIC2 &9EDF

Entry conditions:

Y type of number (&40=integer, &FF=real)

If Y= &40: integer in IntA
If Y=&FF: real in FPA

@% set as for the BASIC ‘PRINT’ statement
&15 top bit set if number is to be in HEX

226

Exit conditions:

StrA: converted string

IntA: undefined
FPA: undefined
FPB: undefined

&37,&38 undefined
&3B–&46 undefined
&49 undefined

&46C–&470 undefined

A undefined
X undefined
Y undefined
C undefined

Description

This routine converts the number in either IntA or FPA to a
string in StrA. If entered with bit 7 of &15 set, then a HEX
number will be produced; otherwise a decimal number will be
produced. The format of this number depends on the value of
@% (refer to ‘PRINT’ in the User Guide). This routine uses most
of the page zero temporary area, so any temporary results should
be saved out of the way before this routine is called.

Other entry points

1 cntoh – Convert number to HEX string

BASIC1 &9E81
BASIC2 &9E90

This is the routine called if the hex flag (bit 7 of &15) is set on
entry to the main routine. This will convert the number to a hex
string, ignoring the settings of @% and &15. Y must still contain
the type of the number (if it is real it will be converted to integer
before the HEX string is generated). Any leading zeros will be
suppressed. This entry only uses locations &3F to &46 for the
conversion.

227

cston – Convert string to number
Execution addr

BASIC1 &AC5A
BASIC2 &AC34

Entry conditions:

StrA: string to be converted

Exit conditions:

N 1=real, 0=integer

If N=1: result in FPA (real)
If N=0: result in IntA (integer)

&27 number type (&40=integer, &FF=real)

&2A–&35 undefined (except where specified above)
&43 undefined
&48–&4A undefined

A number type
X undefined
Y undefined
C undefined
Z 0

Description

This routine converts the ASCII decimal number in StrA into
either a real number in FPA or an integer in IntA. It uses the ‘Get
number at PTRB’ routine (getnmb), pointing PTRB into StrA,
and restores PTRB to its original value afterwards. It leaves the
6502 flags indicating the type of the result (either integer or real).

Other entry points

NONE

228

10.9 Integer routines
Most of the integer arithmetic is performed using the 4-byte
integer accumulator, IntA, which is held in page zero at &2A to
&2D (LSB in &2A, MSB in &2D). The multiplication and
division routines also use two other 4-byte accumulators in the
temporary storage area, at &39 to &3C and at &3D to &40.

IntA can be transferred to and from memory by using the variable
handling routines in section 10.5, with the variable descriptor
block set up as if to point to an integer variable. It can be set to 0
or −1 by using the ‘FALSE’ and ‘TRUE’ entry points (section
10.11).

lodiay – Load IntA with A,Y
Execution addr

BASIC1 &AF19
BASIC2 &AEEA

Entry conditions:

A LSB of 16-bit positive integer
Y MSB of 16-bit positive integer

Exit conditions:

IntA: 16-bit positive integer from A,Y

Z=0, N=0 to signal an integer result

A &40 (result type = integer)
X preserved
Y preserved
C preserved

Description

This routine sets up IntA with the 16-bit positive integer in A and
Y. The top 2 bytes of IntA are set to zero.

229

Other entry points

1 lodia – Load IntA with A

BASIC1 &AF07
BASIC2 &AED8

This entry sets Y to zero before entering the main routine; thus
setting IntA to the 8-bit positive integer in A.

lodi0 – Load IntA from 00,X to 03,X
Execution addr

BASIC1 &AF85
BASIC2 &AF56

Entry conditions:

X points to 4-byte integer in page zero

Exit conditions:

IntA: 4-byte integer loaded from 00,X to 03,X

Z=0, N=0 to signal an integer result

A &40 (result type = integer)
X preserved
Y preserved
C preserved

Description

This routine loads IntA with the 4-byte integer in page zero
pointed to by X.

Other entry points

NONE

230

stori0 – Store IntA at 00,X to 03,X
Execution addr

BASIC1 &BE5C
BASIC2 &BE44

Entry conditions:

X points to 4-byte area in page zero

IntA: number to be transferred

Exit conditions:

00,X to 03,X contains the 4-byte integer in IntA

A MSB of integer
X preserved
Y preserved
C preserved

Description

This routine copies the contents of IntA into a 4-byte area of page
zero pointed to by X.

Other entry points

NONE

231

negi – Negate IntA
Execution addr

BASIC1 &ADB5
BASIC2 &AD93

Entry conditions:

IntA: 4-byte integer to be negated

Exit conditions:

IntA: negated 4-byte integer

Z=0, N=0 to signify an integer result

A &40 (result type = integer)
X preserved
Y 0
C 0

Description

This routine negates the 4-byte integer in IntA.

Other entry points

1 absi – Take ABS value of IntA

BASIC1 &AD94
BASIC2 &AD71

This entry takes the absolute value of IntA. If it is negative, it will
be negated; otherwise it will be unaffected. Exit conditions are as
for the main routine.

232

addi – Perform integer addition
Execution addr

BASIC1 &9C36
BASIC2 &9C5B

Entry conditions:

IntA: 4-byte signed integer
STACK: 4-byte signed integer to add to IntA

X anything except ‘+’ or ‘−’

Exit conditions:

IntA: 4-byte signed integer result

integer popped from STACK

A &40 (type of result = integer)
X preserved
Y 3
C undefined

Description

This routine adds the 4-byte signed integer on the BASIC
STACK to the 4-byte signed integer in IntA. No overflow check
is made by this routine.

This routine is an integral part of the expression evaluator. The X
register must be set to any character other than a ‘+’, or a ‘−’
before the routine is called, or it will attempt to read another part
of the expression it expects to be at PTRB. X is its one character
look-ahead (see section 4.2).

Other entry points

NONE

233

subi – Perform integer subtraction
Execution addr

BASIC1 &9C9D
BASIC2 &9CC2

Entry conditions:

STACK: 4-byte signed integer
IntA: integer to subtract from number on STACK

X anything except ‘+’ or ‘−’

Exit conditions:

IntA: 4-byte signed integer result

integer popped from STACK

A &40 (type of result = integer)
X preserved
Y 3
C undefined

Description

This routine subtracts the 4-byte signed integer in IntA from the
4-byte signed integer on the BASIC STACK. No overflow
checking is made by this routine.

This routine is an integral part of the expression evaluator. The X
register must be set to any character other than a ‘+’, or a ‘−’
before the routine is called, or it will attempt to read another part
of the expression it expects to be at PTRB. X is its one character
look-ahead (see section 4.2).

Other entry points

NONE

234

muli – Perform integer multiplication
Execution addr

BASIC1 &9D4A
BASIC2 &9D6D

Entry conditions:

IntA: 4-byte signed integer multiplier
STACK: 4-byte signed integer multiplicand

&27 anything except ‘*’, ‘/’, &83 or &81

Exit conditions:

IntA: 4-byte signed integer result
&39–&3C undefined
&3D–&40 ABS value of result

multiplicand popped from STACK

A &40 (type of result = integer)
X copy of &27
Y undefined
C undefined

Description

This routine multiplies the 4-byte signed integer in IntA by the
4-byte signed integer on the BASIC stack. The number in IntA
must be between −32768 and +32767, as only the low 2 bytes are
used, once its ABS value has been found. The routine does no
checking for overflow, so it is a good idea to check for this before
calling the routine.

235

This routine is an integral part of the expression evaluator.
Location &27 must be set to any character other than a ‘*’, a ‘/’, a
‘MOD’ token or a ‘DIV’ token before the routine is called, or it
will attempt to read another part of the expression it expects to be
at PTRB. Location &27 is its one character look-ahead (see
section 4.2).

Other entry points

NONE

divi – Perform integer division
Execution addr

BASIC1 &99C0
BASIC2 &99E8

Entry conditions:

IntA: 4-byte positive integer divisor
&39–&3C 4-byte positive integer dividend
&3D–&40 zero

Exit conditions:

IntA: preserved
&39–&3C 4-byte positive integer quotient
&3D–&40 4-byte positive integer remainder

A undefined
X undefined
Y 0
C undefined

Description

This routine divides the 4-byte integer in page zero at &39 to &3C
by the 4-byte positive integer in IntA (&3D to &40 must be set to
zero on entry), leaving the result in &39 to &3C, and the
remainder in &3D to &40. If IntA is zero on entry to this routine,
a ‘Division by zero’ error (ERR = 18) will be generated.

236

If a signed division is required, the signed numbers should be
converted to positive integers (using the ‘Take ABS value of
IntA’ routine above) before this routine is called. The sign of the
result can be calculated as the EOR of the signs of the two
original operands (which should be saved before their ABS value
is used for the division), and the result of the division then
negated if necessary.

Other entry points

NONE

237

10.10 Floating point routines
Most of the floating point arithmetic is done using the main
floating point accumulator FPA, at &2E to &35, and the
secondary floating point accumulator FPB, at &3B to &42 (in the
page zero temporary storage area). The memory area used by
FPB may be used for other purposes by routines which do not
involve any floating point calculations. See section 2.2.2 for
more on floating point number storage.

The format of the accumulators is:

FPA FPB
&2E &3B sign byte
&2F &3C exponent overflow byte
&30 &3D binary exponent (offset &80)
&31 &3E mantissa (MSB)
&32 &3F mantissa
&33 &40 mantissa
&34 &41 mantissa (LSB)
&35 &42 mantissa low order rounding byte

FPA and FPB are transferred to and from memory using a
pointer at &4B,&4C. Floating point numbers are packed into 5
bytes when stored out in memory.

movfab – Move FPA to FPB
Execution addr

BASIC1 &A20F
BASIC2 &A21E

Entry conditions:

FPA: number to be copied

Exit conditions:

FPA: preserved
FPB: copy of FPA

238

A undefined
X preserved
Y preserved
C preserved

Description

This routine copies the floating point number in FPA to FPB.

Other entry points

NONE

movfba – Move FPB to FPA
Execution addr

BASIC1 &A4E4
BASIC2 &A4DC

Entry conditions:

FPB: number to be copied

Exit conditions:

FPB: preserved
FPA: copy of FPB

A undefined
X preserved
Y preserved
C preserved

Description

This routine copies the floating point number in FPB to FPA.

Other entry points

NONE

239

ldfan0 – Load FPA with zero
Execution addr

BASIC1 &A691
BASIC2 &A686

Entry conditions:

NONE

Exit conditions:

FPA: zero

A 0
X preserved
Y preserved
C preserved
Z 1

Description

This routine sets the floating point accumulator FPA to zero.

Other entry points

NONE

240

ldfan1 – Load FPA with 1.0
Execution addr

BASIC1 &A6A4
BASIC2 &A699

Entry conditions:

NONE

Exit conditions:

FPA: 1.0

A &81
X preserved
Y &81
C preserved
Z 0

Description

This routine sets the floating point accumulator FPA to 1.0.

Other entry points

NONE

241

ldfbn0 – Load FPB with zero
Execution addr

BASIC1 &A463
BASIC2 &A453

Entry conditions:

NONE

Exit conditions:

FPB: zero

A 0
X preserved
Y preserved
C preserved
Z 1

Description

This routine sets the floating point accumulator FPB to zero.

Other entry points

NONE

242

ldfam – Load FPA from (&4B)
Execution addr

BASIC1 &A3A6
BASIC2 &A3B5

Entry conditions:

(&4B) set to point to 5-byte packed real number

Exit conditions:

FPA: real number unpacked from (&4B)

A 0 if FPA is zero, else undefined (non-zero)
X preserved
Y 0
C preserved
Z set if FPA is zero, else clear

Description

This routine loads the floating point accumulator FPA from
memory, unpacking it from its 5-byte packed format. On entry,
the pointer at &4B,&4C points at the number to be loaded.

Other entry points

1 ldfat1 – Load FPA from &46C to &470

BASIC1 &A3A3
BASIC2 &A3B2

This entry pre-sets the memory pointer (&4B) to point to the real
number temporary storage slot at &46C before entering the main
routine.

243

ldfbm – Load FPB from (&4B)
Execution addr

BASIC1 &A33F
BASIC2 &A34E

Entry conditions:

(&4B) set to point to 5-byte packed real number

Exit conditions:

FPB: real number unpacked from (&4B)

A 0 if FPA is zero, else undefined (non-zero)
X preserved
Y 0
C preserved
Z set if FPA is zero, else clear

Description

This routine loads the floating point accumulator FPB from
memory, unpacking it from its 5-byte packed format. On entry,
the pointer at &4B,&4C points at the number to be loaded.

Other entry points

NONE

244

stfam – Store FPA at (&4B)
Execution addr

BASIC1 &A37E
BASIC2 &A38D

Entry conditions:

FPA: real number to be stored

(&4B) points to 5-byte destination

Exit conditions:

Number stored at (&4B)

A undefined
X preserved
Y 4
C preserved

Description

This routine packs FPA into a 5-byte area of memory pointed to
by the pointer at &4B,&4C. Note that the, number in FPA must
be in normalised form (i.e. with the top bit of the MSB of the
mantissa set) before this routine is called to store it in memory.
FPA and (&4B) are preserved by this operation. There is no
corresponding routine to store the contents of FPB into memory.

Other entry points

1 stfatx – Store FPA in floating point temp area

 Temp slot BASIC1 BASIC2

stfat1 &46C to &470 &A376 &A385
stfat2 &471 to &475 &A36E &A37D
stfat3 &476 to &47A &A372 &A381

245

These entry points pre-set the memory pointer at (&4B) to point
to a floating point temporary storage slot (&46C, &471, or &476)
before entering the main routine. These slots can be used to hold
temporary results in the middle of complex calculations, but they
should not be used if the expression evaluator is called, as this
may use these areas itself.

exfam – Exchange FPA with number at (&4B)
Execution addr

BASIC1 &A4DE
BASIC2 &A4D6

Entry conditions:

FPA: real number
(&4B) real number

Exit conditions:

FPA: real number from (&4B)
FPB: real number from (&4B)
(&4B) real number from FPA

A undefined
X preserved
Y 4
C preserved

Description

This routine exchanges the (normalised) number in FPA with the
number pointed to by (&4B). It loads FPB from (&4B), stores
FPA at (&4B), and then copies FPB into FPA.

Other entry points

NONE

246

pntmtx – Point (&4B) at temp storage slot
Execution addr

 Temp slot BASIC1 BASIC2

pntmt1 &46C to &470 &A7FB &A7F5
pntmt2 &471 to &475 &A7F3 &A7ED
pntmt3 &476 to &47A &A7F7 &A7F1
pntmt4 &47B to &47F &A7EF &A7E9

Entry conditions:

NONE

Exit conditions:

(&4B) points to 5-byte temp store slot

A 4
X preserved
Y preserved
C preserved

Description

These routines set the floating point memory pointer in
&4B,&4C to point to a temporary storage slot.

Other entry points

NONE

247

tstfa – Test FPA
Execution addr

BASIC1 &A1CB
BASIC2 &A1DA

Entry conditions:

FPA: number to be tested

Exit conditions:

If Z=1, FPA is zero
If Z=0, N=1 FPA is negative
If Z=0, N=0 FPA is positive

A zero if Z=0, else undefined (non-zero)
X preserved
Y preserved
C preserved

Description

This routine tests the floating point accumulator FPA, and sets
the Z and N flags of the 6502 according to the number.

Other entry points

NONE

248

nmlfa – Normalise FPA
Execution addr

BASIC1 &A2F4
BASIC2 &A303

Entry conditions:

FPA: number to be normalised

Exit conditions:

FPA: normalised number

A 0 if FPA is zero, else undefined (non-zero)
X undefined
Y undefined
C undefined
Z set if number is zero, else clear

Description

This routine ensures that the number in FPA is in normalised
form (i.e. it has the top bit of the MSB of the mantissa set). If it is
not already normalised, it will shift up the mantissa of the number
(correcting the exponent) until it is.

Other entry points

NONE

249

rcofa – Round FPA, and check overflow
Execution addr

BASIC1 &A667
BASIC2 &A65C

Entry conditions:

FPA: number to be rounded

Exit conditions:

FPA: number with mantissa rounded into 4 bytes

A 0
X undefined
Y undefined
C undefined
Z 1

Description

This routine tests the low-order rounding byte of FPA mantissa
(held in &35), and rounds up the remaining 4 bytes of the
mantissa if necessary. The low-order rounding byte is used for
more accuracy in the middle of calculations, but must be rounded
up into the rest of the mantissa before the number can be stored
in memory in its packed format.

The routine then checks the exponent overflow byte (which is
used to allow internal calculations to temporarily overflow the
normal number limits). If this is zero, no overflow has occurred,
and the routine exits; if it is negative, an underflow has occurred,
and the number will be set to zero; and if it is positive (non-zero),
an overflow has occurred, and a ‘Too big’ error (ERR = 20) will
be generated. This routine (together with normalising) ensures
that FPA is ready to be stored in memory in its packed 5-byte
format.

250

Other entry points

1 nrofa – Normalise, round and check overflow

BASIC1 &A664
BASIC2 &A659

This normalises FPA before entering the main routine above.

negfa – Negate FPA
Execution addr

BASIC1 &ADA0
BASIC2 &AD7E

Entry conditions:

FPA: number to be negated

Exit conditions:

FPA: negative of initial number

Z=0, N=1 to signal a real result

A &FF (to signal a real result)
X preserved
Y preserved
C preserved

Description

This routine negates the real number in FPA, and sets the flags to
signal a real result.

Other entry points

NONE

251

addfba – Add FPB to FPA
Execution addr

BASIC1 &A513
BASIC2 &A50B

Entry conditions:

FPA, FPB contain the numbers to be added

Exit conditions:

FPA: sum
FPB: undefined

A undefined
X undefined
Y undefined
C undefined
Z undefined

Description

This routine adds the floating point number in FPB to the floating
point number in FPA, leaving the result in FPA, and normalises
the result. If a subtraction is required, then the number to be
subtracted should be negated (using the ‘Negate FPA’ routine
above), and the resulting numbers can added together.

Other entry points

1 addmfa – Add number at (&4B) to FPA

BASIC1 &A50E
BASIC2 &A500

This entry point loads the number at (&4B) into FPB before
calling the main routine. On exit, the ‘Round FPA and check
overflow’ routine is called to ensure that it is ready to be stored in
memory (a ‘Too big’ error will be generated if it overflows).

252

2 subfam – Subtract FPA from number at (&4B)

BASIC1 &A50B
BASIC2 &A4FD

This entry point negates FPA before entering entry point 1 above.
The result is left in FPA.

3 submfa – Subtract number at (&4B) from FPA

BASIC1 &A505
BASIC2 &A4D0

This entry point calls entry point 2 above, and then negates the
result.

mulfab – Multiply FPA by FPB
Execution addr

BASIC1 &A61E
BASIC2 &A613

Entry conditions:

FPA, FPB contain numbers to be multiplied

Exit conditions:

FPA: product
FPB: undefined

&43–&47 undefined

A undefined
X undefined
Y 0
C undefined
Z 1

253

Description

This routine multiplies the real number in FPA by the real
number in FPB, leaving the result in FPA. It does not test for
either number being zero on entry, but it will still perform the
multiplication correctly, even if one of them is (although it will be
quicker if it is discovered before this routine is called). The result
of the multiplication is not normalised (or tested for overflow), so
the normalising routine should be called before it is written out to
memory.

Other entry points

1 mulfam – Multiply FPA by number at (&4B)

BASIC1 &A611
BASIC2 &A606

This entry point loads the number at (&4B) into FPB before
calling the main routine. If either number is zero, the routine will
exit with a zero result immediately.

2 mufamo – Multiply FPA by (&4B); check overflow

BASIC1 &A661
BASIC2 &A656

This entry point calls entry point 1 above, and then normalises
the result. Finally, it rounds the low-order byte into the mantissa,
and tests for overflow, generating a ‘Too big’ error (ERR = 20) if
it is.

254

mufa10 – Multiply FPA by 10
Execution addr

BASIC1 &A1E5
BASIC2 &A1F4

Entry conditions:

FPA: number to be multiplied by 10

Exit conditions:

FPA: original number multiplied by 10
FPB: undefined

A undefined
X undefined
Y preserved
C undefined
Z undefined

Description

This routine multiplies the number in FPA by 10. It is faster than
the general ‘Multiply FPA by FPB’ routine, and does not use as
much temporary memory. It does not test for the number being
zero on entry, and will produce an invalid number if this is the
case (although calling the ‘Test FPA’ routine afterwards will
rectify it). If the number overflows, the ‘exponent overflow byte’
(held in &2F) will be incremented, but no error will be generated
at this stage.

Other entry points

NONE

255

divfab – Divide FPA by FPB
Execution addr

BASIC1 &A6FC
BASIC2 &A6F1

Entry conditions:

FPA: dividend
FPB: divisor

Exit conditions:

FPA: quotient (FPA/FPB)
FPB: undefined

&43–&46 undefined

A 0
X undefined
Y undefined
C undefined
Z 1

Description

This routine divides the number in FPA by the number in FPB,
leaving the result in FPA. FPA is then normalised, rounded, and
checked for overflow. The routine does not test for either number
being zero on entry: if the routine is entered with FPB zero, an
invalid result will be obtained.

Other entry points

1 divfam – Divide FPA by number at (&4B)

BASIC1 &A6F2
BASIC2 &A6E7

This entry point divides FPA by the number in memory at (&4B),
leaving the result in FPA. If the number at (&4B) is zero, then a
Divsion by zero’ error (ERR = 18) will be generated.

256

2 divmfa – Divide number at (&4B) by FPA

BASIC1 &A6B8
BASIC2 &A6AD

This entry divides the number at (&4B) by FPA, leaving the
result in FPA. If FPA is zero on entry, a ‘Division by zero’ error
(ERR = 18) will be generated.

3 recfa – Take reciprocal of FPA (set FPA = 1/FPA)

BASIC1 &A6B0
BASIC2 &A6A5

This entry divides FPA into 1, leaving the result in FPA. If FPA is
zero on entry, a ‘Division by zero’ error (ERR = 18) will be
generated.

257

dvfa10 – Divide FPA by 10
Execution addr

BASIC1 &A23E
BASIC2 &A24D

Entry conditions:

FPA: number to be divided by 10

Exit conditions:

FPA: original number divided by 10
FPB: undefined

A undefined
X preserved
Y preserved
C undefined
Z undefined

Description

This routine divides the number in FPA by 10, leaving the result
in FPA. The ‘Round and check for overflow’ routine should be
called if the result of this is to be stored in memory, as an
underflow may have resulted from this division. This routine is
faster than the general ‘Divide FPA by FPB’ routine, and does
not use as much temporary memory.

Other entry points

NONE

258

series – Perform series evaluation
Execution addr

BASIC1 &A889
BASIC2 &A897

Entry conditions:

FPA: argument for series evaluation

A LSB of pointer to constant list
Y MSB of pointer to constant list

Exit conditions:

FPA: result of series evaluation
FPB: undefined

&43–&48 undefined
&4B–&4E undefined

A undefined
X undefined
Y undefined
C undefined
Z 1

Description

This routine performs the series evaluation required by some of
the BASIC mathematical functions (e.g. SIN, EXP). On entry,
the pointer in A (LSB) and Y (MSB) points to a list of constants
to be used: the first byte of the list indicates 1 less than the
number of 5-byte floating point constants in it. The algorithm
that the series evaluator follows is:

A = first constant
REPEAT

A = X/A + next constant
UNTIL no more constants left

259

where X represents the argument passed to the series evaluator in
FPA, and A is the eventual result.

Other entry points

NONE

fixfa – Convert FPA to fixed format
Execution addr

BASIC1 &A40C
BASIC2 &A3FE

Entry conditions:

FPA: floating point number to be fixed

Exit conditions:

If ABS(FPA) < 1 on entry:

FPA: zero
FPB: original number

If ABS(FPA) >= 1 on entry:

FPA sign: sign of number
FPA exponent: &A0
FPA mantissa: 2’s complement integer part

FPB sign: zero
FPB exponent: zero
FPB mantissa: ABS value of fractional part

A undefined
X preserved
Y preserved
C undefined
Z undefined

260

Description

This routine converts the floating point number in FPA into its
integer and fractional parts. To find the integer part, the
conversion truncates the ABS value of the original number, and
then negates it if it was negative. This means that the integer part
of ‘−1.9’ found by this routine would be ‘−1’ (see ‘Type
conversion routines’: section 10.8 for alternative conversion to
integer). If the number is too large for an integer, a ‘Too big’
error (ERR = 20) will be generated. Note that the integer left in
FPA mantissa will be in the opposite order to normal integers:
the MSB will be in &31, and the LSB will be in &34.

If the ABS value of the original number is less than 1, then the
fractional part (i.e. the original number) will be left as a complete
real number in FPB. Otherwise, the ABS value of the fractional
part will be left in the mantissa of FPB, with no exponent. This
requires an exponent of &80 (representing 20, positioning the
binary point just above the top bit of FPB mantissa) to be given to
it, and the sign should also be transferred from the sign of FPA.
The exponent should NOT be set if the number in FPB is already
complete.

This routine can be used very easily to find the integer part of a
number; but if it is to be used to to extract the fractional part, it
may be better to test if the ABS value of FPA is less than 1 before
calling it (alternatively, the next routine could be used).

Other entry points

NONE

261

fracfa – Extract fractional part of FPA
Execution addr

BASIC1 &A494
BASIC2 &A486

Entry conditions:

FPA: number to be used (normalised)

Exit conditions:

&4A: LSB of 2’s complement integer part
FPA: fractional part of number (normalised)

A undefined
X undefined
Y preserved
C undefined
Z undefined

Description

This routine extracts the integer and fractional parts of the
number in FPA, leaving the LSB of the (signed) integer part in
&4A, and the fractional part as a real number in FPA. The
original number will be rounded to the nearest integer, so that the
fractional part will be between −0.5 and +0.5. A ‘Too big’ error
(ERR = 20) will be generated if the number is too large to fit in a
4-byte integer, but no test is made to check if it is outside the
range of a single byte (the other 3 bytes of the integer part are
lost).

Other entry points

NONE

262

10.11 Function entry points
This is a list of the equivalent entry points for the easily accessible
BASIC functions. Some of the other functions require more than
one argument, and others cannot be used outside the environment
of the expression evaluator.

The ‘Argument’ column gives the type of the item which will be
operated on by the function. The possibilities are:

– – – – No argument is expected by this function
real A real number should be in FPA on entry
integer An integer should be in IntA on entry
string A string should be in StrA on entry
numeric Either ‘real’ or ‘integer’, with N set if real

Note that if the function expects a numeric, the N and Z flags
should specify the type on entry (as if the ‘Get <factor> or
<string-factor>’ routine had just been used).

On exit from these routines, the result will be in IntA, FPA, or
StrA, depending on the result. The type of the result will be in A
(&00=string, &40=integer, &FF=real).

263

Function Argument Result BASIC1 BASIC2

ABS numeric numeric &AD90 &AD6D
ADVAL integer integer &AB59 &AB36
ASC string integer &ACC9 &ACA3
ASN real real &A8CF &A8DD
ATN real real &A90A &A90A
CHR$ integer string &B3F1 &B3C0
COS real real &A98C &A990
COUNT – – – – integer &AF26 &AEF7
DEG real real &ABEA &ABC5
ERL – – – – integer &AFCE &AF9F
ERR – – – – integer &AFD5 &AFA6
EVAL string anything &AC17 &ABEE
EXP real real &AAB7 &AA94
FALSE – – – – integer &AEF9 &AECA
GET – – – – integer &AFE8 &AFB9
GET$ – – – – string &AFEE &AFBF
HIMEM – – – – integer &AF32 &AF03
INT numeric integer &ACA1 &AC7B
LEN string integer &AF05 &AED6
LN real real &A807 &A801
LOMEM – – – – integer &AF2B &AEFC
NOT integer integer &ACFA &ACD4
PAGE – – – – integer &AEEF &AEC0
PI – – – – real &ABF0 &ABCB
POS – – – – integer &AB92 &AB6D
RAD real real &ABD9 &ABB4
RND – – – – integer &AF80 &AF51
RND() integer numeric &AF41 &AF12
SGN numeric integer &ABB2 &AB8D
SIN real real &A997 &A99B
SQR real real &A7B7 &A7B7
TAN real real &A6CC &A6C1
TIME – – – – integer &AEE3 &AEB4
TOP – – – – integer &AF13 &AEE6
TRUE – – – – integer &ACEA &ACC4
USR integer integer &ABFE &ABD5
VAL string numeric &AC5A &AC34
VPOS – – – – integer &AB9B &AB76

264

11 Errors and Error
Recovery
The method that BASIC uses to generate an error is to execute a
BRK instruction, which is followed by the error number and
error message in the following format:

BRK instruction to generate the error
Single byte error number (ERR)
Error message (like ‘Mistake’)
A zero byte to terminate the message

The first section of this chapter describes the default BRK
handler in BASIC, and what normally happens when an error is
generated. The subsequent sections detail the errors which
BASIC can generate, and any recovery from them (if possible),
so that they can be intercepted in a similar way to the methods
used in chapters 7 to 9.

11.1 The BASIC BRK handler
The Machine Operating System contains a BRK handler, which
prints out the error message and restarts the current language.
However, BASIC uses its own, so that it can allow errors to be
trapped using the ‘ON ERROR’ statement.

BASIC keeps an ‘ON ERROR’ pointer in locations &16,&17 in
page zero, which is normally set to point to the default error
handler (in the ROM). This pointer tells the BASIC BRK
handler the location of a set of BASIC statements which will
deal with the error.

BASIC resets it to point to the default error handler every time it
enters immediate mode (either when it initialises, or when it has
finished executing a program), or whenever an ‘ON ERROR
OFF’ statement is executed. When an ‘ON ERROR’ statement is
executed, this pointer will be pointed at the start of the
statements on the rest of the line, so that these will be executed
when an error occurs.

265

The other advantage that BASIC gains by using its own error
handler, is that the error messages can be tokenised. This means
that keywords which appear in error messages (like the
‘RENUMBER’ in ‘RENUMBER space’) only take up 1 byte.
The ‘REPORT’ statement, which is used to print out the error
message, will convert these tokens into the correct keyword and
print them out fully (this uses the ‘ptoken’ ROM routine).

The action of the BASIC 1 BRK handler is:

1 Set up ERL. The base of PTRA will be at the start of the
statement which caused the error, so a search is carried out
through the program, keeping the line numbers, until the
error line is found.

2 Turn TRACE off.

3 Load the ‘ON ERROR’ pointer into PTRA, and start
executing the statements making up the error handler by
jumping to the ‘Decode and execute command’ entry. This
executes the statements as if they had just been typed in as
a command.

The default ERROR handler for BASIC1 reads:

 REPORT:IF ERL<>0 PRINT" at line ";ERL;
 0 PRINT:END

The BASIC2 BRK handler has been changed slightly from the
BASIC1 version; it will not allow commands to be part of the
error handler. This means that you can’t do ‘ON ERROR LIST’
with BASIC2; but it does also stop ‘ON ERROR 10’ (which may
have been mistyped for ‘ON ERROR GOTO 10’) which corrupts
the program, giving a ‘Bad program’ error.

The action of the BASIC 2 BRK handler is:

1 Set up ERL.

2 Turn TRACE off.

266

3 If the error number (ERR) is 0, the error is fatal (not to be
trapped by an ON ERROR statement), so set the ‘ON
ERROR’ pointer to point to the default error handler (i.e.
perform ‘ON ERROR OFF’).

4 Load the ‘ON ERROR’ pointer into PTRA, ready to
execute it later.

5 Clear the BASIC stacks, and restore the DATA pointer.
This is done in BASIC1 in the ‘Decode and execute
command’ routine.

6 Abandon the VDU queue (OSBYTE &DA). This is so
that the first few characters of the error message to be
printed will not be used as part of a multi-character VDU
command (like VDU 19 or VDU 23).

7 Acknowledge an ESCAPE condition. In BASIC 1, this is
done by the ‘Decode and execute command’ routine.

8 Set the OPT value to &FF (default).

9 Execute the BASIC statements of the error handler at
PTRA, as if they are part of a program.

The default ERROR handler for BASIC2 reads:

REPORT:IF ERL PRINT" at line ";ERL:END ELSE PRINT:END

Note that the ‘REPORT’ statement is slightly different for each
BASIC: in BASIC1 a VDU 6 command is sent before the error
message is printed; in BASIC2 the error message is just printed.
This means that if a program turns the screen off using a VDU 21
command, in BASIC1 any error messages will be printed on the
screen, but in BASIC2 it will not.

267

11.2 Numbered errors
The errors detailed in this section have error numbers associated
with them, and can be trapped by the BASIC ‘ON ERROR’
statement.

These can be recognised easily by a BRK handler, as &FD,&FE
will point at the error number when the BRK handler is entered.
Chapters 7 to 9 show how some of these errors can be
intercepted.

Error 1 – Out of range
This error is generated by the assembler when the address
supplied to a branch instruction is too far away: it should be
within −126 to +129 bytes of the branch instruction itself (i.e.
within −128 to +127 of the instruction which would be executed
if the branch did not take place).

This error (and the ‘No such variable’ error) will be suppressed if
‘OPT 0’ or ‘OPT 1’ is used in the assembler (i.e. bit 1 of OPT is
zero). In this case, a displacement of 0 will be used for the
branch, and assembly will be allowed to continue. However, due
to the way in which the test for this bit is carried out, the ‘Out of
range’ error will only be suppressed if the OPT setting used is
either 0 or 1. In BASIC2, setting bit 2 of the OPT value enables
remote assembly (see section 1.6.1); so if this facility is being
used, this error will not be suppressed.

This error is recoverable, so that assembly can continue, although
recovery should only be attempted if remote assembly is being
used (in BASIC2).

268

Error conditions: (BASIC2 only)

Error number: 1 ‘Out of range’

Stack contents: RTI information 3 bytes

&28 current OPT value

A (current OPT value) DIV 2
X mnemonic number
Y undefined

Recovery should only be attempted if:

1 The error number at (&FD) is 1

2 Bit 1 of the current OPT value (bit 0 of A) is 0

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack

2 Set A to zero

3 JMP to &86A5 (BASIC2 only)

This will use a zero displacement for the branch, and assembly
will continue.

269

Error 2 – Byte
This error is generated by the assembler when a 2-byte value is
used where only a single byte is allowed (the most significant 2
bytes of the 4-byte integer are ignored). The addressing modes
which only allow a single byte are:

LDA #BB / Immediate
LDA (BB),Y / Post-indexed indirect
LDA (BB,X) / Pre-indexed indirect

Recovery should not normally be attempted from this error, as
potentially fatal mistakes in an assembler program may not be
spotted; however it is possible to recover and just use the LSB of
the 2-byte word as the byte if required.

Error conditions:

Error number: 2 ‘Byte’

Stack contents: RTI information 3 bytes

IntA: value to be used in addressing mode

A MSB of the 16-bit value in IntA (non-zero)
X mnemonic number
Y undefined

Recovery should only be attempted if:

1 The error number at (&FD) is 2

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack

2 JMP to &8669 (BASIC1) or &86A8 (BASIC2)

This will use only the LSB of the 2-byte value as the byte for the
instruction, and assembly will continue.

270

Error 3 – Index
This error is generated by the assembler if it finds an error in the
syntax of any of the indexed addressing modes. The main causes
of this are:

(a) The absence of an index in one of the indexed indirect
modes. For example, ‘LDA (&80)’ will cause this error.

(b) A comma was found after the data, but no ‘X’ or ‘Y’ was
found after the comma. For example, ‘LDA &80,Z’ will
cause this error

(c) The wrong index register was used for this particular
instruction. For example, ‘LDY &80,Y’ is not allowed.

Error conditions:

Error number: 3 ‘Index’

Stack contents: RTI information 3 bytes

IntA: value used in the instruction

A MSB of the 16-bit value in IntA (non-zero)
X mnemonic number
Y undefined

This error is not recoverable.

271

Error 4 – Mistake
This error is generated by BASIC when an equals sign, ‘=’, is not
found after the first item of an assignment statement.

The usual cause of this is the mis-typing of a keyword at the start
of a statement. When BASIC attempts to interpret the statement,
it does not find a keyword, so it assumes that the item is a
variable. When it doesn’t find the ‘=’ after it, it generates a
‘Mistake’ error. By trapping this error, it is possible to add in new
statements or commands to the language (see chapter 7).

There are, in fact, 5 slightly different causes of a ‘Mistake’:

(a) A non-existent, but valid, variable name was found at the
start of a statement, but the first non-space character after
it was not a ‘=’.

(b) An existing variable was found at the start of a statement,
but the first non-space character after it was not a ‘=’. This
looks the same as (a) above, but a slightly different action
is taken by the BASIC interpreter.

(c) A ‘LET’ followed by a valid variable name was found, but
no ‘=’ was found after the variable.

(d) A pseudo-variable (like ‘HIMEM’) was found at the start
of a statement, but no ‘=’ was found after it.

(e) A ‘FOR’ was found, followed by a valid variable name,
but no ‘=’ was found after the variable.

Note that if an invalid symbol is found at the start of a statement,
and not a valid variable name, then a ‘Syntax error’ (error 16) will
be generated instead.

272

Error conditions:

Error number: 4 ‘Mistake’

Stack contents: RTI information 3 bytes
 Return address 2 bytes
 (Return addr−(d) only 2 bytes)

PTRA: points to the character after the first
 non-space character of the line.

PTRB: points to the character after the character
 which was not an ‘=’.

A the character which was not an ‘=’
X undefined
Y PTRB offset−1 (i.e. points at char in A)

Recovery should only be attempted if:

1 The error number at (&FD) is 4

2 The name at the start of the statement can be recognised as
a new command or statement keyword. To attempt this, a
pointer could be constructed which points at the character
one before PTRA, and recognition attempted from there.
See section 7.4 for more on recognising keywords.

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack

2 Pull the 2 bytes of return address from the stack

3 If the first character of the statement was a pseudo-variable
token (case (d)), then pull the other 2 bytes of return
address from the stack. Normally a statement with a
pseudo-variable at the start will not be recognised as a new
command (unless one of the new keywords contains the
token for it at the front), so this step does not need to be
taken.

273

4 The action of the new statement can now be performed.
This should be a call to the ‘Check for end of statement’
routine at &9810 (BASIC1) or &9857 (BASIC2), to set up
the pointers ready to continue with the next statement.

5 Finally, after the action of the new statement has been
completed, execution of the rest of the program can be
continued with a JMP to &8B0C (BASIC1) or &8B9B
(BASIC2). Alternatively, a restart of BASIC may be
performed; this may be necessary if the program currently
being run has been changed (by deleting a line, perhaps),
as the syntax pointers may not point to the correct part of
the program.

Note that pseudo-variables are not tokenised if followed by an
alphanumeric character (see section 2.3.1). This means that new
commands may include these at the start of the new keyword
(TIMER’, for example).

Error 5 – Missing ,
This error is generated by BASIC if it fails to find a comma where
one is required. Most of the functions which expect a comma
separating their arguments will give this error if it is missing. For
example, ‘A=POINT(X)’ will cause this error.

Error conditions:

Error number: 5 ‘Missing ,’

Stack contents: RTI information 3 bytes
 (undefined)

A character which was not a comma
X undefined
Y undefined

This error is not recoverable.

274

Error 6 – Type mismatch
This error is generated by BASIC if a string value was found
where a number was expected, or a number was found where a
string was expected. There are many ways that this error can be
caused, including assigning a string to a number (and vice-versa)
or giving the wrong type of argument to a function.

Error conditions:

Error number: 6 ‘Type mismatch’

Stack contents: RTI information 3 bytes
 (undefined)

A undefined
X undefined
Y undefined

This error is not recoverable.

Error 7 – No FN
This error is generated by BASIC when an equals sign is found at
the start of a statement (signalling a return from a FN), but a FN
is not currently being executed. The FN return routine only
decides that a FN is in progress if the 6502 stack pointer is below
&FC, and there is a FN token (&A4) as the first item on the
stack, at &1FF. See section 5.3 for more on FNs and PROCs.

When inside a FN, the 6502 S register should be &F5 (the next
available byte), and the contents of the stack should be:

&1F6 return addr to FN caller 2 bytes
&1F8 PTRB base MSB
&1F9 PTRB base LSB
&1FA PTRB offset
&1FB number of parameters
&1FC PTRA base MSB
&1FD PTRA base LSB
&1FE PTRA offset
&1FF Bottom: &A4 (FN token)

275

Note that the stack is ‘upside down’: the top of stack works
downwards in page 1. Note also that the parameter values are
stored on the BASIC STACK, rather than the 6502 stack.

Section 8.3 illustrates how this error can be used to throw away an
overlayed FN when it exits, by substituting a different byte on the
bottom of the 6502 stack when the FN is called.

Error conditions:

Error number: 7 ‘No FN’

Stack contents: RTI information 3 bytes
 undefined

PTRA: points to the character after the ‘=’

A undefined
X copy of S (after TSX)
Y undefined

Recovery should only be attempted if:
1 The error number at (&FD) is 7

2 The condition of the stack due to which the error occurred
can be determined.

To recover from the error:
1 Pull the 3 bytes of RTI information from the stack.

2 Evaluate the <numeric> or <string> following the ‘=’, and
check that it is at the end of the statement.

3 If we are in a FN (but it had been ‘hidden’ by changing the
token at &1FF, for example) then executing an RTS will
exit from the FN. The result of the FN should be in IntA,
FPA, or StrA, with the result type stored in &27 (this is
done automatically by the ‘Get <numeric> or <string>’
routine).

Note that the recovery performed in section 8.3 is more complex
than this, as it also has to throw away the FN from the STACK.

276

Error 8 – $ range
This error is generated by BASIC if an attempt is made to use the
string indirection operator to assign or read from a string in page
zero. For example, the statement ‘PRINT $80’ will cause this
error.

It is possible to recover from this error to allow strings to be
assigned in page zero, but it is not possible to read from a page
zero string that has ‘got through’ the $ range check. If the BASIC
‘Get value of variable’ routine discovers that the address of an
indirected string is only a single byte (i.e. in page zero), it will
interpret it as ‘CHR$’ instead. Thus, if this error is being
recovered, ‘PRINT $&70’ will behave the same as ‘PRINT
CHR$&70’ (although ‘$&70=A$’ will place A$ at location &70
onwards). This mechanism does not appear to have any possible
use in BBC BASIC, as it should not allow the address of strings to
be less than &100. However, the BASIC on the Acorn ATOM
used ‘$’ with a single-byte number instead of ‘CHR$’, so it could
be left over from this.

Error conditions:

Error number: 8 ‘$ range’

Stack contents: RTI information 3 bytes
 return address 2 bytes

IntA: address of the defined-address string

A 0
X undefined
Y undefined

Recovery should only be attempted if:

1 The error number at (&FD) is 7

277

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack.

2 Set the type of of the variable to be a defined string, by
storing &80 in location &2C (the ‘type’ byte of the
variable descriptor block).

3 Clear the Z flag (this may have been done already), and set
the C flag: this indicates that a valid string variable has
been found (see ‘Find variable’ in section 10.5).

4 Execute an RTS instruction, to return to the code which
called the ‘Find variable routine’.

Error 9 – Missing ”
This error is generated by BASIC if the end of the line is found
before the closing quote mark of a string. Anything which uses
quoted strings (i.e. READ, INPUT, and the ‘Get <string-factor>’
routine) can cause this error.

Error conditions:

Error number: 9 Missing ”

Stack contents: RTI information 3 bytes
 undefined

A &0D
X undefined
Y undefined

This error is not recoverable.

278

Error 10 – Bad DIM
This error is generated by BASIC if an error is encountered in a
‘DIM’ statement. The possible causes of this are:

(a) An attempt is made to re-dimension an array which already
exists

(b) One of the dimensions of the array is either negative, or
greater than &3FFF

(c) The total number of bytes required by the array is greater
than &FFFF

(d) The size given to a ‘reserve bytes’ DIM is either less than
−1, or greater than &FFFE

(e) An invalid variable name is found as the DIM subject

See also error 11 – ‘DIM space’.

Error conditions:

Error number: 10 ‘Bad DIM’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable

279

Error 11 – DIM space
This error is generated by BASIC if there is not enough memory
for the space required by a ‘DIM’ statement. This can be caused
by:

(a) The new value of the HEAP pointer calculated for an array
would be above the BASIC STACK, or would have
‘wrapped round’ the memory map

(b) The new value of the HEAP pointer calculated for a
‘reserve bytes’ DIM would be above the BASIC STACK;
no test for wrap-round is made (so ‘DIM A% &FFFE’ will
move the HEAP pointer down by 1 byte).

If the DIM statement runs out of memory while it is allocating
space for the name of the array on the HEAP, then a No room’
error will be produced instead.

This error can only be recovered if more space can be allocated
somehow (by forcing a MODE change and shifting the STACK,
perhaps).The two possible causes of this error, (a) and (b), must
be recovered differently.

Error conditions:

Error number: 11 ‘DIM space’

Stack contents: RTI information 3 bytes

&37,&38 If (a): copy of old HEAP pointer in &2,&3
 If (b): undefined (probably lower than (a))

HEAP: If (a): points at ‘offset’ byte of array header
 If (b): old value

A undefined
X MSB of new HEAP pointer
Y LSB of new HEAP pointer
C set

280

Recovery should only be attempted if:

1 The error number at (&FD) is 11 (&B)

2 The new HEAP pointer (in A,Y) is above the BASIC
STACK pointer. If it is not, the HEAP pointer has
wrapped round over the top of the memory, and recovery
should be aborted.

3 The BASIC STACK can be shifted up out of the way, so
that there is enough room for the new HEAP.

4 The STACK has not already been corrupted by the array
header information. In case (a), the ‘offset’ byte pointed to
by the old HEAP pointer gives the number of bytes already
written on to the HEAP; if these would be above STACK,
then the STACK has been corrupted. In case (b) there is no
header information.

To recover from the error:

1 Pull the 3 bytes of RTI information from the 6502 stack.

2 Shift the BASIC STACK so that the STACK pointer is
above the required new HEAP pointer (moving the HEAP
would be more tricky, due to all the pointers which point
into it).

3 Test if the pointer in locations &37 and &38 is equal to the
pointer in locations &2 and &3: if it is, then the error is
due to (a); otherwise it is due to (b).

4 If the error is due to (a), execute a JMP to &91A0
(BASIC1) or &91EB (BASIC2); if it was due to (b),
execute a JMP to &90B5 (BASIC1) or &9108 (BASIC2).

The new HEAP value will be set, and the DIM statement will
continue (the DIM’d area will also be cleared if it is for an array).

281

Error 12 – Not LOCAL
This error is generated by the BASIC ‘LOCAL’ statement if a FN
or PROC is not currently being executed.

BASIC decides that a FN or PROC is not in progress, if the 6502
stack pointer is &FC or above. See section 5.3 for more on
PROCs and FNs.

Error conditions

Error number: 12 ‘Not LOCAL’

Stack contents: RTI information 3 bytes

A undefined
X copy of S (by ‘TSX’)
Y undefined

This error is not recoverable.

Error 13 – No PROC
This error is generated by BASIC when an ‘ENDPROC’
statement is found, but a PROC is not currently being executed.
The ENDPROC handler only decides that a PROC is in progress
if the 6502 stack pointer is below &FC, and there is a PROC
token (&F2) as the first item on the stack, at &1FF. See section
5.3 for more on FNs and PROCs.

When inside a PROC, the 6502 S register should be &F5 (the
next available byte), and the contents of the stack should be:

&1F6 return addr to PROC caller 2 bytes
&1F8 PTRB base MSB
&1F9 PTRB base LSB
&1FA PTRB offset
&1FB number of parameters
&1FC PTRA base MSB
&1FD PTRA base LSB
&1FE PTRA offset
&1FF Bottom: &F2 (PROC token)

282

Note that the stack is ‘upside down’: the ‘top of stack’ works
downwards in page 1. Note also that the old parameter values are
stored on the BASIC STACK, rather than the 6502 stack.

Section 8.3 illustrates interception of this error to remove an
overlayed PROC from the STACK when it exits, by changing the
token on the bottom of the stack when it is called.

Error conditions:

Error number: 13 ‘No PROC’

Stack contents: RTI information 3 bytes
 undefined

PTRA: points to the character after the ‘ENDPROC’

A undefined
X copy of S (after TSX)
Y undefined

Recovery should only be attempted if:

1 The error number at (&FD) is 13

2 The condition of the stack which caused the error can be
determined.

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack.

2 Call the routine to ‘Check end of statement at PTRA’, at
&9810 in BASIC1 or &9857 in BASIC2.

3 If we are in a PROC (but it had been ‘hidden’ by changing
the token at &1FF, for example), executing an RTS will
exit from the PROC. This could be done by JMPing to the
‘Check end of statement’ routine instead.

283

Error 14 – Array
This error is generated by the BASIC ‘Find variable’ routine. It
will be caused either if an array name is referenced which has not
already been dimensioned; or if the array referenced has fewer
dimensions than the one in the original DIM statement (if it has
more than the one in the DIM statement, a ‘Missing)’ error will
be generated).

Error conditions

Error number: 14 ‘Array’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

Error 15 – Subscript
This error is generated by the BASIC ‘Find variable’ routine, if
the subscript which is used with an array is out of range. This can
be caused if the subscript is negative, or if it is larger than the
subscript which the array was DIM’d with.

Error conditions

Error number: 15 ‘Subscript’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

284

Error 16 – Syntax error
This error is generated by the BASIC ‘Check for end of
statement’ routine if the end of a statement was not found. It can
also be caused if the first character of the statement is not a
statement token, a variable name, or a special symbol (like ‘*’,
‘=’, or ‘[’); as BASIC will assume that it is dealing with an empty
statement. For example, ‘COUNT’ at the start of a statement will
generate a ‘Syntax error’. It will also be caused if an invalid
variable name was found after a ‘LET’.

In BASIC1, this error can also be caused if the ‘#’ is missing after
a statement or function which expects a file handle. BASIC2 has
the new error ‘Missing #’ (error 45) for this condition.

Error conditions

Error number: 16 ‘Syntax error’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

285

Error 17 – Escape
This error is generated by the BASIC ‘Check for end of
statement’ routine (or the last part of it ,which tests the ESCAPE
flag in &FF) if an ESCAPE condition is active (i.e. the ESCAPE
key has been pressed).

If this error is to be recovered from (ignored), then the ESCAPE
condition should be acknowledged with a call to OSBYTE &7E
before continuing (or it could be just cleared by OSBYTE &7C).
If this is not done, then the escape condition will still be active on
return to the BASIC interpreter; and it will generate this error
again at its earliest opportunity.

A better way of ‘recovering’ from this error is to disable the
ESCAPE key, to prevent the error from being generated in the
first place.

Error conditions

Error number: 17 ‘Escape’

Stack contents: RTI information 3 bytes
 return address 2 bytes

A undefined
X undefined
Y undefined

Recovery should only be attempted if:

1 The error number at (&FD) is 17

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack.

2 Call OSBYTE &7E (or OSBYTE &7C) to acknowledge
the ESCAPE condition.

3 Execute an RTS

286

Error 18 – Division by zero
This error is generated by the BASIC division routines if the
divisor of the the attempted division is zero.

Error conditions

Error number: 18 ‘Division by zero’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

Error 19 – String too long
This error is generated by BASIC if an attempt is made to form a
string longer than 255 characters. This can either be caused by
concatenating 2 long strings together, or by the STRING$
function creating a string which is longer than 255 bytes. Note
that only the LSB of the number sent to the STRING$ command
is used; so STRING$(260,“*”) will produce a string of 4
asterisks, but STRING$(130,“**”) will produce an error.

Error conditions

Error number: 19 ‘String too long’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

287

Error 20 – Too big
This error is generated by BASIC if an overflow occurs. This can
be due to:

(a) A floating point number has overflowed after the end of a
calculation. This is discovered by the ‘Round and check for
overflow’ routine, before the floating point number is
written out to memory (or to one of the temporary stores).

(b) An attempt was made to ‘fix’ (i.e. convert to integer) a
number which would not fit into a 32-bit 2’s complement
integer.

Note that this error is not generated when two 32-bit integers are
added or subtracted: if an overflow happens here, it will go
undetected (try ‘PRINT 2000000000+2000000000’).

Error conditions

Error number: 20 ‘Too big’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

Error 21 – -ve root
This error is generated by BASIC if the ‘SQR’ routine is given a
negative argument. ASN and ACS can also generate this error (if
the ABS value of their argument is greater than 1), because they
are derived from ATN using the SQR routine:

 ASN(X) = ATN(X/SQR(1-X*X))
 ACS(X) = PI/2 - ASN(X)

288

Error conditions

Error number: 21 ‘-ve root’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

Error 22 – Log range
This error is generated by BASIC if the ‘LN’ routine is given a
negative or zero argument. LOG can also generate this error, as
it is derived from LN:

 LOG(X) = LN(X)/LN(10)

(BASIC stores 1/LN(10) as a constant, and uses a multiply to
convert the LN to a LOG.)

Error conditions

Error number: 22 ‘Log range’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

289

Error 23 – Accuracy lost
This error is generated by the BASIC SIN, COS, or TAN
routines if the binary exponent of the floating point argument is
&98 or greater. If it is, then at least 24 of the 32 bits in the
mantissa make up the integer part of the number, leaving only 8
bits (or less) for the fractional part. This gives a resolution of
worse than 1/256 (0.004) in the result from a SIN or COS (and all
of this from the least significant byte).

The angle given to these trigonometric routines is reduced to the
range 0 to PI/2 by subtracting a multiple of PI/2 from it. This does
not introduce a significant amount of extra inaccuracy, as BASIC
stores a more accurate (41 bits) −PI/2 as 2 separate numbers: a
‘coarse’ −PI/2, and an accurate adjustment to it.

Error conditions

Error number: 23 ‘Accuracy lost’

Stack contents: RTI information 3 bytes
 return addr 2 bytes

FPA: number to find quadrant and offset from

A binary exponent of FPA
X undefined
Y undefined

This error is not recoverable.

Error 24 – Exp range
This error is generated by BASIC if an attempt is made to take
the EXP of a number greater than or equal to 89.5. However,
using EXP with an argument between 88 and 89.5 will produce a
‘Too big’ error. This error can also be generated by the
exponentiation operator, as it is derived from the EXP and LN
functions:

 A^B = EXP(B*LN(A))

290

Error conditions

Error number: 24 ‘Exp range’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

Error 25 – Bad MODE
This error is generated by the BASIC ‘MODE’ statement if there
is not enough room for the new MODE above the HEAP or the
TOP of the BASIC program, or if the BASIC STACK is not
empty; i.e. if an attempt is made to change MODE inside a FN or
a PROC. HIMEM and the STACK pointer are reset by a MODE
change, and if this happened inside a FN or PROC, BASIC
would probably crash on exit (like it does if you set ‘HIMEM’
inside a FN or PROC).

It is possible to recover from this error and perform the MODE
change if the BASIC STACK can be preserved. This can be
achieved by either shifting it to where the new HIMEM is, or
(more simply) by leaving HIMEM where it was, and only
allowing MODE changes which leave the bottom of screen
memory higher than this. See section 9.1 for a ‘Bad MODE’ trap
program.

Error conditions

Error number: 25 ‘Bad MODE’

Stack contents: RTI information 3 bytes
 &16 MODE change character 1 byte

PTRA: points at the statement delimiting character

291

&2A Prospective MODE number (LSB of IntA)

A undefined
X undefined
Y undefined

Recovery should only be attempted if:

1 The error number at (&FD) is 25

2 The bottom of the new MODE (found using OSBYTE
&85) would not be below the top of the HEAP

3 The bottom of the new MODE would not be below TOP

4 The contents of the BASIC STACK can be preserved

To recover from the error:

1 Check that the bottom of the new MODE would not be
below the current HIMEM, and abort the MODE change
if it would be.

2 Pull the 3 bytes of RTI information from the stack.

3 Pull the MODE change character from the 6502 stack, and
print it (using OSWRCH)

4 Get the new mode number from &2A, and send that to
OSWRCH

5 Continue with the execution of the BASIC statements by
making a JMP to the ‘Continue execution’ routine at
&8B0C (BASIC1) or &8B9B (BASIC2).

This will allow a MODE change inside a FN or PROC, although
HIMEM must be brought down below the bottom of the lowest
MODE first. It will always allow a MODE change to a smaller
mode. It should also be possible to allow mode changes to a
larger mode without previously allocating the space, but that
would involve shifting the BASIC STACK bodily, and re-
pointing the STACK pointer.

292

Error 26 – No such variable
This error is generated by the BASIC ‘Get <factor> or <string-
factor>’ routine if it tries to read the value of a variable which
doesn’t exist. If the assembler is being used with an OPT value
which has bit 1 cleared (i.e. OPT 0, 1, 4, 5), this error will be
suppressed , and the current value of P% will be returned by the
‘Get <factor>’ routine instead. This error is suppressed if OPT 4
or 5 is used (unlike error 1 ‘Out of range’).

By trapping this error it is possible to to add new functions to
BASIC. Note, however, that the first character to be found after
the name of the function must not be a ‘(’, or BASIC will think
that it is an array, and generate the ‘Array’ error instead (this is
much more difficult to recover from). Bracketed expressions can
be included after a new function, but the first ‘(’ must be
separated from the function name by a space.

Error conditions

Error number: 26 ‘No such variable’

Stack contents: RTI information 3 bytes
 return address 2 bytes

PTRB: points to the character after the end of the name

&2C: type of the variable (if C=0)

(&37) points 1 before the start of the name
&39 length of the name (if C=0)

A undefined
X undefined
Y undefined
C 0=non-existent variable; 1=invalid name

293

Recovery should only be attempted if:

1 The error number at (&FD) is 26

2 The C flag is 0, signalling that a valid (but non-existent)
variable name was found (unless you are trying to
recognise a special symbol).

3 The name can be matched with the name of a new function.
The length of the function name should be the same as that
in &39 (if it is not, PTRB will have to be adjusted to point
after the function name). Note that the first character of
the name can be read by the sequence:

 LDY #1
 LDA (&37),Y

To recover from the error:

1 Ensure that the non-existent variable is actually a new
function; if it is not, recovery should be aborted.

2 Pull the 3 bytes of RTI information from the stack.

3 Evaluate the function, and place the value in IntA, StrA,
or FPA (depending on the type).

4 Load A with a byte which signals the type of the value of
the function. This should be the last action performed
before returning, as it sets the Z and N flags which will be
tested by the code which is returned to. The type bytes are:

String: &00
Integer: &40
Real: &FF

5 Execute an RTS.

This will return the value of the new function to the code which
called the ‘Get <factor> or <string-factor>’ routine.

294

Error 27 – Missing)
This error is generated by BASIC if a closing bracket is expected,
but none is found. This can either be caused by leaving off the ‘)’,
or by sending too many arguments to a function, or too many
dimensions to an array.

Error conditions

Error number: 27 ‘Missing)’

Stack contents: RTI information 3 bytes
 undefined

A undefined
X undefined
Y undefined

This error is not recoverable.

295

Error 28 – Bad HEX
This error is generated by BASIC if the first character after an ‘&’
was not a hexadecimal digit (i.e. 0 to 9, or A to F).

It is possible to recover from this error (if, for example, you want
an ‘&’ by itself to mean 0)

Error conditions

Error number: 28 ‘Bad HEX’

Stack contents: RTI information 3 bytes
 return address

IntA: 0

A 0
X 0
Y PTRB offset

Recovery should only be attempted if:

1 The error number at (&FD) is 28

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack.

2 Load A with &40, to signal that the type of the result is an
integer.

3 Execute an RTS.

This will return 0 to the code which called the ‘Get <factor> or
<string-factor>’ routine, if no HEX character followed the ‘&’.

296

Error 29 – No such FN/PROC
This error is generated by BASIC if an attempt is made to access
a FN or PROC which is not defined inside the program. First, the
FN/PROC handler tries to find it in the list on the HEAP; if it
isn’t found, it looks through the program for the definition; if it
still doesn’t find it, this error is generated.

If this error is trapped, it is possible to overlay procedures and
functions from disc, for example, and continue execution. Any
routine which attempts to recover from this error should be very
careful with the state of the 6502 stack, as the FN/PROC routine
is in the middle of saving the information it needs to enable it to
return properly at the end of the PROC or FN. See chapter 8 for
more on overlaying FNs and PROCs.

Error conditions

Error number: 29 ‘No such FN/PROC’

Stack contents: RTI information 3 bytes
 PTRA offset 1 byte
 FN/PROC token (&A4/&F2) 1 byte

(&37) points 1 before the calling PROC/FN token

A copy of &B (PTRA base LSB)
X undefined
Y 1

Recovery should only be attempted if:

1 The error number at (&FD) is 29

2 The FN or PROC can be overlayed (from disc, for
example).

3 The FN or PROC is of the correct type (the token is held in
location &1FF)

297

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack.

2 Save PTRA base on the stack, by pushing the contents of
&B followed by the contents of &C.

3 Load the FN or PROC to be overlayed, allocating space for
it as necessary.

4 Restart the FN/PROC handler, to execute the FN or
PROC.

There are two major alternative ways to re-start the FN/PROC
handler:

(a) Set PTRA base (in &B,&C) to point to the first byte of the
program section just overlayed (this will be the &0D
usually at PAGE). Then JMP to &B149 (BASIC1) or
&B11A (BASIC2). This will cause the ‘Look for FN/
PROC in program’ routine to search for the FN/PROC
again, but this time starting from PTRA base, instead of
PAGE. When the FN/PROC is found, it will be added to
the list, and the main FN/PROC handler will be re-joined.

(b) Set PTRA base to point to the byte following the name of
the defined PROC or FN in the overlayed section (this will
be a ‘(’ if any arguments are being used). Then JMP to
&B223 (BASIC1) or &B1F4 (BASIC2). This directly
rejoins the FN/PROC handler, without adding the name of
the overlayed FN/PROC to the list.

Note that if (a) is being used, the same error may be generated
again if the name is still not found; if (b) is being used, the name
will not be tested (and does not even need to be in the file itself,
as long as PTRA can still be set up to point to the character which
would be after it).

298

Error 30 – Bad call
This error is generated by BASIC if no valid name is found after a
PROC or FN token. Note that there can be no spaces between the
FN or PROC token, and the name.

Error conditions
Error number: 30 ‘Bad call’

Stack contents: RTI information 3 bytes
 PTRA base MSB 1 byte
 PTRA base LSB 1 byte
 PTRA offset 1 byte
 FN/PROC token (&A4/&F2) 1 byte

(&37) points 1 before the PROC/FN token

A undefined
X undefined
Y 2

This error is not recoverable.

Error 31 – Arguments
This error is generated by BASIC if the number of parameters
passed to a FN or PROC is not the same as in the definition of the
FN or PROC. It can also be caused if the types of the parameters
do not match (i.e. a string being passed where a number is
expected).

Error conditions
Error number: 31 ‘Arguments’

Stack contents: RTI information 3 bytes
 PTRA offset 1 byte
 FN/PROC token (&A4/&F2) 1 byte

A undefined
X undefined
Y undefined

This error is not recoverable.

299

Error 32 – No FOR
This error is generated by the BASIC ‘NEXT’ statement if there
is nothing on the FOR stack. See section 5.6 for more on
FOR…NEXT loops.

Error conditions

Error number: 32 ‘No FOR’

Stack contents: RTI information 3 bytes

A undefined
X 0
Y undefined

This error is not recoverable.

Error 33 – Can’t match FOR
This error is generated by the BASIC ‘NEXT’ statement if the
loop variable was specified (as in ‘NEXT I’), but it could not find
a FOR loop using that variable on the FOR stack. This error will
not be generated if the variable specified in the ‘NEXT’ statement
does not exist: a ‘Syntax error’ (error 16) will be generated
instead.

Error conditions

Error number: 33 ‘Can’t match FOR’

Stack contents: RTI information 3 bytes

FOR stack: empty

A 0
X 0
Y undefined

This error is not recoverable.

300

Error 34 – FOR variable
This error is generated by the BASIC ‘FOR’ statement if there is
no valid numeric variable after the FOR (i.e. either it is invalid,
or it is a string variable). This variable can be an indirected
variable (like ‘!X’), although single byte variables should not be
used, as NEXT does not deal with them properly.

Error conditions

Error number: 34 ‘FOR variable’

Stack contents: RTI information 3 bytes

A undefined
X undefined
Y undefined

This error is not recoverable.

Error 35 – Too many FORs
This error is generated by the BASIC ‘FOR’ statement if there
are already 10 ‘FOR’ loops on the FOR stack (see section 5.6).

It is possible to recover from this error, to extend the FOR stack
into the REPEAT stack area, for example. This should not
normally be attempted, as any REPEAT statement will corrupt
an extended FOR stack.

301

Error conditions

Error number: 35 ‘Too many FORs’

Stack contents: RTI information 3 bytes

FOR stack: full
&26 &96 (or greater if already recovered)

Initial value already assigned to loop variable

A undefined
X undefined
Y copy of FOR stack pointer in &26

Recovery should only be attempted if:

1 The error number at (&FD) is 35

2 No REPEATs will be used in the program (or GOSUBs if
the GOSUB stack area will be used as well).

3 The FOR stack pointer (in &26 and Y) is less than &BE
(this gives room for 3 more entries). If the GOSUB stack
area is to be used as well, the FOR stack pointer should be
less than &F2 (this gives a total of 17 entries in the FOR
stack).

To recover from the error:

1 Pull the 3 bytes of RTI information from the 6502 stack

2 JMP to &B7F5 (BASIC1) or &B7DA (BASIC2)

This will continue with the FOR statement, as though the FOR
stack had not overflowed. The Y register should not be altered by
the recovery routine, as it is used on return to the FOR handler.

302

Error 36 – No TO
This error is generated by the BASIC ‘FOR’ statement if the first
non-space character after the initial value that the loop variable is
to be set to, is not a ‘TO’ token. The initial value must be a
<numeric>.

Recovery from this error is not easily possible, although it could
be trapped to allow ‘FOR lists’; i.e. a line of the form:

FOR I=1,3 TO 5,10

which would step through the loop with I taking the values
1,3,4,5, and 10. If this was to be implemented, a new ‘NEXT’
statement would have to be used for this type of ‘FOR’ (possibly
trapped from the ‘Mistake’ error), as the normal NEXT would not
handle it.

Error conditions

Error number: 36 ‘No TO’

Stack contents: RTI information 3 bytes

Initial value already assigned to loop variable

PTRB: points to the character after that in A

&26 FOR stack pointer

(&37) address of the loop variable
&39 type of the loop variable

A character after the initial value (not ‘TO’)
X undefined
Y copy of FOR stack pointer in &26

303

Recovery should only be attempted if:

1 The error number at (&FD) is 36

2 An alternative form of the ‘FOR’ statement can be used.
Another NEXT should be used for this structure
(‘ENDFOR’ ?), to handle the next value to be assigned to
the loop variable.

To recover from the error:

1 Pull the 3 bytes of RTI information from the 6502 stack.

2 Handle the new FOR structure, either using the FOR
stack, or by creating a different stack. The address and type
of the loop variable (i.e. its variable descriptor block) is
already on the FOR stack.

3 If a FOR list is being used, the ENDFOR will have to look
at the next item on the list; thus the current value of PTRB
should be saved for it.

4 If the whole of the FOR list is to be parsed before the loop
is entered, the ‘Check for end of statement’ routine at
&9810 (BASIC1) or &9857 (BASIC2) should be called
after the FOR list has been checked. Then the statements in
the loop can be started with a JMP to the ‘Continue
execution’ routine at &8B0C (BASIC1) or &8B9B
(BASIC2).

5 If the FOR list is not to be parsed until the ENDFOR tries
to use it, execution can be continued with a JMP to the
‘Skip rest of line, and continue’ routine at &8AED
(BASIC1) or &8B7D (BASIC2). This will continue
execution on the next program line (alternatively, the new
FOR routine could just search for a ‘:’, and continue from
there).

304

Error 37 – Too many GOSUBs
This error is generated by the BASIC ‘GOSUB’ statement if
there are already 26 GOSUBs on the GOSUB stack. See section
5.2 for more on GOSUBs.

Due to way that the GOSUB stack is stored (as 2 stacks, one after
the other), it is not easily possible to recover this error and extend
the stack in a similar manner to the FOR stack.

Error conditions

Error number: 37 ‘Too many GOSUBs’

Stack contents: RTI information 3 bytes

&25: &1A (i.e. GOSUB stack pointer = 26)

A undefined
X undefined
Y &1A (copy of location &25)

This error is not recoverable.

Error 38 – No GOSUB
This error is generated by the BASIC ‘RETURN’ statement if
the GOSUB stack is empty.

Error conditions

Error number: 38 ‘No GOSUB’

Stack contents: RTI information 3 bytes

&25: 0

A undefined
X undefined
Y 0 (copy of GOSUB stack pointer in &25)

This error is not recoverable.

305

Error 39 – ON syntax
This error is generated by the BASIC ‘ON’ statement if the first
non-space character following the <factor> after the ‘ON’ is not
a ‘GOTO’ or a ‘GOSUB’ token. This may be caused if the
<factor> is mis-formed, as in:

 ON A#3 GOTO ...

Error conditions

Error number: 39 ‘ON syntax’

Stack contents: RTI information 3 bytes

PTRA: points to the character after that in X

A undefined
X non-space character after the <factor>
Y undefined

This error is not recoverable.

Error 40 – ON range
This error is generated by the BASIC ‘ON’ statement if the
controlling <factor> is either less than 1, or greater than the
number of entries in the ‘GOTO’ or ‘GOSUB’ list.

This error can be avoided by using an ‘ELSE’ clause after the
GOTO or GOSUB list (such as ‘ON I GOTO 20,30 ELSE
END’), but in BASIC1 the ‘GOTO’ or ‘GOSUB’ token is left on
the 6502 stack if the ELSE clause is executed. If this ELSE clause
is executed inside a FN or PROC, the return from this FN or
PROC will fail, as the return address will no longer be on the top
of the stack. In BASIC2, this has been rectified, and the ELSE
clause works correctly.

306

Error conditions

Error number: 40 ‘ON range’

Stack contents: RTI information 3 bytes
 (token – BASIC1 only 1 byte)

PTRA: points to the last part of the statement handled

A &0D
X undefined
Y offset from PTRA base to point end of line

This error is not recoverable.

Error 41 – No such line
This error is generated by the BASIC ‘Evaluate and find line
number’ routine if the line number it is given does not exist. This
routine is used by GOTO, GOSUB, and RESTORE, so all of
these can generate this error if given a non-existent line number.

This error could be recovered from if, for example, some sort of
program overlaying mechanism is being used.

Error conditions

Error number: 41 ‘No such line’

Stack contents: RTI information 3 bytes
 return address 2 bytes

&2A,&2B: line number which was not found

A undefined
X undefined
Y undefined
C 1

307

Recovery should only be attempted if:

1 The error number at (&FD) is 41

2 The line can be looked for in an alternative area (for
example, in an overlayed program section)

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack.

2 Find the line in the alternative program section, and set the
pointer at &3D,&3E to point 1 before the first byte of text
of the line (i.e. to point to the length byte of the line). Care
should be taken not to generate this error again, unless
some flag is used to signal that this overlay has already
been tried. If the line number is not found in the new
section, and the error is generated again, this recovery
routine will be called repeatedly, and the machine will
‘hang up’.

3 When the line has been found, clear the carry flag (to
signal that the line has been found), and execute an RTS.

This will return to the code which called the ‘Evaluate and find
line number’ routine, which will then continue.

Error 42 – Out of DATA
This error is generated by the BASIC ‘Find next DATA item’
routine of the ‘READ’ statement if all of the DATA items in the
program have been read.

This error could be recovered, either if some sort of overlaying
mechanism is being used, or perhaps by forcing a ‘RESTORE’ on
an ‘Out of DATA’ error.

Error conditions

Error number: 42 ‘Out of DATA’

Stack contents: RTI information 3 bytes
 return address 2 bytes

308

&1C,&1D: point after the last DATA item read

A undefined
X undefined
Y undefined

Recovery should only be attempted if:

1 The error number at (&FD) is 42

2 Either a RESTORE will be forced, or the DATA will be
found in an alternative area

3 The DATA pointer in &1C,&1D does not still point at
PAGE. If it does, there is no DATA in the program at all,
and so forcing a RESTORE would have no effect.

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack.

2 Set PTRB to point to the area where the DATA will be
read from. This will be PAGE to force a RESTORE to the
start of the program, or it will point to the new area if an
overlay has been loaded.

3 Execute a JMP to &BB7A (BASIC1) or &BB60
(BASIC2). This re-starts the ‘Find next DATA item’
routine looking from PTRB. If PTRB points at a comma or
a ‘DATA’ token when the routine is re-started, then that
routine will return to the READ statement handler, with
PTRB pointing at the following DATA item.

Care should be taken that this recovery routine is not called again
due to a failure to find any DATA in the new area. The DATA
pointer could be used as a flag for this, by setting it to PAGE
inside this recovery routine. If no DATA is found on return to the
READ handler, then this error will be generated again, but with
the DATA pointer still set to PAGE.

309

Error 43 – No REPEAT
This error is generated by the BASIC ‘UNTIL’ statement if the
REPEAT stack is empty.

Error conditions

Error number: 43 ‘No REPEAT’

Stack contents: RTI information 3 bytes

PTRA: points to the end of the UNTIL statement

&24: 0 (REPEAT stack empty)

A undefined
X 0 (copy of REPEAT stack pointer in &24)
Y undefined

This error is not recoverable.

Error 44 – Too many REPEATs
This error is generated by the BASIC ‘REPEAT’ statement if the
REPEAT stack already contains 20 entries.

The REPEAT stack cannot be extended like the FOR stack, as it
saves the MSB and LSB of the pointer in 2 stacks, 1 after the
other. See section 5.5 for more on REPEAT loops.

Error conditions

Error number: 44 ‘Too many REPEATs’

Stack contents: RTI information 3 bytes

&24: &14 (REPEAT stack full with 20 entries)

A undefined
X &14 (copy of REPEAT stack pointer in &24)
Y undefined

This error is not recoverable.

310

Error 45 – Missing #
This error is generated by the BASIC file handling routines if the
file handle given to a BPUT, BGET, PTR, or EXT is not
preceeded by a ‘#’. This error is only generated by BASIC2;
BASIC1 will generate a ‘Syntax error’ (error 16) instead.

Error conditions (BASIC2 only)

Error number: 45 ‘Missing #’

Stack contents: RTI information 3 bytes

A character not a ‘#’
X undefined
Y undefined

This error is not recoverable.

311

11.3 Fatal errors
These errors cannot be trapped by the ‘ON ERROR’ statement.
Some of them are just messages, with a JMP to immediate mode
after the message has been printed; others have error number 0,
which cannot be trapped (in BASIC 2).

Some of the errors in this section can still be intercepted by a
BRK handler, although those that can be intercepted, will all
have error number 0. This means that the error message string
following the error number byte must be tested if the error is to
be identified correctly.

Bad program
This message is printed if the current program in memory has
been corrupted when a check is made. After the message has
been printed, a JMP is made to restart BASIC in immediate
mode: this cannot be trapped.

If the program is OK, the ‘Bad program’ check routine resets
TOP to the top of the program, and returns to the calling routine.
The check is made when:

(a) A new program has been loaded (either by ‘LOAD’ or
‘CHAIN’).

(b) An ‘OLD’ statement has been executed.

(c) A ‘LIST’ statement is about to be executed.

(d) A ‘RENUMBER’ command is about to be executed.

(e) An ‘END’ statement is executed. As an END statement is
executed at the end of the default BASIC ERROR
handler, this check will also be made whenever an error
occurs.

See section 9.2 for a ‘Bad program’ salvage routine.

312

Failed at xxx
This message is printed by the ‘RENUMBER’ command if it
finds any references to non-existent line numbers. This error
cannot be trapped, but it will not abort the RENUMBERing of
the program; it will just produce a list of the lines on which it
found unresolved line number references.

Line space
This error is generated by the ‘Insert line in program’ routine if
there is not enough room to insert the line into the program (i.e.
the length of the line is longer than the gap between TOP and
HIMEM).

This error, although ‘fatal’ to BASIC, could be recovered from if
more memory could be allocated (by forcing a MODE change,
perhaps).

Error conditions

Error number: 0 ‘Line space’

Stack contents: RTI information 3 bytes
 return address 2 bytes

IntA: line number of line to be inserted
&700– line to be inserted (keyboard buffer)

&3B ,&3C points to the first character to be inserted

A undefined
X undefined
Y undefined

313

Recovery should only be attempted if:

1 The error number at (&FD) is 0, followed by the string
‘Line space’, terminated by a zero byte.

2 HIMEM can be moved up from its present position,
perhaps by a MODE change. If it can’t be moved, then
recovery should be aborted.

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack.

2 Change MODE to shift HIMEM to a higher value.

3 Execute a JMP to &BC96 (BASIC1 or BASIC2 – the
addresses coincide).

This will re-enter the routine to insert the line in the program.
Note that if this recovery is attempted without moving HIMEM
up, then this error will just be generated again, and the machine
will ‘hang up’.

314

No room
This error is generated by BASIC if an attempt is made to extend
the HEAP above the STACK, or extend the STACK below the
HEAP. In BASIC1, this is a message which is printed before a
JMP to immediate mode (so it gives no line number); but in
BASIC2 it is an error with error number 0.

In BASIC2 it is possible to trap this error, and recover from it
under certain circumstances (providing some more memory can
be found from somewhere); but in BASIC1 it does not go
through the BRK handler, and so cannot be trapped.

The ‘No room’ error can be caused in one of 3 ways:

(a) An attempt was made to allocate space for a new variable
information block on top of the HEAP. If this is the case,
then the error is not recoverable, because the ‘Allocate
new information block’ routine clears the space for the
block before checking for a clash with the STACK: thus
the contents of the STACK will be corrupted.

(b) An attempt was made to allocate space for a dynamic
string on the HEAP. This error is recoverable, as a clash
with the STACK is tested for before the string is written
into the new area.

(c) An attempt was made to allocate space on the BASIC
STACK. This error is also recoverable, because a clash
with the HEAP is tested for before the item to be pushed is
written into the allocated area.

These 3 different causes of a ‘No room’ must be handled
differently, as they require different return conditions, and in the
case of (a), recovery should not be attempted at all.

315

Error conditions (BASIC2 only)

Error number: 0 ‘No room’

Stack contents: RTI information 3 bytes

If (a):

A 0
X 0
Y 1
C 1

If (b):

A undefined
X MSB of attempted new HEAP
Y LSB of attempted new HEAP
C 1

If (c):

A LSB of attempted new STACK (copy of location &4)
X undefined
Y MSB of attempted new STACK (copy of location &5)
C 0

Recovery should only be attempted if:

1 The error number at (&FD) is 0, followed by the string ‘No
room’, terminated by a zero byte.

2 The error was not caused by case (a). If the carry flag was
clear when the BRK occurred (this should be tested from
the RTI information on the 6502 stack) then it was due to
case (c), and recovery is possible. Otherwise, if the X
register is non-zero it was due to case (b), and recovery is
also possible. If the carry flag was set, and the X register is
zero, it was due to case (a), and recovery should be
aborted.

316

To recover from the error:

1 Pull the 3 bytes of RTI information from the stack (the top
byte was the 6502 status word when the BRK occurred,
and the carry can be checked from there)

2 Allocate some more memory. This could either be done by
forcing a mode change, or perhaps by throwing away any
overlayed program sections which have been placed
between HIMEM and the bottom of the screen. Both of
these will involve shifting the STACK bodily, and pointing
the STACK pointer (in &4,&5) at the bottom of the new
STACK.

3 Check that the HEAP/STACK clash does not still exist: it
may be that not enough memory could be cleared. If (c) is
being dealt with, then the STACK and HEAP will be in the
pointers already; but in case (b), the old HEAP pointer is
in &2,&3 and the new one is in X (MSB) and Y (LSB).

4 If (c) is being dealt with, then simply executing an RTS
will return to the code that called the ‘Check for STACK/
HEAP clash’ routine.

5 If (b) is being dealt with, then the ‘Assign string’ routine
can be continued with a JMP to &8C6F (BASIC2 only).
The new HEAP pointer must be in the X and Y registers as
on entry (alternatively, if the new HEAP pointer is already
set up by the recovery routine, a JMP can be made to
&8C73 instead).

Trapping this routine, together with trapping the ‘No such FN/
PROC’ error (error 29), would give a very neat method of
procedure and function overlaying. When a FN or PROC is not
found in the program, the STACK can be shifted down and an
overlay loaded from disc between HIMEM and the bottom of the
screen; and when the computer runs out of memory and issues a
‘No room’ error, the overlay can be removed, and the STACK
shifted up again.

317

RENUMBER space
When the RENUMBER statement is used, it creates a list of the
old line numbers above TOP so that it can match up the GOTO
and GOSUB references after the lines have been renumbered.
This error is generated if there is not enough room between the
TOP of the program and HIMEM to fit this list.

Error conditions

Error number 0 ‘Renumber space’

Stack contents: RTI information 3 bytes

A undefined
X undefined
Y undefined

This error is not recoverable

Silly
This error is generated by the AUTO or RENUMBER
commands if the interval in their call is either 0 or greater than
255.

It is possible to recover from this error (if you really want to
have all the lines in your program with the same line number).

Error conditions

Error number 0 ‘Silly’

Stack contents: RTI information 3 bytes
 return address 2 bytes

IntA: AUTO/RENUMBER interval

A 0 if the interval = 0, non-zero if interval > 255
X undefined
Y undefined

318

This error should only be recovered if:

1 The error number at (&FD) is 0, followed by the string
‘Silly’, terminated by a zero byte.

To recover from the error:

1 Pull the 3 bytes of RTI information from the 6502 stack.

2 Execute a JMP to &8F28 (BASIC1) or &8F8B (BASIC2).

This will continue with the AUTO or RENUMBER command,
ignoring any silly restrictions on the size of the interval.

STOP at line xxx
This error is generated by the BASIC ‘STOP’ statement. In
BASIC1, this is just a message which is printed before a JMP to
immediate mode; but in BASIC2 it is an error with error number
0. The BASIC2 error message does not use the ‘STOP’ token
(probably because it was converted from the BASIC1 message).

Error conditions (BASIC2 only)

Error number 0 ‘STOP’

Stack contents: RTI information 3 bytes

A undefined
X undefined
Y undefined

This error is not recoverable

319

Appendix A – Syntax definition
This syntax definition is written in Backus-Naur form, or BNF, in
a similar manner to the ‘Syntax’ sections in Chapter 33 of the
BBC User Guide, or chapter 25 of the Electron User Guide. As
well as the syntax of the keywords, it also includes the expression
evaluator, and non-keyword statements. Although this syntax
definition is not particularly easy to read at first, it is very useful
when trying to understand what BASIC is doing whilst decoding a
particular statement or function.

Note that EVAL and FN may be either string or numeric
functions (i.e. they may return either a string or numeric value).

OSCLI and OPENUP are not implemented in BASIC1.

Symbols

The following symbols have special meaning in this section:

<> enclose defined items (‘syntactic entities’), like
<numeric> or <factor>.

::= should be read as ‘is defined as’.

| should be read as ‘or’: it is used to separate alternative
items.

{} denote possible repetition of the enclosed section zero or
more times.

[] enclose optional items.

Any other symbols are as read (like ‘+’ and ‘MOD’). Note that
the ‘<’ and ‘>’ symbols in the definition of
<relation operator> do not enclose a syntactic entity,
but are ‘less than’ and ‘greater than’ symbols respectively.

320

Example

As an illustration, the definition of the RENUMBER command is:

<renumber command> ::= RENUMBER [<line-num> [,<line-num>]]

There are two optional sections in this line, so the command can
be one of three forms:

1) RENUMBER

2) RENUMBER <line-num> (e.g. RENUMBER 1000)

3) RENUMBER <line-num>,<line-num> (e.g.
RENUMBER 100,5 – the second number is not an actual line
number, but syntactically it is just the same)

Statements

<immediate-statement> ::= <line-entry> | <command>
| <statement>

<line-entry> ::= <line num><line>

<line> ::= {anything}{carriage return}

<command> ::= {a statement starting with a command keyword}

<statement> ::= <keyword-statement> | <assignment-statement>
| <FN-return-statement> | <OS-statement>
| <enter-assembler-statement> | <empty-statement>

<keyword-statement> ::= {a statement starting with a keyword}

<assignment-statement> ::= <num-var>=<numeric>
| <string-var>=<string>

<FN-return-statement> ::= =<string> | =<numeric>

<OS-statement> ::= *<line>

<enter-assembler-statement> ::= [

<empty-statement> ::= {nothing}

<auto command> ::= AUTO [<line-num> [,<line-num>]]

<delete command> ::= DELETE <line-num>, <line-num>

321

<load command> ::= LOAD <string>

<list command> ::= LIST <line-num> | [<line-num>],[<line-num>]

<listo command> ::= LISTO <numeric>

<new command> ::= NEW

<old command> ::= OLD

<renumber command> ::= RENUMBER [<line-num> [,<line-num>]]

<save command> ::= SAVE <string>

<ptr statement> ::= PTR# <factor>=<numeric>

<page statement> ::= PAGE =<numeric>

<time statement> ::= TIME =<numeric>

<lomem statement> ::= LOMEM =<numeric>

<himem statement> ::= HIMEM =<numeric>

<bput statement> ::= BPUT# <factor>, <numeric>

<call statement> ::= CALL <numeric> {,<variable>}

<chain statement> ::= CHAIN <string>

<clear statement> ::= CLEAR

<close statement> ::= CLOSE# <factor>

<clg statement> ::= CLG

<cls statement> ::= CLS

<colour statement> ::= COLOUR <numeric>

<data statement> ::= DATA <line>

<def fn statement> ::= DEF FN<variable name> [(<variable>
{,<variable>})]

<def proc statement> ::= DEF PROC<variable name> [(<variable>
{,<variable>})]

<dim statement> ::= DIM <dim section> {,<dim section>}

<dim section> ::= <variable>(<numeric> {,<numeric>})
| <num-var><numeric>

322

<draw statement> ::= DRAW <numeric>, <numeric>

<end statement> ::= END

<endproc statement> ::= ENDPROC

<envelope statement> ::= ENVELOPE <numeric>, <numeric>,
<numeric>, <numeric>, <numeric>, <numeric>,
<numeric>, <numeric>, <numeric>, <numeric>,
<numeric>, <numeric>, <numeric>, <numeric>

<for statement> ::= FOR <num-var>=<numeric> TO <numeric>
[STEP<numeric>]

<gcol statement> ::= GCOL <numeric>, <numeric>

<gosub statement> ::= GOSUB <numeric>

<goto statement> ::= GOTO <numeric>

<if statement> ::= IF <testable-condition> [THEN<statement>
| THEN<line-num>] {<statement>} [ELSE{<statement>}]

<input statement> ::= INPUT [LINE] {{[<input-message>] ,|;}
<variable>}

<input message> ::= <string-const> | <format-items>

<input# statement> ::= INPUT# <factor> {,<variable>}

<let statement> ::= LET <string-var>=<string>
| LET <num-var>=<numeric>

<local statement> ::= LOCAL {<variable>}

<mode statement> ::= MODE <numeric>

<move statement> ::= MOVE <numeric>, <numeric>

<next statement> ::= NEXT [<num-var>]

<on-error statement> ::= ON ERROR <statement>|OFF

<on statement> ::= ON <numeric> GOTO|GOSUB <numeric>
{,<numeric>} [ELSE <statement>]

<oscli statement> ::= OSCLI <string-factor>

<plot statement> ::= PLOT <numeric>, <numeric>, <numeric>

<print statement> ::= PRINT {~ | , | ; | <format items> |
<numeric> | <string>}

323

<format items> ::= ‘ | SPC<factor> | TAB(<numeric>[,<numeric>])

<proc statement> ::= PROC <variable name> [(<variable>
{,<variable>})]

<read statement> ::= READ {[<variable>] [,]}

<rem statement> ::= REM<line>

<repeat statement> ::= REPEAT

<report statement> ::= REPORT

<restore statement> ::= RESTORE

<return statement> ::= RETURN

<run statement> ::= RUN

<sound statement> ::= SOUND <numeric>, <numeric>, <numeric>,
<numeric>

<stop statement> ::= STOP

<trace statement> ::= TRACE ON|OFF|<numeric>

<until statement> ::= UNTIL <testable condition>

<vdu statement> ::= VDU <numeric> {,|; <numeric>} [,|;]

<width statement> ::= WIDTH <numeric>

Expression evaluator

<numeric> ::= <testable-condition>

<testable-condition> ::= <logical-expression>
{OR|EOR <logical-expression>}

<logical-expression> ::= <relnl-expression>
{AND <relnl-expression>}

<relnl-expression> ::= <expression> |
<expression><relation-operator><expression> |
<string><relation-operator><string>

<relation operator> ::= = | < | <= | <> | > | >=

<expression> ::= <term> {+|- <term>}

<term> ::= <sub-term> {<term-operator><sub-term>}

324

<term-operator> ::= * | / | MOD | DIV

<sub-term> ::= <factor> {^<factor>}

<factor> ::= <primitive> | -<primitive> | +<primitive>

<primitive> ::= <function> | <num-var> | <num-const> |
&<hex-number> | (<testable expression>)

<variable> ::= <string-var> | <num-var>

<num-var> ::= <simple-var> | ?<factor> | !<factor> |
<simple-var>?<factor> | <simple-var>!<factor>

<string> ::= <string-factor> {+ <string-factor>}

<string-factor> ::= <string-function> | <string-var> |
<string-const> | (<string>)

<string-var> ::= <dynamic-string> | $<factor>

<num-const> ::= {a number like 12 or 1.3E-15}

<line-num> ::= {a positive decimal integer}

<hex-number> ::= {a hexadecimal number like FFE4}

<simple-var> ::= {a numeric variable like A% or FRED(3)}

<dynamic-string> ::= {a string variable like A$ or BBC$(1)}

<string-const> ::= {a string in quotes, "like this string"}

Functions

<function> ::= {a numeric-valued function}

<string-function> ::= {a string-valued function}

<abs function> ::= ABS<factor>

<acs function> ::= ACS<factor>

<adval function> ::= ADVAL<factor>

<asc function> ::= ASC<string>

<asn function> ::= ASN<factor>

<atn function> ::= ATN<factor>

<bget function> ::= BGET#<factor>

325

<cos function> ::= COS<factor>

<count function> ::= COUNT

<deg function> ::= DEG<factor>

<eof function> ::= EOF#<factor>

<erl function> ::= ERL

<err function> ::= ERR

<eval function> ::= EVAL<string-factor>

<exp function> ::= EXP<factor>

<ext function> ::= EXT#<factor>

<false function> ::= FALSE

<fn function> ::= FN<variable name> [(<variable>
{,<variable>})]

<get function> ::= GET

<himem function> ::= HIMEM

<inkey function> ::= INKEY<factor>

<instr function> ::= INSTR(<string>, <string> [,<numeric>])

<int function> ::= INT<factor>

<len function> ::= LEN<string-factor>

<ln function> ::= LN<factor>

<log function> ::= LOG<factor>

<lomem function> ::= LOMEM

<not function> ::= NOT<factor>

<openin function> ::= OPENIN<string-factor>

<openout function> ::= OPENOUT<string-factor>

<openup function> ::= OPENUP<string-factor>

<page function> ::= PAGE

<pi function> ::= PI

326

<point function> ::= POINT(<numeric>, <numeric>)

<pos function> ::= POS

<ptr function> ::= PTR#<factor>

<rad function> ::= RAD<factor>

<rnd function> ::= RND[(<numeric>)]

<sgn function> ::= SGN<factor>

<sin function> ::= SIN<factor>

<sqr function> ::= SQR<factor>

<tan function> ::= TAN<factor>

<time function> ::= TIME

<top function> ::= TOP

<true function> ::= TRUE

<usr function> ::= USR<factor>

<val function> ::= VAL<string-factor>

<vpos function> ::= VPOS

<chr string-func> ::= CHR$<factor>

<eval string-func> ::= EVAL<string-factor>

<fn string-func> ::= FN<variable name> [(<variable>
{,<variable>})]

<get string-func> ::= GET$

<inkey string-func> ::= INKEY$<factor>

<left string-func> ::= LEFT$(<string>, <numeric>)

<mid string-func> ::= MID$(<string>, <numeric> [,<numeric>])

<right string-func> ::= RIGHT$(<string>, <numeric>)

<str string-func> ::= STR$[~]<factor>

<string string-func> ::= STRING$(<numeric>, <string>)

327

Appendix B – BASIC ROM summary
BASIC1 BASIC2 ROUTINE

8000 8000 BASIC entry point
8006 8006 Paged ROM data
801F 8023 Language initialisation
806D 8071 Keyword table
835A 836D Keyword action address table
843C 8451 Assembler mnemonic tables
84E6 84FD ‘]’ (Back to BASIC from assembler)
84ED 8504 ‘[‘ statement (Assembler entry point)
87E4 8821 Evaluate integer <numeric>
87FD 887C Substitute token in buffer
8819 8897 Tokenise line number
88AB 8926 Check for alphanumeric char (or ‘.’)
88D3 8951 Tokenise a line
8A13 8A8C Get character at PTRB
8A1E 8A97 Get character at PTRA
8A3D 8AB6 ‘OLD’ statement
8A50 8AC8 ‘END’ statement
8A59 8AD0 ‘STOP’ statement
8A7D 8ADA ‘NEW’ statement
8A80 8ADD Cold start
8A96 8AF3 Warm start
8A99 8AF6 Enter immediate mode
8BAA 8B47 ‘=’ statement (return FN value)
8BC3 8B73 ‘*,’ statement (send line to OSCLI)
8AED 8B7D ‘DATA’, ‘DEF’, ‘REM’ statement (skip line)
8B0C 8B9B Continue execution at next statement
8B57 8BE4 ‘LET’ statement
8BD0 8C1E Assign string
8C5B 8CC1 Pop parameter value
8CC5 8D2B ‘PRINT#’ statement
8D33 8D9A ‘PRINT’ statement
8DBD 8E2A ‘TAB(X,Y)’ in printable section
8DD9 8E40 ‘TAB(’ in printable section
8DF2 8E58 ‘SPC’ in printable section
8E57 8EBD ‘CLG’ statement
8E5E 8EC4 ‘CLS’ statement
8E6C 8ED2 ‘CALL’ statement
8ECE 8F31 ‘DELETE’ statement

328

8F37 8FA3 ‘RENUMBER’ statement
905F 90AC ‘AUTO’ statement
90DD 912F ‘DIM’ statement
91EB 9236 Perform ‘space required’ multiplication
9212 925D ‘HIMEM’ statement
9224 926F ‘LOMEM’ statement
9239 9283 ‘PAGE’ statement
9326 928D ‘CLEAR’ statement
9243 929F ‘TRACE’ statement
927B 92C9 ‘TIME’ statement
9292 92E3 Get integer <factor>
92AC 92EB Get real <factor>
92B6 9304 ‘PROC’ statement
92D5 9323 ‘LOCAL’ statement
9310 9356 ‘ENDPROC’ statement
932F 937A ‘GCOL’ statement
9346 938E ‘COLOUR’ statement
935A 939A ‘MODE’ statement
93A1 93E4 ‘MOVE’ statement
93A5 93E8 ‘DRAW’ statement
93AE 93F1 ‘PLOT’ statement
93EF 942F ‘VDU’ statement
941B 945B Look for FN/PROC in list
9429 9469 Look for variable in list
94AD 94ED Link in new PROC/FN
94BC 94FC Link in new variable
94F7 9531 Clear space for information block
951F 9559 Scan variable name
9548 9582 Find variable, creating if needed
9595 95C9 Find variable at PTRA
95A9 95DD Find variable at PTRB
97AC 97DD Get tokenised line number at PTRA
97D6 9807 Set PTRB to PTRA, then…
97E2 9813 Evaluate <numeric> after ‘=’
980B 9852 Check end of statement at PTRB
9810 9857 Check end of statement at PTRA
9851 9880 Move to start of next statement
9893 98C2 ‘IF’ statement
98F1 991F Print line number in IntA
9942 9970 Look for program line
99C0 99EA Perform integer division
9A76 9A9E Perform comparison
9AF7 9B1D Set PTRB to PTRA, then…

329

9B03 9B29 Get <numeric> or <string> at PTRB
9B14 9B3A ‘OR’ operator
9B2F 9B55 ‘EOR’ operator
9B45 9B72 Get <logical expression>
9B54 9B7A ‘AND’ operator
9B76 9B9C Get <relnl expression>
9B88 9BAE ‘=’ operator (comparison)
9BA7 9BCD ‘<’ operator
9BAE 9BD4 ‘<=’ operator
9BB9 9BDF ‘<>’ operator
9BCB 9BE8 ‘>’ operator
9BD4 9BFA ‘>=’ operator
9C1D 9C42 Get <expression>
9C29 9C4E ‘+’ operator
9C90 9CB5 ‘−’ operator
9D17 9D3C ‘*’ operator
9DAE 9DD1 Get <term>
9DC2 9DE5 ‘/’ operator
9DDE 9E01 ‘MOD’ operator
9DE7 9E0A ‘DIV’ operator
9DFD 9E20 Get <sub-term>
9E12 9E35 ‘^’ operator (exponentiation)
9E81 9E90 Convert number to HEX string
9ED0 9EDF Convert number to string
A06C A07B Get number at PTRB
A169 A178 Add FPB mantissa to FPA mantissa
A188 A197 Multiply FPA mantissa by 10
A1CB A1DA Test FPA
A1E5 A1F4 Multiply FPA by 10
A20F A21E Copy FPA into FPB
A23E A24D Divide FPA by 10
A295 A2A4 Add A to PFA mantissa
A2AF A2BE Convert IntA to FPA
A2DE A2ED Convert A to FPA
A2F4 A303 Normalise FPA
A33F A34E Load FPB from packed number at (&4B)
A36E A37D Store FPA at &471–&475
A372 A381 Store FPA at &476–&47A
A376 A385 Store FPA at &46C–&470
A37E A38D Store FPA at (&4B)
A3A3 A3B2 Load FPA from &46C–&470
A3A6 A3B5 Load FPA from (&4B)
A3F2 A3E4 Convert FPA to IntA

330

A40C A3FE Convert FPA to fixed format
A463 A453 Set FPB to zero
A494 A486 Extract fractional part of FPA
A505 A4D0 Subtract number at (&4B) from FPA
A4DE A4D6 Exchange FPA with number at (&4B)
A4E4 A4DC Copy FPB into FPA
A50B A4FD Subtract FPA from number at (&4B)
A50E A500 Add number at (&4B) to FPA
A513 A50B Add FPB to FPA
A611 A606 Multiply FPA by number at (&4B)
A61E A613 Multiply FPA by FPB
A661 A656 Multiply FPA by (&4B); test for overflow
A691 A686 Set FPA to zero
A6A4 A699 Set FPA to 1
A6B0 A6A5 Invert FPA (set FPA = 1/FPA)
A6B8 A6AD Divide (&4B) by FPA
A6C9 A6BE ‘TAN’ function
A6F2 A6E7 Divide FPA by (&4B)
A6FC A6F1 Divide FPA by FPB
A7B4 A7B4 ‘SQR’ function
A7EF A7E9 Point &4B,&4C at &47B
A7F3 A7ED Point &4B,&4C at &471
A7F7 A7F1 Point &4B,&4C at &476
A7FB A7F5 Point &4B,&4C at &46C
A804 A7FE ‘LN’ function
A856 A869 Constant: log(e) (i.e. ‘LOG EXP 1’)
A85B A86E Constant: ln(2)
A860 A873 Constant series for ‘LN’ evaluation
A889 A897 Perform series evaluation
A8C6 A8D4 ‘ACS’ function
A8CC A8DA ‘ASN’ function
A907 A907 ‘ATN’ function
A956 A95A Constant series for ‘ATN’ evaluation
A989 A98D ‘COS’ function
A994 A998 ‘SIN’ function
AA5C AA48 Point &4B,&4C at ‘coarse −PI/2’
AA60 AA4C Point &4B,&4C at adjustment to above
AA69 AA55 Point &4B,&4C at PI/2
AA6D AA59 Constant: ‘coarse −PI/2’
AA73 AA5E Constant: adjustment to ‘coarse −PI/2’
AA77 AA63 Constant: PI/2
AA7C AA68 Constant: PI/180 (for ‘RAD’)
AA81 AA6D Constant: 180/PI (for ‘DEG’)

331

AA86 AA72 Constant series for ‘SIN’ evaluation
AAB4 AA91 ‘EXP’ function
AB07 AAE4 Constant: e (‘EXP 1’)
AB0C AAE9 Constant series for ‘EXP’ evaluation
AB56 AB33 ‘ADVAL’ function
AB64 AB41 ‘POINT’ function
AB92 ABED ‘POS’ function
AB9B AB76 ‘VPOS’ function
ABAD AB88 ‘SGN’ function
ABCD ABA8 ‘LOG’ function
ABD6 ABB1 ‘RAD’ function
ABE7 ABC2 ‘DEG’ function
ABF0 ABCB ‘PI’ function
ABFB ABD2 ‘USR’ function
AC12 ABE9 ‘EVAL’ function
AC55 AC2F ‘VAL’ function
AC9E AC78 ‘INT’ function
ACC4 AC9E ‘ASC’ function
ACD3 ACAD ‘INKEY’ function
ACDE ACB8 ‘EOF’ function
ACEA ACC4 ‘TRUE’ function
ACF7 ACD1 ‘NOT’ function
AD08 ACE2 ‘INSTR’ function
AD8D AD6A ‘ABS’ function
ADB5 AD8C Unary ‘−’ function
AE1B ADEC Get <factor> or <string-factor> at PTRB
AE9C AE6D Get HEX number
AEE3 AEB4 ‘TIME’ function
AEEF AEC0 ‘PAGE’ function
AEF9 AECA ‘FALSE’ function
AF00 AED1 ‘LEN’ function
AF0B AEDC ‘TOP’ function
AF26 AEF7 ‘COUNT’ function
AF2B AEFC ‘LOMEM’ function
AF32 AF03 ‘HIMEM’ function
AF78 AF49 ‘RND’ function
AF85 AF56 Load IntA from 00,X–03,X
AFB6 AF87 Spin random number generator
AFCE AF9F ‘ERL’ function
AFD5 AFA6 ‘ERR’ function
AFDC AFAD Perform INKEY
AFE8 AFB9 ‘GET’ function
AFEE AFBF ‘GET$’ function

332

AFFB AFCC ‘LEFT$(’ function
B01D AFEE ‘RIGHT$(’ function
B055 B026 ‘INKEY$’ function
B05D B02E Set StrA to empty string
B068 B039 ‘MID$(’ function
B0C3 B094 ‘STR$’ function
B0F1 B0C2 ‘STRING$(’ function
B141 B112 Search for FN/PROC not in list
B1C4 B195 ‘FN’ function
B27C B24D Handle FN/PROC parameters
B33C B30D Push value and descriptor on STACK
B35B B32C Read value of variable
B3EE B3BD ‘CHR$’ function
B3F6 B3C5 Set up ERL
B433 B402 BRK hander
B443 B433 Default BASIC error handling text
B461 B44C ‘SOUND’ statement
B49C B472 ‘ENVELOPE’ statement
B4CC B4A0 ‘WIDTH’ statement
B4E0 B4B1 Assign numeric variable
B53A B50E Print A as a character or token
8570 B545 Print A as 2-digit HEX number
B571 B558 Print A as a character (handling COUNT)
856A B562 Print A as HEX number followed by space
B58D B577 Print selected LISTO formatting spaces
B5A0 B58A ‘LISTO’ command
B5B5 B59C ‘LIST’ command
B6AE B695 ‘NEXT’ statement
B7DF B7C4 ‘FOR’ statement
B8B4 B888 ‘GOSUB’ statement
B8D5 B8B6 ‘RETURN’ statement
B8EB B8CC ‘GOTO’ statement
B903 B8E4 ‘ON ERROR OFF’ statement
B911 B8F2 ‘ON ERROR’ statement
B934 B915 ‘ON’ statement
B9B8 B99A Get line number, and find it in program
B9ED B9CF ‘INPUT#’ statement
BA62 BA44 ‘INPUT’ statement
BB00 BAE6 ‘RESTORE’ statement
BB39 BBF1 ‘READ’ statement
BBCC BBB1 ‘UNTIL’ statement
BBFF BBE4 ‘REPEAT’ statement
BC17 BBFC Input string to StrA

333

BC1D BC02 Input string to keyboard buffer
BC42 BC25 Print CRLF (newline)
BC4A BC2D Delete line in program
BCAA BC8D Insert line into program
BD29 BD11 ‘RUN’ statement
BD38 BD20 Clear variables/stacks
BD52 BD3A Reset stacks; RESTORE data pointer
BD69 BD51 Push FPA on STACK
BD96 BD7E Pop real number from STACK
BDA8 BD90 Push IntA, FPA, or StrA on STACK
BDAC BD94 Push IntA on STACK
BDCA BDB2 Push StrA on STACK
BDE3 BDCB Pop StrA from STACK
BDF4 BDDC Discard string from STACK
BE04 BDEA Pop IntA from STACK
BE17 BDFF Discard integer (4 bytes) from STACK
BE23 BE0B Pop integer from STACK to &37–&3A
BE25 BE0D Pop integer into page zero
BE46 BE2E Allocate STACK space; check for ‘No room’
BE5C BE44 Copy IntA into 0,X–3,X
BE6D BE55 Add Y to pointer at &3D,&3E; Set Y=1
BE7A BE62 Perform BASIC program load
BE88 BE6F Test for ‘Bad program’
– – – – BEC2 ‘OSCLI’ statement
BEFA BEF3 ‘SAVE’ statement
BF2D BF24 ‘LOAD’ statement
BF33 BF2A ‘CHAIN’ statement
BF39 BF30 ‘PTR’ statement
BF4F BF46 ‘EXT’ function
BF50 BF47 ‘PTR’ function
BF61 BF58 ‘BPUT’ statement
BF78 BF6F ‘BGET’ function
– – – – BF78 ‘OPENIN’ function
BF81 BF7C ‘OPENOUT’ function
BF85 BF80 ‘OPENUP’ function (‘OPENIN’ in BASIC 1)
BF9E BF99 ‘CLOSE’ statement
BFAE BFA9 Get file handle at PTRA
BFCB BFCF Print text after ‘JSR’ to this routine
BFE6 BFE4 ‘REPORT’
– – – – BFF9 Text: ‘Roger’

334

Appendix C – 6502 Instruction Set Summary
ADC Add Memory to Accumulator with Carry
AND ‘AND’ Memory with Accumulator
ASL Shift Left one bit (Memory or Accumulator)

BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on result Zero
BIT Test bits in Memory with Accumulator
BMI Branch on result Minus
BNE Branch on result not Zero
BPL Branch on result Plus
BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set

CLC Clear Carry flag
CLD Clear Decimal mode
CLI Clear Interrupt disable bit
CLV Clear Overflow flag
CMP Compare Memory and Accumulator
CPX Compare Memory and index X
CPY Compare Memory and index Y

DEC Decrement Memory by one
DEX Decrement index X by one
DEY Decrement index Y by one

EOR ‘Exclusive-OR’ Memory with Accumulator

INC Increment Memory by one
INX Increment index X by one
INY Increment index Y by one

JMP Jump to new location
JSR Jump to subroutine

LDA Load Accumulator with Memory
LDX Load index X with Memory
LDY Load index Y with Memory
LSR Shift one bit right (Memory or Accumulator)

335

NOP No operation

ORA ‘OR’ Memory with Accumulator

PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack

ROL Rotate one bit left (Memory or Accumulator)
ROR Rotate one bit right (Memory or Accumulator)
RTI Return from Interrupt
RTS Return from subroutine

SBC Subtract Memory from Accumulator with Carry
SEC Set Carry flag
SED Set Decimal mode
SEI Set Interrupt disable status
STA Sore Accumulator in Memory
STX Store index X in Memory
STY Store index Y in Memory

TAX Transfer Accumulator to index X
TAY Transfer Accumulator to index Y
TSX Transfer Stack Pointer to index X
TXA Transfer index X to Accumulator
TXS Transfer index X to Stack Register
TYA Transfer index Y to Accumulator

336

Appendix D – Keyword list
For a list of the keyword tokens, and their associated flags, in
token value order, see section 2.3.

94 ABS A0 EVAL
95 ACS A1 EXP
96 ADVAL A2 EXT
80 AND A3 FALSE
97 ASC A4 FN
98 ASN E3 FOR
99 ATN E6 GCOL
C6 AUTO A5 GET
9A BGET BE GET$
D5 BPUT E4 GOSUB
D6 CALL E5 GOTO
D7 CHAIN 93 HIMEM
BD CHR$ (left)
D8 CLEAR D3 HIMEM
D9 CLOSE (right)
DA CLG E7 IF
DB CLS A8 INT
9B COS BF INKEY$
FB COLOUR A6 INKEY
9C COUNT E8 INPUT
DC DATA A7 INSTR(
9D DEG C0 LEFT$(
DD DEF A9 LEN
C7 DELETE E9 LET
DE DIM 86 LINE
81 DIV C9 LIST
DF DRAW AA LN
8B ELSE C8 LOAD
E0 END EA LOCAL
E1 ENDPROC AB LOG
E2 ENVELOPE 92 LOMEM
82 EOR (left)
C5 EOF D2 LOMEM
9E ERL (right)
9F ERR C1 MID$(
85 ERROR 83 MOD

337

EB MODE B2 RAD
EC MOVE F3 READ
CA NEW F4 REM
ED NEXT CC RENUMBER
AC NOT F5 REPEAT
EE ON F6 REPORT
87 OFF F7 RESTORE
CB OLD F8 RETURN
8E OPENIN (BASIC2) C2 RIGHT$(
AD OPENIN (BASIC1) B3 RND
AD OPENUP (BASIC2) F9 RUN
AE OPENOUT CD SAVE
84 OR B5 SIN
FF OSCLI B4 SGN
90 PAGE D4 SOUND
 (left) 89 SPC
D0 PAGE B6 SQR
 (right) 88 STEP
AF PI FA STOP
F0 PLOT C3 STR$
B0 POINT(C4 STRING$(
B1 POS 8A TAB(
F1 PRINT B7 TAN
F2 PROC 8C THEN
8F PTR 91 TIME
 (left) (left)
CF PTR D1 TIME
 (right) (right)
 B8 TO
 FC TRACE
 B9 TRUE
 FD UNTIL
 BA USR
 BB VAL
 EF VDU
 BC VPOS
 FE WIDTH

338

Appendix E – Operating System Calls and Vectors
 Routine Vector Function
Name Addr Name Addr

 USERV 200 The user vector
 BRKV 202 The BRK vector
 IRQ1V 204 Primary interrupt vector
 IRQ2V 206 Unrecognised IRQ
OSCLI FFF7 CLIV 208 Command line interpreter
OSBYTE FFF4 BYTEV 20A *FX/OSBYTE call
OSWORD FFF1 WORDV 20C OSWORD call
OSWRCH FFEE WRCHV 20E Write character
OSNEWL FFE7  – – Write LF,CR to screen
OSASCI FFE3  – – Write character,
 &0D=LF,CR
OSRDCH FFE0 RDCHV 210 Read character
OSFILE FFDD FILEV 212 Load/save file
OSARGS FFDA ARGSV 214 Load/save file data
OSBGET FFD7 BGETV 216 Get byte from file
OSBPUT FFD4 BPUTV 218 Put byte in file
OSGBPB FFD1 GBPBV 21A Multiple BPUT/BGET
OSFIND FFCE FINDV 21C Open or close file
 FSCV 21E File system control
 EVNTV 220 Event vector
 UPTV 222 User print routine
 NETV 224 Econet vector
 VDUV 226 Unrecognised VDU
 commands
 KEYV 228 Keyboard vector
 INSV 22A Insert into buffer
 REMV 22C Remove from buffer
 CNPV 22E Count/purge buffer
 IND1V 230 Spare vector
 IND2V 232 Spare vector
 IND3V 234 Spare vector
NVWRCH FFCB  – – Nonvectored write char.
NVRDCH FFC8  – – Nonvectored read char.
GSREAD FFC5  – – Read char. from string
GSINIT FFC2  – – String input initialise
OSEVEN FFBF  – – Generate an event
OSRDRM FFB9  – – Read byte in paged ROM

339

Appendix F – OSBYTE/*FX Call Summary
dec. hex. function

0 0 Identify OS version
1 1 Set the user flag
2 2 Select input stream
3 3 Select output stream
4 4 Enable/disable cursor editing
5 5 Select printer destination
6 6 Set character ignored by printer
7 7 Set RS423 baud rate for receiving data
8 8 Set RS423 baud rate for data transmission
9 9 Set flashing colour mark state
10 A Set flashing colour space state
11 B Set keyboard auto-repeat delay
12 C Set keyboard auto-repeat rate
13 D Disable events
14 E Enable events
15 F Flush selected buffer class
16 10 Select ADC channels to be sampled
17 11 Force an ADC conversion
18 12 Reset soft keys
19 13 Wait for vertical sync
20 14 Explode soft character RAM allocation
21 15 Flush specific buffer
22 16 Electron increment ROM polling semaphore
23 17 Electron decrement ROM polling semaphore
24 18 Electron change sound system.

50 32 Econet poll transmit block
51 33 Econet poll receive block
52 34 Econet delete receive block
53 35 Econet sever remote connection

111 6F Aries RAM board OSBYTE

115 73 Electron blank/restore palette
116 74 Electron reset internal sound system

117 75 Read VDU status
118 76 Reflect keyboard status in LEDs

340

119 77 Close any SPOOL or EXEC files
120 78 Write current keys pressed information
121 79 Perform keyboard scan
122 7A Perform keyboard scan from 16 (&10)
123 7B Inform OS, printer driver going dormant
124 7C Clear ESCAPE condition
125 7D Set ESCAPE condition
126 7E Acknowledge detection of ESCAPE condition
127 7F Check for EOF on an open file
128 80 Read ADC channel or get buffer status
129 81 Read key with time limit
130 82 Read machine high order address
131 83 Read top of OS RAM address (OSHWM)
132 84 Read bottom of display RAM address (HIMEM)
133 85 Read bottom of display address, given MODE
134 86 Read text cursor position (POS and VPOS)
135 87 Read character at cursor position + MODE
136 88 Perform *CODE
137 89 Perform *MOTOR
138 8A Insert value into buffer
139 8B Perform *OPT
140 8C Perform *TAPE
141 8D Perform *ROM
142 8E Enter language ROM
143 8F Issue paged ROM service call
144 90 Perform *TV
145 91 Get character from buffer
146 92 Read from FRED, 1 MHz bus
147 93 Write to FRED, 1 MHz bus
148 94 Read from JIM, 1 MHz bus
149 95 Write to JIM, 1 MHz bus
150 96 Read from SHEILA, mapped I/O
151 97 Write to SHEILA, mapped I/O
152 98 Examine buffer status
153 99 Insert character into input buffer
154 9A Write to video ULA control register and copy
155 9B Write to video ULA palette register and copy
156 9C Read/write 6850 control register and copy
157 9D Fast Tube BPUT
158 9E Read from speech processor
159 9F Write to speech processor
160 A0 Read VDU variable value

341

166 A6 Read address of OS variables (low byte)
167 A7 Read address of OS variables (high byte)
168 A8 Read address of ROM pointer table (low byte)
169 A9 Read address of ROM pointer table (high byte)
170 AA Read address of ROM info table (low byte)
171 AB Read address of ROM info table (high byte)
172 AC Read address of key translation table (low byte)
173 AD Read address of key translation table (high byte)
174 AE Read address of OS VDU variables (low byte)
175 AF Read address of OS VDU variables (high byte)
176 B0 Read/write CFS timeout counter
177 B1 Read/write input source
178 B2 Undefined
179 B3 Read/write primary OSHWM
180 B4 Read current OSHWM
181 B5 Read/write RS423 mode
182 B6 Read character definition explosion state
183 B7 Read cassette/ROM filing system switch
184 B8 BBC Read RAM copy of video ULA control
 register
 Electron undefined
185 B9 BBC Read RAM copy of video ULA palette
 register
 Electron read/write paged ROM service call
 semaphore
186 BA Read ROM number active at last BRK
187 BB Read number of ROM socket containing BASIC
188 BC Read current ADC channel
189 BD Read maximum ADC channel number
190 BE Read ADC conversion type
191 BF Read/write RS423 use flag
192 C0 Read RS423 control flag
193 C1 Read/write flash counter
194 C2 Read/write space period count
195 C3 Read/write mark period count
196 C4 Read/write keyboard auto-repeat delay
197 C5 Read/write keyboard auto-repeat period
198 C6 Read *EXEC file handle
199 C7 Read/write *SPOOL file handle
200 C8 Read/write ESCAPE, BREAK effect
201 C9 Read/write Econet keyboard disable
202 CA Read/write keyboard status byte
203 CB Read/write RS423 handshake extent

342

204 CC Read/write RS423 input suppression flag
205 CD Read/write cassette/RS423 selection flag
206 CE Read/write Econet OS call interception status
207 CF Read/write Econet OSRDCH interception status
208 D0 Read/write Econet OSWRCH interception status
209 D1 Read/write speech suppression status
210 D2 Read/write sound suppression status
211 D3 Read/write BELL channel
212 D4 Read/write BELL envelope number/amplitude
213 D5 Read/write BELL frequency
214 D6 Read/write BELL duration
215 D7 Read/write startup message and !BOOT options
216 D8 Read/write length of soft key string
217 D9 Read/write lines printed since last page
218 DA Read/write number of items in VDU queue
219 DB Read/write TAB character value
220 DC Read/write ESCAPE character value
221 DD Read/write character &C0 to &CF status
222 DE Read/write character &D0 to &DF status
223 DF Read/write character &E0 to &EF status
224 E0 Read/write character &F0 to &FF status
225 E1 Read/write function key status
226 E2 Read/write SHIFT+function key status
227 E3 Read/write CTRL+function key status
228 E4 Read/write CTRL+SHIFT+function key status
229 E5 Read/write ESCAPE key status
230 E6 Read/write flags determining ESCAPE effects
231 E7 BBC Read/write IRQ bit mask for user 6522
 Electron reserved
232 E8 BBC Read/write IRQ bit mask for 6850
 Electron Read/write sound semaphore
233 E9 BBC Read/write IRQ bit mask for system 6522
 Electron Read/write soft key pointer
234 EA Read flag indicating Tube presence
235 EB Read speech processor presence flag
236 EC Read/write WRCH destination status
237 ED Read/write cursor editing status
238 EE Read/write OS workspace byte
239 EF Read/write OS workspace byte
240 F0 Read country code
241 F1 Read/write user flag
242 F2 BBC Read RAM copy of serial processor ULA
 Electron read RAM copy of &FE07

343

243 F3 Read timer switch state
244 F4 Read/write soft key consistency flag
245 F5 Read/write printer destination flag
246 F6 Read/write character ignored by printer
247 F7 Read/write BREAK intercept code, 1st byte
248 F8 Read/write BREAK intercept code, 2nd byte
249 F9 Read/write BREAK intercept code, 3rd byte
250 FA Read/write OS workspace byte
251 FB Read/write OS workspace byte
252 FC Read/write current language ROM number
253 FD Read/write last BREAK type
254 FE Read/write available RAM
255 FF Read/write start up options

344

Appendix G – Variable locations
For the format of these variables, see section 3.1.

Resident integers

@% &0400 I% &0424 R% &0448
A% &0404 J% &0428 S% &044C
B% &0408 K% &042C T% &0450
C% &040C L% &0430 U% &0454
D% &0410 M% &0434 V% &0458
E% &0414 N% &0438 W% &045C
F% &0418 O% &043C X% &0460
G% &041C P% &0440 Y% &0464
H% &0420 Q% &0444 Z% &0468

Variable list base pointers

The pointers marked with a ‘*’ are not available (those characters
are not allowed as part of a variable name).

@ &0480* T &04A8 h &04D0
A &0482 U &04AA i &04D2
B &0484 V &04AC j &04D4
C &0486 W &04AE k &04D6
D &0488 X &04B0 l &04D8
E &048A Y &04B2 m &04DA
F &048C Z &04B4 n &04DC
G &048E [&04B6* o &04DE
H &0490 \ &04B8* p &04E0
I &0492] &04BA* q &04E2
J &0494 ^ &04BC* r &04E4
K &0496 _ &04BE s &04E6
L &0498 £ &04C0 t &04E8
M &049A a &04C2 u &04EA
N &049C b &04C4 v &04EC
O &049E c &04C6 w &04EE
P &04A0 d &04C8 x &04F0
Q &04A2 e &04CA y &04F2
R &04A4 f &04CC z &04F4
S &04A6 g &04CE

345

Bibliography

Acorn User Magazine, published monthly, Redwood Publishing

6502 Assembly Language Programming, L.A.Leventhal,
OSBORNE/McGraw Hill, Berkeley, California

Acorn Electron User Guide, Acorn Computers Limited,
Cambridge, 1983

Acorn Electron Advanced User Guide, Dickens and Holmes,
Adder Publishing/Acornsoft, Cambridge, 1984

The BBC Microcomputer User Guide, John Coll, British
Broadcasting Corporation, London, 1982

The Advanced User Guide for the BBC Microcomputer, Bray,
Dickens and Holmes, Cambridge Micro Centre, 1983

Beebug Magazine, published every five weeks, BEEBUG, PO
Box 109, High Wycombe, Bucks.

Principles of Compiler Design, Aho and Ullman, Addison
Wesley, 1979

Programming the 6502, Rodnay Zaks, Sybex, 1980

R650X and R651X Microprocessors (CPU) Data Sheet, Rockwell
International, 1984

Understanding and Writing Compilers, Richard Bornat,
Macmillan Press, 1979

346

Glossary
Accumulator – a register used to perform mathematical
operations. The 6502 has one accumulator, A, which can deal with
8-bit integers.

Addressing Mode – specifies how any data will be used by a
machine code instruction.

ASCII (American Standard Code for Information Interchange)
– the ASCII code of a character is the value of the byte which is
used to store it in the computer.

Assembler – a program which converts a series of mnemonics
into a machine code program.

Bit of memory – this is the fundamental unit of a computer’s
memory. It may only be in one of two possible states, usually
represented by a 0 or 1.

BNF (Backus Naur Form) – a way of writing down the syntax of
a computer language.

Buffer – a software buffer is an area of memory set aside for data
in the process of being transferred from one device or piece of
software to another.

Byte of memory – 8 bits of memory. Data is normally transferred
between devices one byte at a time over the data bus.

Chip – derived from the small piece of silicon wafer or chip
which has all of the computer logic circuits etched into it. A chip
is normally packaged in a black plastic case with small metal
leads to connect it to the outside world.

Command – similar to a BASIC statement, but it can only be
executed if it is typed in at the keyboard directly (i.e. in command
mode), rather than as part of a BASIC program. For example,
‘AUTO’ is a command.

CPU (Central processing unit) – the 6502A in the BBC
microcomputer and the Electron. It is this chip which does all of
the computing work associated with running programs.

347

Disassembler – a program which converts a series of bytes in a
machine code program into assembler mnemonics.

Field – a space allocated for some data in a register, or in a
program listing, or in a storage area. For example, in a Variable
Descriptor Block, the first field contains a pointer to the location
of the variable, and the second field contains the type of the
variable.

Flag – a bit (or byte) which is used to signal a particular
condition. For example, the N (negative) flag in the 6502 is set if
the number just calculated is negative.

Heap – BASIC uses a HEAP to store the variables used during a
program. Data can be added on top of a heap, but once used, the
space cannot be recovered until it is completely cleared.

High – sometimes used to designate logic ‘1’

Indirection – pointing to a variable in memory with the
indirection operators ?, ! or $, rather than using a value directly.
For example, !&4000 points to the 4-byte integer variable in
locations &4000 to &4003.

Interrupt – this signal is produced by peripheral devices and is
always directed to the 6502A CPU. Upon receiving an interrupt,
the 6502 will normally run a special interrupt routine program
before continuing with the task in hand before it was interrupted.

Keyword – a special word (sometimes called a Reserved Word)
which BASIC uses for a special purpose. For example, PRINT is a
keyword which is put before items to be printed out.

Linked list – a list of items in memory, where each item contains
a pointer to the next one. The end of the list is usually marked by
a null pointer in the last item. A base pointer is used to point to
the first item in the list.

Low – sometimes used to designate logic ‘0’.

348

Machine code – the programs produced by the 6502 BASIC
Assembler are machine code. A machine code program consists
of a series of bytes in memory which the 6502 can execute
directly.

Mnemonic – the name given to the text string which defines a
particular 6502 operation in the BASIC assembler. LDA is a
mnemonic which means load accumulator.

Opcode – the name given to the binary code of a 6502
instruction. For example, &AD is the opcode which means load
accumulator (absolute addressing).

Operand – a piece of data on which some operation is
performed. This could be a number in a BASIC program, or it
could be a byte in the accumulator of the 6502.

Operator – a symbol or device which takes one or two operands
to produce a single result. If an operator takes one operand, it is a
unary operator; if it takes two operands, it is a binary operator.
For example, the ‘$’ operator takes the number following it, and
gives as a result the static string at that location.

Overflow – a condition caused when the result of a calculation is
too large to be represented properly.

Overlay – a part of a program which is loaded into memory while
the main program is running. Large programs can be run in a
computer by splitting them up into several overlays, and each one
will only be loaded in when they are needed.

Page – a page of memory in the 6502 memory map is &100 (256)
bytes long. There are therefore 256 pages in the entire address
space. 256 pages of 256 bytes each account for the 65536 bytes of
addressable memory.

Page zero – the locations from &0000 to &00FF. These are very
useful on the 6502, because any machine code instructions which
use them are shorter and faster than those which use any other
section of the memory.

349

Peripheral – any device connected to the 6502 central processor
unit, such as the printer port, disc interface etc., but not including
the memory.

Program – a BASIC program is a sequence of statements which
the BASIC interpreter is to execute one after the other. A
machine code program is a sequence of bytes which the 6502 is to
execute one after the other as machine code instructions.

RAM (Random Access Memory) – the main memory in the
BBC microcomputer and the Electron is RAM because it can be
both written to and read from.

Register – a location which can be written to or read from,
usually for a special purpose, but which is not necessarily in the
main memory map of the computer. The 6502 and peripheral
devices contain registers, and BASIC uses a series of page zero
locations as if they were its own registers.

ROM (Read only memory) – as the name implies, ROM can
only be read from and cannot be modified by being written to.

Stack – the 6502 and BASIC each use a stack for temporary
storage of data. Data is pushed onto a stack in sequence, then
removed by pulling the data off the stack. The last byte to be
pushed is the first byte to be pulled off again. The 6502 stack is
used to store return addresses from subroutines; the BASIC stack
is used to store temporary results during a calculation, and other
data inside a PROC or FN call.

Statement – a sequence of symbols which tells the BASIC
interpreter to perform a certain action. For example, the
statement ‘A=10’ tells BASIC to assign the value 10 to the
variable ‘A’ (this is an assignment statement).

Static string – a string whose characters are stored in memory
starting at a fixed location. The string is terminated by a &0D
byte (carriage return character), which is not counted as one of
the characters of the string. For example, $&2000 is the static
string whose first character is stored in location &2000.

350

String Information Block – this block is used to reference the
characters of a dynamic string on the BASIC HEAP. It contains a
pointer to the start of the string, the amount of memory allocated
to the string, and the current length of the string. The String
Information Block is held in the value field of the Variable
Information Block of a string variable.

Token – a single byte which is used by BASIC to represent a
keyword. This saves memory when programs are stored. For
example, &80 is the token for ‘AND’.

Variable – is used to hold a number or a string (depending on its
type). Named variables are stored on the BASIC HEAP (or in
page 4 if they are resident integer variables), but indirected
variables (accessed using the $, ? and ! operators) can be
anywhere in memory.

Variable Descriptor Block – this is passed between routines
inside BASIC as a description of a variable, once its location and
type has been found. It consists of a pointer to the value of the
variable, and a byte which gives the type of the variable.

Variable Information Block – the format used to store variables
(and FN/PROC locations) on the BASIC HEAP. It consists of a
pointer to the next Variable Information Block, the name of the
variable, and the value of the variable.

351

Index
$ range error 276
* line handling 46
*FX summary 339
-ve root error 287
2’s complement 10
6502 7

addressing mode groups 23
addressing modes 19
instruction set 14,334
mnemonics 85
opcode matrix 85
registers 7

A
Accumulator

6502 8
floating point 33
integer 31
string 35

Accuracy lost error 289
Action address 45
Actual parameter 70
Add integers 232
Add real numbers 251
Adding new commands 98
Addressing groups 88
Addressing mode groups 23
Addressing modes 19

absolute 20
absolute indexed 20
accumulator 19
immediate 20
implied 19
indirect 22
post-indexed indirect 22
pre-indexed indirect 22
relative 21

used by disassembler 88
zero page 20
zero page indexed 21

Analysing expressions 63
Arguments error 298
Arithmetic

machine code 10
Array error 283
Array storage 56
Assembler 26,83

EQU directive 26
mnemonic storage 83
opcode slot 61
remote option 26

Assign numeric variable 198
Assign string variable 197

B
BASIC

assembler 26
BRK handler 264
CPU 30
keywords 41
program control 68
program storage 44
ROM summary 327
read ROM slot 162
registers 30
STACK 59
system 28
version number 106
year 6,106

Backus-Naur form 63,319
Bad call error 298
Bad DIM error 278
Bad HEX error 295
Bad MODE error 143,290

352

Bad program error 147,311
Bad program salvage 148
BEEP 107
Binary coded decimal 13
Binary point 32
BRK

BASIC BRK handler 264
interception routine 99
to generate errors 98
vector 98

Bugs
brackets in expression 67
hanging ELSE 76
ON…ELSE 81,305
Out of range 267
single-byte NEXT 79

Byte error 269
Byte variables 53

C
CALL Parameter Block 53
Calls to operating system 338
Can’t match FOR error 299
Carry flag 12
Check end of statement 184
Check for bad program 181
Check STACK/HEAP clash
 209
Clear information block 205
Clear variables and stacks 178
COUNT 60
Cold start BASIC 169
Command handler 30,45
Command line interpreter 110
Continue program execution
 185
Control variable 77
Convert

A to real 223
integer to real 222
number to string 225

real to fixed format 259
real to integer 224
string to number 227

CPU
6502 7
BASIC 30

D
D (decimal) flag 13
DATA pointer 60
Delete line in program 175
DIM space error 279
Disassembler 86

program 89
Divide integers 235
Divide real numbers 255
Division by zero error 286
DUMP 107
Dynamic overlaying 134
Dynamic string format 55
Dynamic variables 49

E
ELSE 75,81
Enter immediate mode 171
EQU 26

BASIC equivalent 103
ERL 60
ERR 98
ERROR 81
Error generating mechanism 98
Error listing 155
Error trapping

by BRK interception 99
with ON ERROR 81

Errors 264
$ range 276
-ye root 287
Accuracy lost 289

353

Arguments 298
Array 283
Bad call 298
Bad DIM 278
Bad HEX 295
Bad MODE 143,290
Bad program 147,311
Byte 269
Can’t match FOR 299
DIM space 279
Division by zero 286
Escape 285
Exp range 289
Failed at xxx 312
FOR variable 300
fatal errors 311
Index 270
Line space 312
Log range 288
Missing # 310
Missing ” 277
Missing) 294
Missing , 273
Mistake 100,271
No FN 141,274
No FOR 299
No GOSUB 304
No PROC 141,281
No REPEAT 309
No room 314
No such FN/PROC 128,296
No such line 306
No such variable 292
No TO 302
Not LOCAL 281
numbered errors 267
ON range 305
ON syntax 305
Out of DATA 307
Out of range 267
REN errors 115
RENUMBER space 317
Silly 317

STOP 318
String too long 286
Subscript 283
Syntax error 284
Too big 287
Too many FORs 300
Too many GOSUBs 304
Too many REPEATs 309
Type mismatch 274

Escape error 285
Exchange FPA with memory
 245
Executing statements 45
Exp range error 289
Exponent 32
Expression evaluation 63,187

demonstration program 65
get factor or string-factor 189
get line number 192
get number 191
get numeric or string 187
result type 66

F
Factor 66
Failed at xxx error 312
Fatal errors 311
Find variable in text 194
Flags for tokenising 38
Floating point

expression result type 66
limitations 34
normalising 34
packed format 32
representation 31
variable format 54

Floating point accumulator 33
Floating point routines 237

addition 251
division 255

354

exchange FPA with memory
 245
fix FPA 259
function entry points 262
get fractional part 261
load FPA from memory 242
load FPA with 1.0 240
load FPA with zero 239
load FPB from memory 243
load FPB with zero 241
move FPA to FPB 237
move FPB to FPA 238
multiplication 252
negate FPA 250
normalise FPA 248
point at storage slot 246
round FPA 249
series evaluation 258
store FPA in memory 244
subtraction 252
test FPA 247

FN/PROC management
link in new FN/PROC 204
look for FN/PROC 203

FOR 77
FOR variable error 300
Formal parameter 70
FPA 163

format 35
FPB 164

format 35
Fractional part of real 261
Function entry points 262
Function list 50
Function operation 70
Function overlaying 128

G
Generating errors 98
Get character at PTRA 182
Get character at PTRB 183

Get factor or string-factor 189
Get line number 192
Get number 191
Get numeric or string 187
GOSUB 69,80
GOTO 68,80

H
HEAP 164

variable storage 49
HEAP management 193
Hex dump program 154

I
IF 75
Immediate mode entry 171
Index error 270
Index registers 8
Input a string 216
Input/output 216
Insert line in program 174
Instruction set 334
Instruction set (6502) 14
IntA 163

format 31
Integer

expression result type 66
format 31
resident variables 47
single byte 53
variable format 54

Integer routines 228
addition 232
division 235
load 228
multiplication 234
negate 231
store 230
subtraction 233

355

K
Keyboard input buffer 62
Keyword list 336
Keywords

action address 45
recognising 107
token list 41
tokenising 37

L
LISTO mask 60
Line number tokenising 39
Line space error 312
Link in new FN/PROC 204
Link in new variable 201
Linked list 49
List error line 155
Listing variables 52,107
Load FPA from memory 242
Load FPA with 1.0 240
Load FPA with zero 239
Load FPB from memory 243
Load FPB with zero 241
Load integer accumulator 228
Locations of variables 344
Log range error 288
Look for FN/PROC 203
Look-ahead 65
Loops

FOR 77
REPEAT 76

M
Machine code 7

arithmetic 10
Mantissa 32
Memory 47

array storage 56
program storage 44
STACK use 59
variable storage 47

Memory pointers 36
Missing # error 310
Missing ” error 277
Missing) error 294
Missing , error 273
Mistake error 100,271
Mnemonic

compression 83
storage 84

MODE changing 143
Move FPA to FPB 237
Move FPB to FPA 238
Multiply integers 234
Multiply real numbers 252

N
NEXT 77
Negate integer 231
Negate real number 250
Negative numbers 10
New commands 98

single character 103
New functions 292
No FN error 141,274
No FOR error 299
No GOSUB error 304
No PROC error 141,281
No REPEAT error 309
No room error 314
No such FN/PROC error
 128,296
No such line error 306
No such variable error 292
No TO error 302
Normalise FPA 248
Normalising 34
Not LOCAL error 281

356

Numbered errors 267

O
ON 80,81
ON ERROR 264
ON ERROR pointer 60
ON range error 305
ON syntax error 305
One character look-ahead 65
OPT 26
OPT mask 61
Opcode matrix 85
Operating system workspace
 61
Operating system calls 338
Operator precedence 63
OSBYTE summary 339
OSCLI 46,133
OSFILE 137
OSRDRM 163
Out of DATA error 307
Out of range error 267
Output

print a character 218
print a hex byte 220
print a token 219
print line number 221

Overflow 13
Overlaying procedures 128

dynamic 134
static 130

P
PAGE 60
Page zero workspace 60
Paging problems 149,162
Parameter Block 53
Parameters 70
Point at storage slot 246

Pop floating point number 212
Pop integer from STACK 210
Pop parameter from STACK
 215
Pop string from STACK 213
PRINT 60
Print a character 218
Print a hex byte 220
Print a token 219
Print line number 221
Procedure list 50
Procedure operation 70
Procedure overlaying 128
Processor status register 9
Program storage 44
Program control mechanisms
 68

FN 70
FOR…NEXT 77
GOSUB…RETURN 69
GOTO 68
IF…THEN…ELSE 75
ON ERROR 81
ON…GOSUB/GOTO 80
PROC 70
REPEAT…UNTIL 76

Program counter (6502) 8
Program handling 172

check for bad program 181
clear variables 178
delete line 175
insert line 174
reset stacks 179
run a program 177
search for line 176
set up ERL 180
set up TOP 181
tokenise line 172

Program pointers 36
Programming model (6502) 7
PTRA 68,164

format 36
PTRB 164

357

format 36
Push accumulator 207
Push variable on STACK 214

R
REN 115
RENUMBER space error 317
REPEAT 76
RETURN 69
Read byte in paged ROM 163
Read value of variable 196
Real numbers

representation 31
Recognising keywords 107
Registers

6502 7
BASIC 30

Remote assembly 26
Renumber utility 115
Reset BASIC stacks 179
Resident integer variables 47
Restarting BASIC 169

cold start 169
enter immediate mode 171
warm start 170

ROM routines 162
expression evaluation 187
FN/PROC management 193
floating point routines 237
input/output 216
integer routines 228
paging problems 149,162
program handling 172
restarting BASIC 169
STACK management 207
statement handling 182
summary 165
type conversion 222
variable management 193

ROM slot of BASIC 162
ROM summary 327

Round FPA 249
Run a program 177

S
Salvaging bad programs 148
Scan variable name 202
Scientific form 31
Search for program line 176
Search for variable in list 200
Selective renumber 115
Series evaluation routine 258
Set up ERL 180
Set up TOP 181
Silly error 317
Single character statement 103
Skip program line 186
STACK 164
STACK management 207

check HEAP clash 209
pop floating point number
 212
pop integer 210
pop parameter 215
pop string 213
push accumulator 207
push variable 214

STEP 77
STOP error 318
Stack

6502 9
BASIC 59
FOR 77
GOSUB 69
REPEAT 76
state during FN or PROC 75

Stack pointer (6502) 9
Statement handling 182

check end of statement 184
continue execution 185
get character at PTRA 182
get character at PTRB 183

358

skip line 186
Statement interpreter 30,45
Static overlaying 130
Static string format 55
Status register 9
Storage

arrays 56
programs 44
strings 55
variables 47

Store FPA in memory 244
Store integer 230
StrA 164

format 35
String

accumulator 35
expression result type 66
variable format 55

String too long error 286
Subroutines 69
Subscript error 283
Subtract integers 233
Subtract real numbers 252
Syntax definition 319
Syntax error 284

T
Test FPA 247
Text pointers 36
THEN 75
TO 77
TOP 44,60
Token list 41,336
Tokenise a line 172
Tokenising 37

flags 38
keywords 37
line numbers 39

Too big error 287
Too many FORs error 300
Too many GOSUBs error 304

Too many REPEATs error 309
Top-down analysis 63
TRACE 60,185
Trapping BRK 98
Trapping errors

to add new commands 98
to list line 155
to overlay procedures 128
with ON ERROR 81

Two’s complement 10
Type conversion 222

A to real 223
integer to real 222
number to string 225
real to integer 224
string to number 227

Type mismatch error 274

U
UNTIL 76
Utilities

active variables list 52,107
Bad MODE recover 143
Bad program salvage 148
disassembler 89
dynamic overlaying 134
hex dump program 154
list error line 155
resident integers list 49
selective renumber 115
static overlaying 131

V
V (overflow) flag 13
Value format of variables 53
Variable Descriptor Block
 53,163,193
Variable Information Block
 51,193

359

Variable locations 344
Variable management 193

assign numeric variable 198
assign string variable 197
clear information block 205
find variable 194
link in new variable 201
read value 196
scan variable name 202
search for variable 200

Variables
byte 53
dynamic string 55
floating point format 54
integer format 54
list 49
listing program 52,107
resident integers 47
static string 55
storage 47
value formats 53

Vectors
operating system 338

Version 6,106

W
Warm start BASIC 170
WIDTH 61
Workspace 60

Y
Year 6,106

Z
Zero page workspace 60

360

BASIC ROM USER GUIDE
for the BBC Microcomputer and Acorn Electron

This book contains a detailed description of the BASIC
system used on the BBC Microcomputer and Acorn
Electron. It covers the operation of BBC BASIC I, BBC
BASIC II and Electron BASIC, and enables the serious
programmer to considerably enhance the facilities of his
machine.

A number of useful examples are provided including a
complete disassembler, and various facilities such as listing
active variables and overlaying procedures are described.

Extensive reference sections cover the ROM routines and
error recovery, including changing MODE inside procedures
and salvaging bad programs.

ISBN 0 947929 04 5

	Introduction
	1. The 6502 Microprocessor
	1.1. The 6502 registers
	1.2. Machine code arithmetic
	1.3. The Instruction Set
	1.4. Addressing modes
	1.5. Addressing mode groups
	1.6. The BASIC assembler

	2. The BASIC System
	2.1. An overview of BASIC
	2.2. The BASIC 'CPU'
	2.3. Tokenising
	2.4. Program storage
	2.5. Executing statements

	3. Memory Use
	3.1. Variables and the HEAP
	3.2. The BASIC STACK
	3.3. Workspace

	4. Expression Evaluation
	4.1. Operator precedence
	4.2. Top-down analysis

	5. Program Control Mechanisms
	5.1. GOTO
	5.2. GOSUB...RETURN
	5.3. PROCs and FNs
	5.4. IF...THEN...ELSE
	5.5. REPEAT...UNTIL
	5.6. FOR...NEXT
	5.7. ON...GOTO/GOSUB
	5.8. ON ERROR

	6. Assembling and Disassembling
	6.1. The Assembler
	6.2. The Disassembler

	7. Adding New Commands
	7.1. Trapping BRK
	7.2. The 'Mistake' error
	7.3. A single character statement
	7.4. Recognising keywords
	7.5. A renumber utility

	8. Overlaying Procedures
	8.1. The 'No such FN/PROC' error
	8.2. Static overlaying
	8.3. Dynamic overlaying

	9. Trapping Other Errors
	9.1. Bad MODE recover
	9.2. Bad program salvage
	9.3. Error listing

	10. ROM Routines
	10.1. Restarting BASIC
	10.2. Program handling
	10.3. Statement handling
	10.4. Expression evaluation
	10.5. Variable/FN/PROC management
	10.6. Stack management
	10.7. Input/output
	10.8. Type conversion
	10.9. Integer routines
	10.10. Floating point routines
	10.11. Function entry points

	11. Errors and Error Recovery
	11.1. The BASIC BRK handler
	11.2. Numbered errors
	11.3. Fatal errors

	Appendix A - Syntax definition
	Appendix B - BASIC ROM summary
	Appendix C - 6502 Instruction Set
	Appendix D - Keyword list
	Appendix E - OS Calls and Vectors
	Appendix F - OSBYTE/*FX Summary
	Appendix G - Variable locations
	Bibliography
	Glossary
	Index

